Elyordev commited on
Commit
de5541d
·
verified ·
1 Parent(s): 620caaa

Upload my_stt_dataset.py

Browse files
Files changed (1) hide show
  1. my_stt_dataset.py +54 -49
my_stt_dataset.py CHANGED
@@ -1,85 +1,92 @@
1
  import os
2
  import csv
3
  import datasets
4
- from datasets import Audio
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
 
7
  class MySTTDataset(datasets.GeneratorBasedBuilder):
8
  """
9
- Common Voice uslubidagi minimal dataset skript:
10
- - 3 ta tar fayl (train/test/validation)
11
- - Har bir tar fayl ichida .mp3 audio
12
- - Har bir split'ga mos TSV fayl (train.tsv, test.tsv, validation.tsv)
13
- - Audio ustuni -> HF Viewer da "play" tugmasi
14
  """
15
  VERSION = datasets.Version("1.0.0")
16
 
17
- # Agar ko'p config bo'lmasa, bu qismni soddalashtiramiz.
18
  BUILDER_CONFIGS = [
19
  STTConfig(
20
  name="uz",
21
  version=datasets.Version("1.0.0"),
22
  description="Uzbek subset of the STT dataset",
23
  language_abbr="uz",
24
- data_dir="Dataset_STT", # Ma'lumotlar joylashgan asosiy papka
25
  )
26
  ]
27
  DEFAULT_CONFIG_NAME = "uz"
28
 
29
  def _info(self):
30
  """
31
- Bu yerda datasetning xususiyatlari (features) e'lon qilinadi.
32
- 'audio' ustuni Audio() turida bo'lsa, viewer pleyer ko'rsatadi.
33
  """
34
  return datasets.DatasetInfo(
35
- description="Uzbek STT dataset: audio in .tar, transcriptions in .tsv.",
36
- features=datasets.Features(
37
- {
38
- "id": datasets.Value("string"),
39
- "audio": Audio(sampling_rate=None),
40
- "sentence": datasets.Value("string"),
41
- "duration": datasets.Value("float"),
42
- "age": datasets.Value("string"),
43
- "gender": datasets.Value("string"),
44
- "accents": datasets.Value("string"),
45
- "locale": datasets.Value("string"),
46
- }
47
- ),
48
  supervised_keys=None,
49
  version=self.VERSION,
50
  )
51
 
52
  def _split_generators(self, dl_manager):
53
  """
54
- Har bir split uchun: tar va tsv fayllar yo'lini belgilab,
55
- dl_manager orqali yuklab/extract qildirib, so'ng _generate_examples() ga beramiz.
56
  """
57
- # local path misoli (reposingizda bo'lsa).
58
- # Agar huggingface.co'dan yuklamoqchi bo'lsangiz, URL qilishingiz mumkin
59
- train_tar = "Dataset_STT/audio/uz/train.tar"
60
- train_tsv = "Dataset_STT/transcript/uz/train.tsv"
61
 
62
- test_tar = "Dataset_STT/audio/uz/test.tar"
63
- test_tsv = "Dataset_STT/transcript/uz/test.tsv"
 
64
 
65
- val_tar = "Dataset_STT/audio/uz/validation.tar"
66
- val_tsv = "Dataset_STT/transcript/uz/validation.tsv"
67
 
68
- # Bu fayllarni download+extract (yoki local bo'lsa, faqat extract) qilamiz:
69
- # Eslatma: agar localda bo'lsayu, dl_manager `is_local=True` deb topishi mumkin,
70
- # ammo baribir .extract ishlaydi.
71
 
 
72
  train_tar_extracted = dl_manager.extract(train_tar)
73
  test_tar_extracted = dl_manager.extract(test_tar)
74
  val_tar_extracted = dl_manager.extract(val_tar)
75
 
76
- # Har bir splitted datasetga mos "SplitGenerator" qaytaramiz
77
- # "gen_kwargs" -> _generate_examples() ga paramlar
78
  return [
79
  datasets.SplitGenerator(
80
  name=datasets.Split.TRAIN,
81
  gen_kwargs={
82
- "archive_dir": train_tar_extracted, # tar fayl ochilib yoyilgan papka
83
  "tsv_path": train_tsv,
84
  },
85
  ),
@@ -101,25 +108,23 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
101
 
102
  def _generate_examples(self, archive_dir, tsv_path):
103
  """
104
- Ushbu metod har bir split uchun audio+transkript juftliklarini geneate qiladi.
105
- - 'archive_dir' papkada .tar dan ochilgan .mp3 fayllar mavjud.
106
- - 'tsv_path' faylini qatorma-qator o'qib, 'id' -> "id.mp3" yo'lini izlaymiz.
107
  """
108
- # TSV ni o'qiymiz:
109
  with open(tsv_path, "r", encoding="utf-8") as f:
110
  reader = csv.DictReader(f, delimiter="\t")
111
  for idx, row in enumerate(reader):
112
- # tsv da shunaqa ustunlar bo'lishi kutiladi:
113
- # id, sentence, duration, age, gender, accents, locale
114
  audio_id = row["id"]
115
  mp3_file = audio_id + ".mp3"
116
  mp3_path = os.path.join(archive_dir, mp3_file)
117
 
118
- # Agar audio fayl exist bo'lsa:
119
  if os.path.isfile(mp3_path):
120
  yield idx, {
121
  "id": audio_id,
122
- "audio": mp3_path, # Audio() -> pleyer
123
  "sentence": row.get("sentence", ""),
124
  "duration": float(row.get("duration", 0.0)),
125
  "age": row.get("age", ""),
@@ -128,5 +133,5 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
128
  "locale": row.get("locale", ""),
129
  }
130
  else:
131
- # Audio topilmasa, skip (yoki exception)
132
- continue
 
1
  import os
2
  import csv
3
  import datasets
4
+ from datasets import Audio, BuilderConfig
5
+
6
+ # BuilderConfig ni aniqlaymiz: bu yerda til qisqartmasi va asosiy data papkasi kiritiladi.
7
+ class STTConfig(BuilderConfig):
8
+ def __init__(self, language_abbr, data_dir, **kwargs):
9
+ """
10
+ Args:
11
+ language_abbr (str): Til qisqartmasi, masalan "uz".
12
+ data_dir (str): Dataset joylashgan asosiy papka (misol: "Dataset_STT").
13
+ **kwargs: Qolgan BuilderConfig parametrlar.
14
+ """
15
+ super().__init__(**kwargs)
16
+ self.language_abbr = language_abbr
17
+ self.data_dir = data_dir
18
 
19
 
20
  class MySTTDataset(datasets.GeneratorBasedBuilder):
21
  """
22
+ Common Voice uslubidagi minimal STT dataset yuklash skripti:
23
+ - 3 ta tar fayl (train, test, validation) ichida .mp3 audio fayllar mavjud.
24
+ - Har bir split uchun mos TSV fayl (train.tsv, test.tsv, validation.tsv) transkripsiyalarni o‘z ichiga oladi.
25
+ - 'audio' ustuni Audio() tipida bo‘lib, Hugging Face Dataset Viewer’da "play" tugmasi orqali audio eshittirish imkoniyatini beradi.
 
26
  """
27
  VERSION = datasets.Version("1.0.0")
28
 
29
+ # Agar bir nechta konfiguratsiya bolmasa, oddiy qilib bitta config ishlatamiz.
30
  BUILDER_CONFIGS = [
31
  STTConfig(
32
  name="uz",
33
  version=datasets.Version("1.0.0"),
34
  description="Uzbek subset of the STT dataset",
35
  language_abbr="uz",
36
+ data_dir="Dataset_STT", # Bu yerga ma'lumotlar joylashgan asosiy papkani kiriting.
37
  )
38
  ]
39
  DEFAULT_CONFIG_NAME = "uz"
40
 
41
  def _info(self):
42
  """
43
+ Datasetning xususiyatlari (features) aniqlanadi.
44
+ Agar 'audio' ustuni Audio() tipida bolsa, Dataset Viewer audio pleyerni korsatadi.
45
  """
46
  return datasets.DatasetInfo(
47
+ description="Uzbek STT dataset: audio fayllar .tar arxivda saqlanadi, transcriptions esa .tsv faylda.",
48
+ features=datasets.Features({
49
+ "id": datasets.Value("string"),
50
+ "audio": Audio(sampling_rate=None), # sampling_rate=None degani audio fayldan olingan asl sampling rate saqlanadi.
51
+ "sentence": datasets.Value("string"),
52
+ "duration": datasets.Value("float"),
53
+ "age": datasets.Value("string"),
54
+ "gender": datasets.Value("string"),
55
+ "accents": datasets.Value("string"),
56
+ "locale": datasets.Value("string"),
57
+ }),
 
 
58
  supervised_keys=None,
59
  version=self.VERSION,
60
  )
61
 
62
  def _split_generators(self, dl_manager):
63
  """
64
+ Har bir split uchun: tar va tsv fayllar yo‘llarini belgilab, dl_manager orqali ularni yuklab yoki extract qildik.
 
65
  """
66
+ config = self.config # STTConfig obyekti
67
+ base_dir = config.data_dir # Masalan: "Dataset_STT"
68
+ lang = config.language_abbr # Masalan: "uz"
 
69
 
70
+ # Audio va transkript fayllarining yo‘llarini shakllantiramiz:
71
+ train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
72
+ train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
73
 
74
+ test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
75
+ test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
76
 
77
+ val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
78
+ val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
 
79
 
80
+ # Tar fayllarni extract qilamiz (agar lokal bo‘lsa, dl_manager.extract mos yo‘lni qaytaradi)
81
  train_tar_extracted = dl_manager.extract(train_tar)
82
  test_tar_extracted = dl_manager.extract(test_tar)
83
  val_tar_extracted = dl_manager.extract(val_tar)
84
 
 
 
85
  return [
86
  datasets.SplitGenerator(
87
  name=datasets.Split.TRAIN,
88
  gen_kwargs={
89
+ "archive_dir": train_tar_extracted, # Tar fayl extract qilingan papka
90
  "tsv_path": train_tsv,
91
  },
92
  ),
 
108
 
109
  def _generate_examples(self, archive_dir, tsv_path):
110
  """
111
+ TSV faylini qatorma-qator o‘qib, metadata lug‘atini yaratadi va
112
+ extract qilingan archive papkasidan mos .mp3 faylni topadi.
 
113
  """
114
+ # TSV faylini ochamiz va DictReader yordamida oqiymiz.
115
  with open(tsv_path, "r", encoding="utf-8") as f:
116
  reader = csv.DictReader(f, delimiter="\t")
117
  for idx, row in enumerate(reader):
118
+ # TSV faylida kutilayotgan ustunlar: id, sentence, duration, age, gender, accents, locale
 
119
  audio_id = row["id"]
120
  mp3_file = audio_id + ".mp3"
121
  mp3_path = os.path.join(archive_dir, mp3_file)
122
 
123
+ # Agar extract qilingan papkada audio fayl mavjud bolsa:
124
  if os.path.isfile(mp3_path):
125
  yield idx, {
126
  "id": audio_id,
127
+ "audio": mp3_path, # Audio() tipidagi ustun avtomatik ravishda faylni o‘qiydi va dekodlaydi.
128
  "sentence": row.get("sentence", ""),
129
  "duration": float(row.get("duration", 0.0)),
130
  "age": row.get("age", ""),
 
133
  "locale": row.get("locale", ""),
134
  }
135
  else:
136
+ # Agar audio fayl topilmasa, bu yozuvni o'tkazib yuboramiz yoki xatolik chiqarish mumkin.
137
+ continue