import os import csv import datasets from datasets import Audio, BuilderConfig # Konfiguratsiya sinfi: til qisqartmasi va ma'lumotlar joylashgan papkani belgilaydi. class STTConfig(BuilderConfig): def __init__(self, language_abbr, data_dir, **kwargs): """ Args: language_abbr (str): Masalan, "uz". data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT". **kwargs: Qolgan parametrlar. """ super().__init__(**kwargs) self.language_abbr = language_abbr self.data_dir = data_dir # Dataset yuklash skripti class MySTTDataset(datasets.GeneratorBasedBuilder): """ Uzbek STT dataset yuklash skripti: - Audio fayllar .tar arxiv ichida joylashgan. - Transkripsiya ma'lumotlari mos TSV faylda. - "audio" ustuni Audio() tipida aniqlangan, shuning uchun Hub Viewer "play" tugmasini ko'rsatadi. """ VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ STTConfig( name="uz", version=datasets.Version("1.0.0"), description="Uzbek subset of the STT dataset", language_abbr="uz", data_dir="Dataset_STT", # Asosiy papka nomi ) ] DEFAULT_CONFIG_NAME = "uz" def _info(self): """ Dataset ustunlarini aniqlaydi. "audio" ustuni Audio() tipida belgilangan – bu orqali Viewer audio faylni avtomatik dekodlaydi. """ return datasets.DatasetInfo( description="Uzbek STT dataset: audio fayllar .tar arxivda, transcriptions esa TSV faylda saqlanadi.", features=datasets.Features({ "id": datasets.Value("string"), "audio": Audio(sampling_rate=None), # Asl sampling rate saqlanadi "sentence": datasets.Value("string"), "duration": datasets.Value("float"), "age": datasets.Value("string"), "gender": datasets.Value("string"), "accents": datasets.Value("string"), "locale": datasets.Value("string"), }), supervised_keys=None, version=self.VERSION, ) def _split_generators(self, dl_manager): """ Har bir split uchun: tar arxiv va mos TSV fayllarining yo'llari aniqlanadi, va tar fayllar dl_manager.extract() orqali ochiladi. """ config = self.config base_dir = config.data_dir # Misol: "Dataset_STT" lang = config.language_abbr # Misol: "uz" train_tar = os.path.join(base_dir, "audio", lang, "train.tar") train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv") test_tar = os.path.join(base_dir, "audio", lang, "test.tar") test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv") val_tar = os.path.join(base_dir, "audio", lang, "validation.tar") val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv") # Tar arxiv extract qilinadi: train_tar_extracted = dl_manager.extract(train_tar) test_tar_extracted = dl_manager.extract(test_tar) val_tar_extracted = dl_manager.extract(val_tar) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "archive_dir": train_tar_extracted, "tsv_path": train_tsv, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "archive_dir": test_tar_extracted, "tsv_path": test_tsv, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "archive_dir": val_tar_extracted, "tsv_path": val_tsv, }, ), ] def _generate_examples(self, archive_dir, tsv_path): """ TSV faylini qatorma-qator o'qiydi va metadata lug'atini tuzadi. Keyin, archive papkasidan mos .mp3 faylni topib, audio ustunini quyidagicha shakllantiradi: {"path": , "bytes":