Elyordev commited on
Commit
0bae7d4
·
verified ·
1 Parent(s): b5a72fa

Upload my_stt_dataset.py

Browse files
Files changed (1) hide show
  1. my_stt_dataset.py +88 -79
my_stt_dataset.py CHANGED
@@ -1,120 +1,129 @@
1
  import os
2
- import tarfile
3
  import csv
4
-
5
  import datasets
6
  from datasets import Audio
7
 
8
-
9
  class MySTTDatasetConfig(datasets.BuilderConfig):
10
- """Config klass (kerak bo'lsa turli versiya yoki param qo'yish uchun)."""
 
 
 
 
 
 
 
11
 
12
 
13
  class MySTTDataset(datasets.GeneratorBasedBuilder):
14
  BUILDER_CONFIGS = [
15
- MySTTDatasetConfig(name="default", version=datasets.Version("1.0.0")),
 
 
 
 
 
 
 
 
 
 
 
16
  ]
17
-
 
 
18
  def _info(self):
19
  return datasets.DatasetInfo(
20
- description="STT dataset .tar ichida audio, .tsv ichida transkript",
21
- features=datasets.Features(
22
- {
23
- "id": datasets.Value("string"),
24
- "audio": Audio(sampling_rate=None), # Audio turi
25
- "sentence": datasets.Value("string"),
26
- "duration": datasets.Value("float"),
27
- "age": datasets.Value("string"),
28
- "gender": datasets.Value("string"),
29
- "accents": datasets.Value("string"),
30
- "locale": datasets.Value("string"),
31
- }
32
- ),
33
  supervised_keys=None,
34
  )
35
-
36
  def _split_generators(self, dl_manager):
37
- """
38
- dl_manager.download_and_extract() bilan remote fayllarni yuklaysiz
39
- yoki local path bersangiz bo'ladi.
40
- Masalan:
41
- https://huggingface.co/datasets/Elyordev/new_dataset_stt/resolve/main/Dataset_STT/audio/uz/train/train.tar
42
- https://huggingface.co/datasets/Elyordev/new_dataset_stt/resolve/main/Dataset_STT/transcript/uz/train/train.tsv
43
- """
44
- train_tar = dl_manager.download_and_extract("URL_train_tar") # masalan
45
- train_tsv = dl_manager.download("URL_train_tsv")
46
-
47
- val_tar = dl_manager.download_and_extract("URL_val_tar")
48
- val_tsv = dl_manager.download("URL_val_tsv")
49
-
50
- test_tar = dl_manager.download_and_extract("URL_test_tar")
51
- test_tsv = dl_manager.download("URL_test_tsv")
52
-
53
  return [
54
  datasets.SplitGenerator(
55
  name=datasets.Split.TRAIN,
56
  gen_kwargs={
57
- "archive_path": train_tar,
58
  "tsv_path": train_tsv,
59
  },
60
  ),
61
  datasets.SplitGenerator(
62
  name=datasets.Split.VALIDATION,
63
  gen_kwargs={
64
- "archive_path": val_tar,
65
  "tsv_path": val_tsv,
66
  },
67
  ),
68
  datasets.SplitGenerator(
69
  name=datasets.Split.TEST,
70
  gen_kwargs={
71
- "archive_path": test_tar,
72
  "tsv_path": test_tsv,
73
  },
74
  ),
75
  ]
76
-
77
- def _generate_examples(self, archive_path, tsv_path):
78
  """
79
- Har bir tar faylni ochib, TSV dagi id + sentence boshqariladi.
 
80
  """
81
- # `archive_path` bu dl_manager.download_and_extract qilgan manzil
82
- # lekin e’tibor bering: .extract automatik ravishda chiqarib yuboradi.
83
- # Agar `.tar` ochilmasin desangiz, download() deyish kifoya,
84
- # lekin streaming qilish uchun biroz boshqacha yo'l tutish kerak.
85
-
86
- # Keling, bu yerda tar fayl allaqachon extract qilingan deb faraz qilamiz:
87
- # train.tar -> train/ (ichida mp3 fayllar paydo bo'lgan bo'ladi).
88
- # Agar real .tar ichidan "on-the-fly" o'qimoqchi bo'lsak,
89
- # dl_manager.download() + tarfile.open(...) da ishlash lozim.
90
-
91
- # Shunchaki misol tariqasida:
92
- audio_base_path = archive_path # extract bo'lgach papka manzili
93
- # Ehtimol, audio_base_path = os.path.join(archive_path, "train") bo'lishi ham mumkin
94
- # chunki tar ichida "train/" deb nomlangan ichki papka bo'lishi mumkin.
95
-
 
 
96
  with open(tsv_path, "r", encoding="utf-8") as f:
97
  reader = csv.DictReader(f, delimiter="\t")
98
- for n, row in enumerate(reader):
99
- audio_id = row["id"] # masalan '009f0d56-c7db-4de3-bd3e-92a37d6f0cb9'
100
- audio_file = audio_id + ".mp3"
101
 
102
- # to'liq path
103
- audio_path = os.path.join(audio_base_path, audio_file)
104
-
105
- # Agar audio fayl topilsa:
106
- if os.path.isfile(audio_path):
107
- yield n, {
108
- "id": audio_id,
109
- "audio": audio_path, # Audio typeda faqat path bersak, HF o'zi o'qiydi
110
- "sentence": row["sentence"],
111
- "duration": float(row["duration"]),
112
- "age": row["age"],
113
- "gender": row["gender"],
114
- "accents": row["accents"],
115
- "locale": row["locale"],
116
- }
117
- else:
118
- # Agar mp3 topilmasa, o'ziz xato signal qilishingiz mumkin
119
- # yoki continue qilishingiz mumkin
120
- pass
 
1
  import os
 
2
  import csv
 
3
  import datasets
4
  from datasets import Audio
5
 
6
+ # Har xil config - 'sample' va 'full'
7
  class MySTTDatasetConfig(datasets.BuilderConfig):
8
+ def __init__(self, limit=None, **kwargs):
9
+ """
10
+ limit : int yoki None
11
+ Har bir splitdan qancha qatorni o'qish.
12
+ None bo'lsa, cheklanmagan.
13
+ """
14
+ super().__init__(**kwargs)
15
+ self.limit = limit
16
 
17
 
18
  class MySTTDataset(datasets.GeneratorBasedBuilder):
19
  BUILDER_CONFIGS = [
20
+ MySTTDatasetConfig(
21
+ name="sample",
22
+ version=datasets.Version("1.0.0"),
23
+ description="Faqat har bir splitdan 10k qator ko'rsatish uchun",
24
+ limit=10_000, # masalan 10 ming
25
+ ),
26
+ MySTTDatasetConfig(
27
+ name="full",
28
+ version=datasets.Version("1.0.0"),
29
+ description="Hech qanday cheklovsiz to'liq dataset",
30
+ limit=None,
31
+ ),
32
  ]
33
+
34
+ DEFAULT_CONFIG_NAME = "sample"
35
+
36
  def _info(self):
37
  return datasets.DatasetInfo(
38
+ description="Speech-to-text dataset (tar ichida audio, tsvda transkript).",
39
+ features=datasets.Features({
40
+ "id": datasets.Value("string"),
41
+ "audio": Audio(sampling_rate=None),
42
+ "sentence": datasets.Value("string"),
43
+ "duration": datasets.Value("float"),
44
+ "age": datasets.Value("string"),
45
+ "gender": datasets.Value("string"),
46
+ "accents": datasets.Value("string"),
47
+ "locale": datasets.Value("string"),
48
+ }),
 
 
49
  supervised_keys=None,
50
  )
51
+
52
  def _split_generators(self, dl_manager):
53
+ # TODO: train.tar, test.tar, validation.tar + tegishli TSV link yoki local path
54
+ # Hozircha misol tariqasida local path'lar ko'rsatamiz
55
+ train_tar = "Dataset_STT/audio/uz/train/train.tar"
56
+ train_tsv = "Dataset_STT/transcript/uz/train/train.tsv"
57
+
58
+ val_tar = "Dataset_STT/audio/uz/validation/validation.tar"
59
+ val_tsv = "Dataset_STT/transcript/uz/validation/validation.tsv"
60
+
61
+ test_tar = "Dataset_STT/audio/uz/test/test.tar"
62
+ test_tsv = "Dataset_STT/transcript/uz/test/test.tsv"
63
+
 
 
 
 
 
64
  return [
65
  datasets.SplitGenerator(
66
  name=datasets.Split.TRAIN,
67
  gen_kwargs={
68
+ "tar_path": train_tar,
69
  "tsv_path": train_tsv,
70
  },
71
  ),
72
  datasets.SplitGenerator(
73
  name=datasets.Split.VALIDATION,
74
  gen_kwargs={
75
+ "tar_path": val_tar,
76
  "tsv_path": val_tsv,
77
  },
78
  ),
79
  datasets.SplitGenerator(
80
  name=datasets.Split.TEST,
81
  gen_kwargs={
82
+ "tar_path": test_tar,
83
  "tsv_path": test_tsv,
84
  },
85
  ),
86
  ]
87
+
88
+ def _generate_examples(self, tar_path, tsv_path):
89
  """
90
+ limit=10_000 bo'lsa, har bir splitdan 10 mingtagina qator qaytaradi.
91
+ Agar limit=None bo'lsa, hamma qatorni o'qiydi.
92
  """
93
+ limit = self.config.limit
94
+
95
+ # Tar ichidagi mp3 fayllarni avval extract qilasiz yoki on-the-fly o'qiysiz
96
+ # Eslatma: HF Viewer uchun eng osoni audio papkaga ochib qo'yish yoki
97
+ # `dl_manager.download_and_extract(...)` ishlatishdir.
98
+ # Bu yerda misol tariqasida tar ni ochib, audio fayllarni papkaga yoyildi deb faraz qilamiz:
99
+
100
+ # Masalan audio papka: "Dataset_STT/audio/uz/train/unpacked"
101
+ # Yoki to'liq yo'li: tar_path = "Dataset_STT/audio/uz/train/train.tar"
102
+ # "unpacked" papkani o'zingiz oldindan tar -xvf bilan yaratishingiz kerak.
103
+ # Yoki tarfile moduli bilan python ichida extraction qilishingiz mumkin.
104
+
105
+ # Soddalik uchun, tar ni allaqachon manual ravishda unpack qildik deb olamiz:
106
+ audio_folder = tar_path.replace(".tar", "_unpacked")
107
+ # misol: "Dataset_STT/audio/uz/train/train_unpacked"
108
+
109
+ # Keyin TSV'ni o'qiymiz:
110
  with open(tsv_path, "r", encoding="utf-8") as f:
111
  reader = csv.DictReader(f, delimiter="\t")
112
+ for idx, row in enumerate(reader):
113
+ if limit is not None and idx >= limit:
114
+ break # 10k dan oshsa, to'xtaymiz
115
 
116
+ audio_id = row["id"]
117
+ mp3_file = audio_id + ".mp3"
118
+ mp3_path = os.path.join(audio_folder, mp3_file)
119
+
120
+ yield idx, {
121
+ "id": audio_id,
122
+ "audio": mp3_path,
123
+ "sentence": row["sentence"],
124
+ "duration": float(row["duration"]),
125
+ "age": row["age"],
126
+ "gender": row["gender"],
127
+ "accents": row["accents"],
128
+ "locale": row["locale"],
129
+ }