MathiasExorde commited on
Commit
b4a96d8
·
1 Parent(s): 96a52b9

Initial card push

Browse files
Files changed (1) hide show
  1. README.md +293 -0
README.md ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - multilingual
4
+ license: mit
5
+ annotations_creators:
6
+ - machine-generated
7
+ language_creators:
8
+ - found
9
+ size_categories:
10
+ - 10M<n<100M
11
+ source_datasets:
12
+ - original
13
+ task_categories:
14
+ - text-classification
15
+ - summarization
16
+ - text-retrieval
17
+ pretty_name: "Exorde Social Media Dataset December 2024 Week 1"
18
+ tags:
19
+ - social-media
20
+ - multi-lingual
21
+ - sentiment-analysis
22
+ - emotion-detection
23
+ - text
24
+ ---
25
+ ---
26
+
27
+
28
+
29
+ # Multi-Source, Multi-Language Social Media Dataset (1 Week Sample)
30
+
31
+
32
+
33
+ This dataset represents a rich, diverse snapshot of global online discourse, collected over a one-week period from December 1, 2024, to December 7, 2024. It comprises 65,542,211 entries from various social media platforms, blogs, and news articles, all precisely timestamped at the moment of posting. This dataset is procuded by Exorde Labs. www.exordelabs.com/.
34
+
35
+ All items in this datasets are captured publicly, in near real-time, allowing post-deletion & retrospective analyses.
36
+
37
+
38
+
39
+ ## Dataset Highlights
40
+
41
+
42
+
43
+ - **Multi-Source**: Captures content from a wide range of online platforms
44
+
45
+ - **Multi-Language**: Covers 122 different languages
46
+
47
+ - **High-Resolution Temporal Data**: Each entry is timestamped to the exact moment of posting
48
+
49
+ - **Rich Metadata**: Includes sentiment analysis, emotion detection, and thematic categorization
50
+
51
+ - **Large Scale**: 65,542,211 entries collected over just one week
52
+
53
+ - **Diverse Content**: Social media posts, blog entries, news articles, and more
54
+
55
+
56
+
57
+ ## Dataset Schema
58
+
59
+ - **date**: string (exact timestamp of post)
60
+ - **original_text**: string
61
+ - **url**: string
62
+ - **author_hash**: string (SHA-1 hash for privacy)
63
+ - **language**: string
64
+ - **primary_theme**: string
65
+ - **english_keywords**: string
66
+ - **sentiment**: double
67
+ - **main_emotion**: string
68
+ - **secondary_themes**: list<element: int64>
69
+
70
+
71
+
72
+ ## Attributes description
73
+
74
+ - **original_text** is the exact original text of the item/post, as it was collected. It should match the original content before any
75
+ deletion/edition.
76
+ - **author_hash** is a SHA-1 Hash of the author username on a given platform, when provided. Many items have None Author_hash.
77
+ - **language** is detected by a fasttext-langdetect model. Isocode ISO 639.
78
+ - **primary_theme** is the output of MoritzLaurer/deberta-v3-xsmall-zeroshot-v1.1-all-33, on on the
79
+ classes below.
80
+ - **secondary_themes** are the same theme classes with a mapping:
81
+
82
+
83
+ > 1. Economy
84
+ > 2. Technology
85
+ > 3. Investing
86
+ > 4. Business
87
+ > 5. Cryptocurrency
88
+ > 6. Social
89
+ > 7. Politics
90
+ > 8. Finance
91
+ > 9. Entertainment
92
+ > 10. Health
93
+ > 11. Law
94
+ > 12. Sports
95
+ > 13. Science
96
+ > 14. Environment
97
+ > 15. People
98
+
99
+
100
+
101
+ - **main_emotion** is computed from an emotion scoring Language model, fine tuned on social media data.
102
+
103
+ - **english_keywords** is a powerful attribute, computed from an English translation of the original text. These keywords represent the core content (relevant keywords) of the text. They are produced from KeyBert & statistical algorithms. They should be mostly in English except when translation was faulty, in that case they will be in the original language.
104
+
105
+ - **Sentiment** is computed & aggregated from several models, including deep learning models. It is a value between -1 and 1. -1 being negative, 0 neutral and 1 positive.
106
+
107
+
108
+
109
+
110
+ ## Key Statistics
111
+
112
+ - **Total entries**: 65,542,211
113
+
114
+ - **Date range**: 2024-12-01 to 2024-12-07 (included)
115
+
116
+ - **Unique authors**: 9,235,952
117
+
118
+ - **Languages**: 122
119
+
120
+ - **Primary themes**: 16
121
+
122
+ - **Main emotions**: 26
123
+
124
+ - **Average sentiment**: 0.051
125
+
126
+ - **Most common emotion**: Neutral
127
+
128
+
129
+
130
+ ### Top 10 Sources
131
+
132
+ 1. x.com: 49,893,080
133
+
134
+ 2. reddit.com: 14,385,495
135
+
136
+ 3. bsky.app: 7,292,262
137
+
138
+ 4. youtube.com: 1,778,020
139
+
140
+ 5. 4channel.org: 233,134
141
+
142
+ 6. jeuxvideo.com: 61,373
143
+
144
+ 7. forocoches.com: 55,683
145
+
146
+ 8. mastodon.social: 54,932
147
+
148
+ 9. news.ycombinator.com: 32,216
149
+
150
+
151
+
152
+ [Full source distribution](https://gist.githubusercontent.com/MathiasExorde/53eea5617640487bdd1e8d124b2df5e4/raw/5bb9a4cd9b477216d64af65e3a0918879f806e8b/gistfile1.txt)
153
+
154
+
155
+
156
+ ### Top 10 Languages
157
+
158
+ 1. English (en): 53,882,510
159
+
160
+ 2. Spanish (es): 5,012,521
161
+
162
+ 3. Japanese (ja): 3,653,281
163
+
164
+ 4. Portuguese (pt): 3,548,869
165
+
166
+ 5. French (fr): 1,487,180
167
+
168
+ 6. German (de): 1,297,085
169
+
170
+ 7. Turkish (tr): 850,770
171
+
172
+ 8. Arabic (ar): 829,992
173
+
174
+ 9. Italian (it): 720,955
175
+
176
+
177
+
178
+ [Full language distribution](https://gist.github.com/MathiasExorde/bded85ba620de095705bb20507fcf6f1#file-gistfile1-txt)
179
+
180
+
181
+
182
+ ## About Exorde Labs
183
+
184
+
185
+
186
+ Exorde Labs is pioneering a novel collective distributed data DePIN (Decentralized Physical Infrastructure Network). Our mission is to produce a representative view of the web, minute by minute. Since our inception in July 2023, we have achieved:
187
+
188
+
189
+
190
+ - Current capacity: Processing up to 4 billion elements annually
191
+ - Growth rate: 20% monthly increase in data volume
192
+ - Coverage: A comprehensive, real-time snapshot of global online discourse
193
+ - More than 10 Million data points processed daily, half a million per hour in near real-time
194
+
195
+
196
+
197
+ This dataset is a small sample of our capabilities, offering researchers and developers a glimpse into the rich, multi-faceted data we collect and analyze.
198
+
199
+
200
+
201
+ For more information about our work and services, visit:
202
+
203
+
204
+
205
+ - [Exorde Labs Website](https://www.exordelabs.com/)
206
+
207
+ - [Social Media Data](https://www.exordelabs.com/social-media-data)
208
+
209
+ - [Exorde Labs API](https://www.exordelabs.com/api)
210
+
211
+
212
+
213
+ ## Use Cases
214
+
215
+
216
+
217
+ This dataset is invaluable for a wide range of applications, including but not limited to:
218
+
219
+
220
+
221
+ - Real-time trend analysis
222
+
223
+ - Cross-platform social media research
224
+
225
+ - Multi-lingual sentiment analysis
226
+
227
+ - Emotion detection across cultures
228
+
229
+ - Thematic analysis of global discourse
230
+
231
+ - Event detection and tracking
232
+
233
+ - Influence mapping and network analysis
234
+
235
+
236
+
237
+ ## Citation Information
238
+
239
+
240
+
241
+ If you use this dataset in your research or applications, please cite it as follows:
242
+
243
+
244
+
245
+ `Exorde Labs. (2024). Multi-Source, Multi-Language Social Media Dataset (1 Week Sample) [Data set]. Exorde Labs. https://www.exordelabs.com/`
246
+
247
+
248
+
249
+ ## Acknowledgments
250
+
251
+
252
+
253
+ We would like to thank the open-source community for their continued support and feedback. Special thanks to all the platforms and users whose public data has contributed to this dataset.
254
+
255
+ Massive thanks to the Exorde Network and its data enthusiast community, unique of its kind.
256
+
257
+
258
+
259
+ ## Licensing Information
260
+
261
+
262
+
263
+ This dataset is released under the MIT license.
264
+
265
+
266
+
267
+ ## Contact Information
268
+
269
+
270
+
271
+ For questions, feedback, or more information about this dataset or Exorde Labs' services, please contact us at:
272
+
273
+
274
+
275
+ - Email: [[email protected]](mailto:[email protected])
276
+
277
+ - Twitter: [@ExordeLabs](https://twitter.com/ExordeLabs)
278
+
279
+ - GitHub: [Exorde Labs](https://github.com/exorde-labs)
280
+
281
+
282
+
283
+ We are committed to supporting the open-source community by providing high-quality, diverse datasets for cutting-edge research and development. If you find this dataset useful, consider exploring our API for real-time access to our full range of social media data.
284
+
285
+
286
+
287
+
288
+ ![Exorde Labs Logo](https://cdn.prod.website-files.com/620398f412d5829aa28fbb86/62278ca0202d025e97b76555_portrait-logo-color.png)
289
+
290
+
291
+
292
+
293
+ ---