Elyordev commited on
Commit
610b031
·
verified ·
1 Parent(s): 1204ced

Delete my_stt_dataset.py

Browse files
Files changed (1) hide show
  1. my_stt_dataset.py +0 -140
my_stt_dataset.py DELETED
@@ -1,140 +0,0 @@
1
- import os
2
- import csv
3
- import datasets
4
- from datasets import Audio, BuilderConfig
5
-
6
- # Konfiguratsiya sinfi: til qisqartmasi va ma'lumotlar joylashgan papkani belgilaydi.
7
- class STTConfig(BuilderConfig):
8
- def __init__(self, language_abbr, data_dir, **kwargs):
9
- """
10
- Args:
11
- language_abbr (str): Masalan, "uz".
12
- data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT".
13
- **kwargs: Qolgan parametrlar.
14
- """
15
- super().__init__(**kwargs)
16
- self.language_abbr = language_abbr
17
- self.data_dir = data_dir
18
-
19
- # Dataset yuklash skripti
20
- class MySTTDataset(datasets.GeneratorBasedBuilder):
21
- """
22
- Uzbek STT dataset yuklash skripti:
23
- - Audio fayllar .tar arxiv ichida saqlangan.
24
- - Transkripsiya ma'lumotlari TSV faylda joylashgan.
25
- - Streaming rejimida, tar fayllar dl_manager.iter_archive() orqali o‘qiladi.
26
- - "audio" ustuni Audio() tipida aniqlangan, ya'ni qiymat dictionary shaklida:
27
- {"path": <tar ichidagi fayl nomi>, "bytes": <audio baytlari>}
28
- bo‘lishi kerak, shunda Dataset Viewer "play" tugmasini ko‘rsatadi.
29
- """
30
- VERSION = datasets.Version("1.0.0")
31
-
32
- BUILDER_CONFIGS = [
33
- STTConfig(
34
- name="uz",
35
- version=datasets.Version("1.0.0"),
36
- description="Uzbek subset of the STT dataset",
37
- language_abbr="uz",
38
- data_dir="Dataset_STT", # Asosiy papka nomi
39
- )
40
- ]
41
- DEFAULT_CONFIG_NAME = "uz"
42
-
43
- def _info(self):
44
- """
45
- Dataset ustunlarini aniqlaydi.
46
- "audio" ustuni Audio(sampling_rate=None) tipida berilgan, shuning uchun
47
- audio fayllar avtomatik dekodlanadi va resample qilinadi.
48
- """
49
- return datasets.DatasetInfo(
50
- description=(
51
- "Uzbek STT dataset: audio fayllar tar arxivida saqlangan va "
52
- "transcriptions esa TSV faylda mavjud. Streaming rejimi bilan tar "
53
- "arxivdan audio fayllar o'qiladi."
54
- ),
55
- features=datasets.Features({
56
- "id": datasets.Value("string"),
57
- "audio": Audio(sampling_rate=None),
58
- "sentence": datasets.Value("string"),
59
- "duration": datasets.Value("float"),
60
- "age": datasets.Value("string"),
61
- "gender": datasets.Value("string"),
62
- "accents": datasets.Value("string"),
63
- "locale": datasets.Value("string"),
64
- }),
65
- supervised_keys=None,
66
- version=self.VERSION,
67
- )
68
-
69
- def _split_generators(self, dl_manager):
70
- """
71
- Har bir split uchun: tar arxiv va mos TSV fayllarining yo'llari aniqlanadi.
72
- Tar arxivlardan streaming rejimida o'qish uchun dl_manager.iter_archive() dan foydalanamiz.
73
- """
74
- config = self.config
75
- base_dir = config.data_dir # Masalan: "Dataset_STT"
76
- lang = config.language_abbr # Masalan: "uz"
77
-
78
- # Tar arxiv fayllari (extract qilinmaydi, balki iter_archive orqali o'qiladi)
79
- train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
80
- test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
81
- val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
82
-
83
- train_audio_files = dl_manager.iter_archive(train_tar)
84
- test_audio_files = dl_manager.iter_archive(test_tar)
85
- val_audio_files = dl_manager.iter_archive(val_tar)
86
-
87
- # TSV fayllar yo'li
88
- train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
89
- test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
90
- val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
91
-
92
- return [
93
- datasets.SplitGenerator(
94
- name=datasets.Split.TRAIN,
95
- gen_kwargs={"audio_files": train_audio_files, "tsv_path": train_tsv},
96
- ),
97
- datasets.SplitGenerator(
98
- name=datasets.Split.TEST,
99
- gen_kwargs={"audio_files": test_audio_files, "tsv_path": test_tsv},
100
- ),
101
- datasets.SplitGenerator(
102
- name=datasets.Split.VALIDATION,
103
- gen_kwargs={"audio_files": val_audio_files, "tsv_path": val_tsv},
104
- ),
105
- ]
106
-
107
- def _generate_examples(self, audio_files, tsv_path):
108
- """
109
- TSV faylini qatorma-qator o'qiydi va metadata lug'atini tuzadi.
110
- So'ng, tar arxividan kelayotgan audio fayllarni (streaming iteratori orqali)
111
- mos metadata bilan birlashtiradi.
112
-
113
- Har bir audio ustuni qiymati quyidagicha shakllantiriladi:
114
- {"path": <tar ichidagi fayl nomi>, "bytes": <audio fayl baytlari>}
115
- Bu shakl Dataset Viewer tomonidan Audio() sifatida aniqlanadi.
116
- """
117
- # TSV faylidan metadata lug'atini tuzamiz: kalit – fayl nomi (masalan, "ID.mp3")
118
- metadata = {}
119
- with open(tsv_path, "r", encoding="utf-8") as f:
120
- reader = csv.DictReader(f, delimiter="\t")
121
- for row in reader:
122
- filename = row["id"] + ".mp3"
123
- metadata[filename] = row
124
-
125
- # Tar arxivdan streaming iterator orqali o'qilgan fayllar
126
- for idx, (file_path, file_obj) in enumerate(audio_files):
127
- # file_path: tar arxiv ichidagi nisbiy yo'l (masalan, "009f0d56-c7db-4de3-bd3e-92a37d6f0cb9.mp3")
128
- if file_path in metadata:
129
- row = metadata[file_path]
130
- audio_bytes = file_obj.read()
131
- yield idx, {
132
- "id": row["id"],
133
- "audio": {"path": file_path, "bytes": audio_bytes},
134
- "sentence": row.get("sentence", ""),
135
- "duration": float(row.get("duration", 0.0)),
136
- "age": row.get("age", ""),
137
- "gender": row.get("gender", ""),
138
- "accents": row.get("accents", ""),
139
- "locale": row.get("locale", ""),
140
- }