import os import csv import datasets from datasets import Audio class MySTTDataset(datasets.GeneratorBasedBuilder): """ Common Voice uslubidagi minimal dataset skript: - 3 ta tar fayl (train/test/validation) - Har bir tar fayl ichida .mp3 audio - Har bir split'ga mos TSV fayl (train.tsv, test.tsv, validation.tsv) - Audio ustuni -> HF Viewer da "play" tugmasi """ VERSION = datasets.Version("1.0.0") # Agar ko'p config bo'lmasa, bu qismni soddalashtiramiz. BUILDER_CONFIGS = [ datasets.BuilderConfig( name="uz", version=VERSION, description="STT dataset for Uzbek language (example).", ) ] DEFAULT_CONFIG_NAME = "uz" def _info(self): """ Bu yerda datasetning xususiyatlari (features) e'lon qilinadi. 'audio' ustuni Audio() turida bo'lsa, viewer pleyer ko'rsatadi. """ return datasets.DatasetInfo( description="Uzbek STT dataset: audio in .tar, transcriptions in .tsv.", features=datasets.Features( { "id": datasets.Value("string"), "audio": Audio(sampling_rate=None), "sentence": datasets.Value("string"), "duration": datasets.Value("float"), "age": datasets.Value("string"), "gender": datasets.Value("string"), "accents": datasets.Value("string"), "locale": datasets.Value("string"), } ), supervised_keys=None, version=self.VERSION, ) def _split_generators(self, dl_manager): """ Har bir split uchun: tar va tsv fayllar yo'lini belgilab, dl_manager orqali yuklab/extract qildirib, so'ng _generate_examples() ga beramiz. """ # local path misoli (reposingizda bo'lsa). # Agar huggingface.co'dan yuklamoqchi bo'lsangiz, URL qilishingiz mumkin train_tar = "Dataset_STT/audio/uz/train.tar" train_tsv = "Dataset_STT/transcript/uz/train.tsv" test_tar = "Dataset_STT/audio/uz/test.tar" test_tsv = "Dataset_STT/transcript/uz/test.tsv" val_tar = "Dataset_STT/audio/uz/validation.tar" val_tsv = "Dataset_STT/transcript/uz/validation.tsv" # Bu fayllarni download+extract (yoki local bo'lsa, faqat extract) qilamiz: # Eslatma: agar localda bo'lsayu, dl_manager `is_local=True` deb topishi mumkin, # ammo baribir .extract ishlaydi. train_tar_extracted = dl_manager.extract(train_tar) test_tar_extracted = dl_manager.extract(test_tar) val_tar_extracted = dl_manager.extract(val_tar) # Har bir splitted datasetga mos "SplitGenerator" qaytaramiz # "gen_kwargs" -> _generate_examples() ga paramlar return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "archive_dir": train_tar_extracted, # tar fayl ochilib yoyilgan papka "tsv_path": train_tsv, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "archive_dir": test_tar_extracted, "tsv_path": test_tsv, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "archive_dir": val_tar_extracted, "tsv_path": val_tsv, }, ), ] def _generate_examples(self, archive_dir, tsv_path): """ Ushbu metod har bir split uchun audio+transkript juftliklarini geneate qiladi. - 'archive_dir' papkada .tar dan ochilgan .mp3 fayllar mavjud. - 'tsv_path' faylini qatorma-qator o'qib, 'id' -> "id.mp3" yo'lini izlaymiz. """ # TSV ni o'qiymiz: with open(tsv_path, "r", encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t") for idx, row in enumerate(reader): # tsv da shunaqa ustunlar bo'lishi kutiladi: # id, sentence, duration, age, gender, accents, locale audio_id = row["id"] mp3_file = audio_id + ".mp3" mp3_path = os.path.join(archive_dir, mp3_file) # Agar audio fayl exist bo'lsa: if os.path.isfile(mp3_path): yield idx, { "id": audio_id, "audio": mp3_path, # Audio() -> pleyer "sentence": row.get("sentence", ""), "duration": float(row.get("duration", 0.0)), "age": row.get("age", ""), "gender": row.get("gender", ""), "accents": row.get("accents", ""), "locale": row.get("locale", ""), } else: # Audio topilmasa, skip (yoki exception) continue