File size: 4,934 Bytes
5820821
 
 
 
 
 
 
 
 
f50b5e1
5820821
f50b5e1
 
62eb364
5820821
f50b5e1
5820821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62eb364
f50b5e1
5820821
f50b5e1
5820821
62eb364
f50b5e1
5820821
 
f50b5e1
5820821
 
f50b5e1
5820821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62eb364
f50b5e1
62eb364
5820821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62eb364
5820821
f50b5e1
 
 
5820821
 
 
 
f50b5e1
 
 
62eb364
f50b5e1
5820821
62eb364
 
5820821
 
62eb364
5820821
 
 
 
 
 
f50b5e1
5820821
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import csv
import os
from typing import Iterator, Tuple

import datasets

_DESCRIPTION = """\

Bu dataset mp3 formatdagi audio fayllar va tsv metadata fayllardan iborat.

Audio fayllar .tar arxiv ichida saqlangan va tsv faylda fayl nomlari (masalan, H3H38EY38D8.mp3) keltirilgan.

Katta datasetning faqat 100 tadan yozuvi olingan mini versiyasi.

"""

_HOMEPAGE = "https://huggingface.co/datasets/Elyordev/new_dataset_stt_mini"
_LICENSE = "MIT"

# Har bir split uchun .tsv va .tar fayllarning repo ichidagi joylashuvi (mini variantda ham xuddi shu).
_URLS = {
    "train": {
        "tsv": "train/train.tsv",
        "tar": "train/train.tar",
    },
    "validation": {
        "tsv": "validation/validation.tsv",
        "tar": "validation/validation.tar",
    },
    "test": {
        "tsv": "test/test.tsv",
        "tar": "test/test.tar",
    },
}


class MyMiniDatasetSTTConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(MyMiniDatasetSTTConfig, self).__init__(**kwargs)


class MyMiniDatasetSTT(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        MyMiniDatasetSTTConfig(
            name="default",
            version=VERSION,
            description="Mini STT dataset with mp3 audios in tar archives (100 examples per split)",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "id": datasets.Value("string"),
                "path": datasets.Value("string"),      # Fayl nomi, masalan: H3H38EY38D8.mp3
                "sentence": datasets.Value("string"),
                "duration": datasets.Value("float"),
                "age": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "accents": datasets.Value("string"),
                "locale": datasets.Value("string"),
                # Audio feature: datasets.Audio avtomatik tarzda tar URI orqali yuklaydi
                "audio": datasets.Audio(sampling_rate=16000),
            }),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
        )

    def _split_generators(self, dl_manager):
        """

        Har bir split uchun .tsv va .tar fayllarni yuklab olamiz.

        """
        downloaded_files = {}
        for split in _URLS:
            downloaded_files[split] = {
                "tsv": dl_manager.download_and_extract(_URLS[split]["tsv"]),
                "tar": dl_manager.download_and_extract(_URLS[split]["tar"]),
            }
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "tsv_path": downloaded_files["train"]["tsv"],
                    "tar_path": downloaded_files["train"]["tar"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "tsv_path": downloaded_files["validation"]["tsv"],
                    "tar_path": downloaded_files["validation"]["tar"],
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "tsv_path": downloaded_files["test"]["tsv"],
                    "tar_path": downloaded_files["test"]["tar"],
                },
            ),
        ]

    def _generate_examples(self, tsv_path: str, tar_path: str) -> Iterator[Tuple[int, dict]]:
        """

        Har bir .tsv fayldagi qatordan misol (example) yaratamiz.

        Audio faylga murojaat qilish uchun "tar://" sintaksisidan foydalanamiz:

        "tar://<tar fayl yo'li>#<tsv fayldagi path>".

        

        Katta datasetni cheklash uchun 100 misoldan keyin break qilamiz.

        """
        with open(tsv_path, encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter="\t")
            for idx, row in enumerate(reader):
                if idx >= 100:
                    # faqat 100 ta misol bilan to'xtatamiz
                    break

                mp3_file = row["path"]
                # Audio fayl uchun URI: masalan, "tar://.../train.tar#H3H38EY38D8.mp3"
                audio_ref = f"tar://{tar_path}#{mp3_file}"

                yield idx, {
                    "id": row["id"],
                    "path": mp3_file,
                    "sentence": row["sentence"],
                    "duration": float(row.get("duration", 0.0)),
                    "age": row.get("age", ""),
                    "gender": row.get("gender", ""),
                    "accents": row.get("accents", ""),
                    "locale": row.get("locale", ""),
                    "audio": audio_ref,
                }