Upload my_stt_dataset.py
Browse files- my_stt_dataset.py +54 -49
my_stt_dataset.py
CHANGED
@@ -1,85 +1,92 @@
|
|
1 |
import os
|
2 |
import csv
|
3 |
import datasets
|
4 |
-
from datasets import Audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
class MySTTDataset(datasets.GeneratorBasedBuilder):
|
8 |
"""
|
9 |
-
Common Voice uslubidagi minimal dataset
|
10 |
-
- 3 ta tar fayl (train
|
11 |
-
- Har bir
|
12 |
-
-
|
13 |
-
- Audio ustuni -> HF Viewer da "play" tugmasi
|
14 |
"""
|
15 |
VERSION = datasets.Version("1.0.0")
|
16 |
|
17 |
-
# Agar
|
18 |
BUILDER_CONFIGS = [
|
19 |
STTConfig(
|
20 |
name="uz",
|
21 |
version=datasets.Version("1.0.0"),
|
22 |
description="Uzbek subset of the STT dataset",
|
23 |
language_abbr="uz",
|
24 |
-
data_dir="Dataset_STT", #
|
25 |
)
|
26 |
]
|
27 |
DEFAULT_CONFIG_NAME = "uz"
|
28 |
|
29 |
def _info(self):
|
30 |
"""
|
31 |
-
|
32 |
-
'audio' ustuni Audio()
|
33 |
"""
|
34 |
return datasets.DatasetInfo(
|
35 |
-
description="Uzbek STT dataset: audio
|
36 |
-
features=datasets.Features(
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
}
|
47 |
-
),
|
48 |
supervised_keys=None,
|
49 |
version=self.VERSION,
|
50 |
)
|
51 |
|
52 |
def _split_generators(self, dl_manager):
|
53 |
"""
|
54 |
-
Har bir split uchun: tar va tsv fayllar yo
|
55 |
-
dl_manager orqali yuklab/extract qildirib, so'ng _generate_examples() ga beramiz.
|
56 |
"""
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
train_tsv = "Dataset_STT/transcript/uz/train.tsv"
|
61 |
|
62 |
-
|
63 |
-
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
# ammo baribir .extract ishlaydi.
|
71 |
|
|
|
72 |
train_tar_extracted = dl_manager.extract(train_tar)
|
73 |
test_tar_extracted = dl_manager.extract(test_tar)
|
74 |
val_tar_extracted = dl_manager.extract(val_tar)
|
75 |
|
76 |
-
# Har bir splitted datasetga mos "SplitGenerator" qaytaramiz
|
77 |
-
# "gen_kwargs" -> _generate_examples() ga paramlar
|
78 |
return [
|
79 |
datasets.SplitGenerator(
|
80 |
name=datasets.Split.TRAIN,
|
81 |
gen_kwargs={
|
82 |
-
"archive_dir": train_tar_extracted, #
|
83 |
"tsv_path": train_tsv,
|
84 |
},
|
85 |
),
|
@@ -101,25 +108,23 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
|
|
101 |
|
102 |
def _generate_examples(self, archive_dir, tsv_path):
|
103 |
"""
|
104 |
-
|
105 |
-
|
106 |
-
- 'tsv_path' faylini qatorma-qator o'qib, 'id' -> "id.mp3" yo'lini izlaymiz.
|
107 |
"""
|
108 |
-
# TSV
|
109 |
with open(tsv_path, "r", encoding="utf-8") as f:
|
110 |
reader = csv.DictReader(f, delimiter="\t")
|
111 |
for idx, row in enumerate(reader):
|
112 |
-
#
|
113 |
-
# id, sentence, duration, age, gender, accents, locale
|
114 |
audio_id = row["id"]
|
115 |
mp3_file = audio_id + ".mp3"
|
116 |
mp3_path = os.path.join(archive_dir, mp3_file)
|
117 |
|
118 |
-
# Agar audio fayl
|
119 |
if os.path.isfile(mp3_path):
|
120 |
yield idx, {
|
121 |
"id": audio_id,
|
122 |
-
"audio": mp3_path, # Audio()
|
123 |
"sentence": row.get("sentence", ""),
|
124 |
"duration": float(row.get("duration", 0.0)),
|
125 |
"age": row.get("age", ""),
|
@@ -128,5 +133,5 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
|
|
128 |
"locale": row.get("locale", ""),
|
129 |
}
|
130 |
else:
|
131 |
-
#
|
132 |
-
continue
|
|
|
1 |
import os
|
2 |
import csv
|
3 |
import datasets
|
4 |
+
from datasets import Audio, BuilderConfig
|
5 |
+
|
6 |
+
# BuilderConfig ni aniqlaymiz: bu yerda til qisqartmasi va asosiy data papkasi kiritiladi.
|
7 |
+
class STTConfig(BuilderConfig):
|
8 |
+
def __init__(self, language_abbr, data_dir, **kwargs):
|
9 |
+
"""
|
10 |
+
Args:
|
11 |
+
language_abbr (str): Til qisqartmasi, masalan "uz".
|
12 |
+
data_dir (str): Dataset joylashgan asosiy papka (misol: "Dataset_STT").
|
13 |
+
**kwargs: Qolgan BuilderConfig parametrlar.
|
14 |
+
"""
|
15 |
+
super().__init__(**kwargs)
|
16 |
+
self.language_abbr = language_abbr
|
17 |
+
self.data_dir = data_dir
|
18 |
|
19 |
|
20 |
class MySTTDataset(datasets.GeneratorBasedBuilder):
|
21 |
"""
|
22 |
+
Common Voice uslubidagi minimal STT dataset yuklash skripti:
|
23 |
+
- 3 ta tar fayl (train, test, validation) ichida .mp3 audio fayllar mavjud.
|
24 |
+
- Har bir split uchun mos TSV fayl (train.tsv, test.tsv, validation.tsv) transkripsiyalarni o‘z ichiga oladi.
|
25 |
+
- 'audio' ustuni Audio() tipida bo‘lib, Hugging Face Dataset Viewer’da "play" tugmasi orqali audio eshittirish imkoniyatini beradi.
|
|
|
26 |
"""
|
27 |
VERSION = datasets.Version("1.0.0")
|
28 |
|
29 |
+
# Agar bir nechta konfiguratsiya bo‘lmasa, oddiy qilib bitta config ishlatamiz.
|
30 |
BUILDER_CONFIGS = [
|
31 |
STTConfig(
|
32 |
name="uz",
|
33 |
version=datasets.Version("1.0.0"),
|
34 |
description="Uzbek subset of the STT dataset",
|
35 |
language_abbr="uz",
|
36 |
+
data_dir="Dataset_STT", # Bu yerga ma'lumotlar joylashgan asosiy papkani kiriting.
|
37 |
)
|
38 |
]
|
39 |
DEFAULT_CONFIG_NAME = "uz"
|
40 |
|
41 |
def _info(self):
|
42 |
"""
|
43 |
+
Datasetning xususiyatlari (features) aniqlanadi.
|
44 |
+
Agar 'audio' ustuni Audio() tipida bo‘lsa, Dataset Viewer audio pleyerni ko‘rsatadi.
|
45 |
"""
|
46 |
return datasets.DatasetInfo(
|
47 |
+
description="Uzbek STT dataset: audio fayllar .tar arxivda saqlanadi, transcriptions esa .tsv faylda.",
|
48 |
+
features=datasets.Features({
|
49 |
+
"id": datasets.Value("string"),
|
50 |
+
"audio": Audio(sampling_rate=None), # sampling_rate=None degani audio fayldan olingan asl sampling rate saqlanadi.
|
51 |
+
"sentence": datasets.Value("string"),
|
52 |
+
"duration": datasets.Value("float"),
|
53 |
+
"age": datasets.Value("string"),
|
54 |
+
"gender": datasets.Value("string"),
|
55 |
+
"accents": datasets.Value("string"),
|
56 |
+
"locale": datasets.Value("string"),
|
57 |
+
}),
|
|
|
|
|
58 |
supervised_keys=None,
|
59 |
version=self.VERSION,
|
60 |
)
|
61 |
|
62 |
def _split_generators(self, dl_manager):
|
63 |
"""
|
64 |
+
Har bir split uchun: tar va tsv fayllar yo‘llarini belgilab, dl_manager orqali ularni yuklab yoki extract qildik.
|
|
|
65 |
"""
|
66 |
+
config = self.config # STTConfig obyekti
|
67 |
+
base_dir = config.data_dir # Masalan: "Dataset_STT"
|
68 |
+
lang = config.language_abbr # Masalan: "uz"
|
|
|
69 |
|
70 |
+
# Audio va transkript fayllarining yo‘llarini shakllantiramiz:
|
71 |
+
train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
|
72 |
+
train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
|
73 |
|
74 |
+
test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
|
75 |
+
test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
|
76 |
|
77 |
+
val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
|
78 |
+
val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
|
|
|
79 |
|
80 |
+
# Tar fayllarni extract qilamiz (agar lokal bo‘lsa, dl_manager.extract mos yo‘lni qaytaradi)
|
81 |
train_tar_extracted = dl_manager.extract(train_tar)
|
82 |
test_tar_extracted = dl_manager.extract(test_tar)
|
83 |
val_tar_extracted = dl_manager.extract(val_tar)
|
84 |
|
|
|
|
|
85 |
return [
|
86 |
datasets.SplitGenerator(
|
87 |
name=datasets.Split.TRAIN,
|
88 |
gen_kwargs={
|
89 |
+
"archive_dir": train_tar_extracted, # Tar fayl extract qilingan papka
|
90 |
"tsv_path": train_tsv,
|
91 |
},
|
92 |
),
|
|
|
108 |
|
109 |
def _generate_examples(self, archive_dir, tsv_path):
|
110 |
"""
|
111 |
+
TSV faylini qatorma-qator o‘qib, metadata lug‘atini yaratadi va
|
112 |
+
extract qilingan archive papkasidan mos .mp3 faylni topadi.
|
|
|
113 |
"""
|
114 |
+
# TSV faylini ochamiz va DictReader yordamida o‘qiymiz.
|
115 |
with open(tsv_path, "r", encoding="utf-8") as f:
|
116 |
reader = csv.DictReader(f, delimiter="\t")
|
117 |
for idx, row in enumerate(reader):
|
118 |
+
# TSV faylida kutilayotgan ustunlar: id, sentence, duration, age, gender, accents, locale
|
|
|
119 |
audio_id = row["id"]
|
120 |
mp3_file = audio_id + ".mp3"
|
121 |
mp3_path = os.path.join(archive_dir, mp3_file)
|
122 |
|
123 |
+
# Agar extract qilingan papkada audio fayl mavjud bo‘lsa:
|
124 |
if os.path.isfile(mp3_path):
|
125 |
yield idx, {
|
126 |
"id": audio_id,
|
127 |
+
"audio": mp3_path, # Audio() tipidagi ustun avtomatik ravishda faylni o‘qiydi va dekodlaydi.
|
128 |
"sentence": row.get("sentence", ""),
|
129 |
"duration": float(row.get("duration", 0.0)),
|
130 |
"age": row.get("age", ""),
|
|
|
133 |
"locale": row.get("locale", ""),
|
134 |
}
|
135 |
else:
|
136 |
+
# Agar audio fayl topilmasa, bu yozuvni o'tkazib yuboramiz yoki xatolik chiqarish mumkin.
|
137 |
+
continue
|