Delete my_stt_dataset.py
Browse files- my_stt_dataset.py +0 -140
my_stt_dataset.py
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import csv
|
3 |
-
import datasets
|
4 |
-
from datasets import Audio, BuilderConfig
|
5 |
-
|
6 |
-
# Konfiguratsiya sinfi: til qisqartmasi va ma'lumotlar joylashgan papkani belgilaydi.
|
7 |
-
class STTConfig(BuilderConfig):
|
8 |
-
def __init__(self, language_abbr, data_dir, **kwargs):
|
9 |
-
"""
|
10 |
-
Args:
|
11 |
-
language_abbr (str): Masalan, "uz".
|
12 |
-
data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT".
|
13 |
-
**kwargs: Qolgan parametrlar.
|
14 |
-
"""
|
15 |
-
super().__init__(**kwargs)
|
16 |
-
self.language_abbr = language_abbr
|
17 |
-
self.data_dir = data_dir
|
18 |
-
|
19 |
-
# Dataset yuklash skripti
|
20 |
-
class MySTTDataset(datasets.GeneratorBasedBuilder):
|
21 |
-
"""
|
22 |
-
Uzbek STT dataset yuklash skripti:
|
23 |
-
- Audio fayllar .tar arxiv ichida saqlangan.
|
24 |
-
- Transkripsiya ma'lumotlari TSV faylda joylashgan.
|
25 |
-
- Streaming rejimida, tar fayllar dl_manager.iter_archive() orqali o‘qiladi.
|
26 |
-
- "audio" ustuni Audio() tipida aniqlangan, ya'ni qiymat dictionary shaklida:
|
27 |
-
{"path": <tar ichidagi fayl nomi>, "bytes": <audio baytlari>}
|
28 |
-
bo‘lishi kerak, shunda Dataset Viewer "play" tugmasini ko‘rsatadi.
|
29 |
-
"""
|
30 |
-
VERSION = datasets.Version("1.0.0")
|
31 |
-
|
32 |
-
BUILDER_CONFIGS = [
|
33 |
-
STTConfig(
|
34 |
-
name="uz",
|
35 |
-
version=datasets.Version("1.0.0"),
|
36 |
-
description="Uzbek subset of the STT dataset",
|
37 |
-
language_abbr="uz",
|
38 |
-
data_dir="Dataset_STT", # Asosiy papka nomi
|
39 |
-
)
|
40 |
-
]
|
41 |
-
DEFAULT_CONFIG_NAME = "uz"
|
42 |
-
|
43 |
-
def _info(self):
|
44 |
-
"""
|
45 |
-
Dataset ustunlarini aniqlaydi.
|
46 |
-
"audio" ustuni Audio(sampling_rate=None) tipida berilgan, shuning uchun
|
47 |
-
audio fayllar avtomatik dekodlanadi va resample qilinadi.
|
48 |
-
"""
|
49 |
-
return datasets.DatasetInfo(
|
50 |
-
description=(
|
51 |
-
"Uzbek STT dataset: audio fayllar tar arxivida saqlangan va "
|
52 |
-
"transcriptions esa TSV faylda mavjud. Streaming rejimi bilan tar "
|
53 |
-
"arxivdan audio fayllar o'qiladi."
|
54 |
-
),
|
55 |
-
features=datasets.Features({
|
56 |
-
"id": datasets.Value("string"),
|
57 |
-
"audio": Audio(sampling_rate=None),
|
58 |
-
"sentence": datasets.Value("string"),
|
59 |
-
"duration": datasets.Value("float"),
|
60 |
-
"age": datasets.Value("string"),
|
61 |
-
"gender": datasets.Value("string"),
|
62 |
-
"accents": datasets.Value("string"),
|
63 |
-
"locale": datasets.Value("string"),
|
64 |
-
}),
|
65 |
-
supervised_keys=None,
|
66 |
-
version=self.VERSION,
|
67 |
-
)
|
68 |
-
|
69 |
-
def _split_generators(self, dl_manager):
|
70 |
-
"""
|
71 |
-
Har bir split uchun: tar arxiv va mos TSV fayllarining yo'llari aniqlanadi.
|
72 |
-
Tar arxivlardan streaming rejimida o'qish uchun dl_manager.iter_archive() dan foydalanamiz.
|
73 |
-
"""
|
74 |
-
config = self.config
|
75 |
-
base_dir = config.data_dir # Masalan: "Dataset_STT"
|
76 |
-
lang = config.language_abbr # Masalan: "uz"
|
77 |
-
|
78 |
-
# Tar arxiv fayllari (extract qilinmaydi, balki iter_archive orqali o'qiladi)
|
79 |
-
train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
|
80 |
-
test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
|
81 |
-
val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
|
82 |
-
|
83 |
-
train_audio_files = dl_manager.iter_archive(train_tar)
|
84 |
-
test_audio_files = dl_manager.iter_archive(test_tar)
|
85 |
-
val_audio_files = dl_manager.iter_archive(val_tar)
|
86 |
-
|
87 |
-
# TSV fayllar yo'li
|
88 |
-
train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
|
89 |
-
test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
|
90 |
-
val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
|
91 |
-
|
92 |
-
return [
|
93 |
-
datasets.SplitGenerator(
|
94 |
-
name=datasets.Split.TRAIN,
|
95 |
-
gen_kwargs={"audio_files": train_audio_files, "tsv_path": train_tsv},
|
96 |
-
),
|
97 |
-
datasets.SplitGenerator(
|
98 |
-
name=datasets.Split.TEST,
|
99 |
-
gen_kwargs={"audio_files": test_audio_files, "tsv_path": test_tsv},
|
100 |
-
),
|
101 |
-
datasets.SplitGenerator(
|
102 |
-
name=datasets.Split.VALIDATION,
|
103 |
-
gen_kwargs={"audio_files": val_audio_files, "tsv_path": val_tsv},
|
104 |
-
),
|
105 |
-
]
|
106 |
-
|
107 |
-
def _generate_examples(self, audio_files, tsv_path):
|
108 |
-
"""
|
109 |
-
TSV faylini qatorma-qator o'qiydi va metadata lug'atini tuzadi.
|
110 |
-
So'ng, tar arxividan kelayotgan audio fayllarni (streaming iteratori orqali)
|
111 |
-
mos metadata bilan birlashtiradi.
|
112 |
-
|
113 |
-
Har bir audio ustuni qiymati quyidagicha shakllantiriladi:
|
114 |
-
{"path": <tar ichidagi fayl nomi>, "bytes": <audio fayl baytlari>}
|
115 |
-
Bu shakl Dataset Viewer tomonidan Audio() sifatida aniqlanadi.
|
116 |
-
"""
|
117 |
-
# TSV faylidan metadata lug'atini tuzamiz: kalit – fayl nomi (masalan, "ID.mp3")
|
118 |
-
metadata = {}
|
119 |
-
with open(tsv_path, "r", encoding="utf-8") as f:
|
120 |
-
reader = csv.DictReader(f, delimiter="\t")
|
121 |
-
for row in reader:
|
122 |
-
filename = row["id"] + ".mp3"
|
123 |
-
metadata[filename] = row
|
124 |
-
|
125 |
-
# Tar arxivdan streaming iterator orqali o'qilgan fayllar
|
126 |
-
for idx, (file_path, file_obj) in enumerate(audio_files):
|
127 |
-
# file_path: tar arxiv ichidagi nisbiy yo'l (masalan, "009f0d56-c7db-4de3-bd3e-92a37d6f0cb9.mp3")
|
128 |
-
if file_path in metadata:
|
129 |
-
row = metadata[file_path]
|
130 |
-
audio_bytes = file_obj.read()
|
131 |
-
yield idx, {
|
132 |
-
"id": row["id"],
|
133 |
-
"audio": {"path": file_path, "bytes": audio_bytes},
|
134 |
-
"sentence": row.get("sentence", ""),
|
135 |
-
"duration": float(row.get("duration", 0.0)),
|
136 |
-
"age": row.get("age", ""),
|
137 |
-
"gender": row.get("gender", ""),
|
138 |
-
"accents": row.get("accents", ""),
|
139 |
-
"locale": row.get("locale", ""),
|
140 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|