File size: 4,441 Bytes
23ca1ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f15978
 
23ca1ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f15978
23ca1ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = """
@InProceedings{huggingface:dataset,
title = {Luganda, Kanuri, and Hausa NER Dataset},
author = {multiple authors},
year = {2022}
}
"""

_DESCRIPTION = """
LugandaPII is a dataset that includes named entities such as PERSON, ORG, LOCATION, NORP, USERID, and DATE. 
The dataset is available in Lum, Kanuri, and Hausa languages, distributed across train, validation, and test splits.
"""

_URL = "https://github.com/EricPeter/pii/raw/main/data"
_TRAINING_FILE = "train.txt"
_VAL_FILE = "val.txt"
_TEST_FILE = "test.txt"

class LugPIIConfig(datasets.BuilderConfig):
    """Configuration for LugandaPII dataset."""
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

class Masakhaner(datasets.GeneratorBasedBuilder):
    """Generator for Masakhaner dataset."""
    BUILDER_CONFIGS = [
        LugPIIConfig(name="lug", version=datasets.Version("1.0.0"), description="PII NER dataset for Luganda."),
        LugPIIConfig(name="hau", version=datasets.Version("1.0.0"), description="PII NER dataset for Hausa."),
        LugPIIConfig(name="knr", version=datasets.Version("1.0.0"), description="PII NER dataset for Kanuri."),
        LugPIIConfig(name="lum", version=datasets.Version("1.0.0"), description="PII NER dataset for Lum."),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "id": datasets.Value("string"),
                "tokens": datasets.Sequence(datasets.Value("string")),
                "ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=['B-DATE',
                    'B-GOVT_ID',
                    'B-LOC',
                    'B-LOCATION',
                    'B-NORP',
                    'B-ORG',
                    'B-PERSON',
                    'B-USERID',
                    'B-USER_ID',
                    'I-DATE',
                    'I-GOVT_ID',
                    'I-LOC',
                    'I-LOCATION',
                    'I-NORP',
                    'I-ORG',
                    'I-PERSON',
                    'I-USERID',
                    'I-USER_ID',
                    'L-DATE',
                    'L-GOVT_ID',
                    'L-LOC',
                    'L-LOCATION',
                    'L-NORP',
                    'L-ORG',
                    'L-PERSON',
                    'L-USERID',
                    'L-USER_ID',
                    'O',
                    'U-DATE',
                    'U-GOVT_ID',
                    'U-LOCATION',
                    'U-NORP',
                    'U-ORG',
                    'U-PERSON',
                    'U-USERID'])),
            }),
            supervised_keys=None,
            homepage="",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        lang_code = self.config.name  # 'lug', 'hau', 'knr', 'lum'
        urls_to_download = {
            "train": f"{_URL}/{lang_code}/{_TRAINING_FILE}",
            "val": f"{_URL}/{lang_code}/{_VAL_FILE}",
            "test": f"{_URL}/{lang_code}/{_TEST_FILE}"
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)
        
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})
        ]

    def _generate_examples(self, filepath):
        logger.info("Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                if line.strip() == "":
                    if tokens:
                        yield guid, {"id": str(guid), "tokens": tokens, "ner_tags": ner_tags}
                        guid += 1
                        tokens = []
                        ner_tags = []
                    continue
                splits = line.strip().split()
                tokens.append(splits[0])
                ner_tags.append(splits[1])
            if tokens:
                yield guid, {"id": str(guid), "tokens": tokens, "ner_tags": ner_tags}