|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Collection of datasets for the MJP.""" |
|
|
|
import pathlib |
|
from collections import defaultdict |
|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
import datasets |
|
import torch |
|
|
|
from fim.data.utils import load_file |
|
from fim.typing import Path, Paths |
|
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {A great new dataset}, |
|
author={huggingface, Inc. |
|
}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_ROOT_URL = "data/DFR" |
|
|
|
|
|
@dataclass |
|
class MJPDatasetsBuilderConfig(datasets.BuilderConfig): |
|
"""MJPDatasets builder config..""" |
|
|
|
file_name: Optional[str] = None |
|
|
|
|
|
|
|
class MJP(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIG_CLASS = MJPDatasetsBuilderConfig |
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
MJPDatasetsBuilderConfig( |
|
name="DFR_V=0", |
|
file_name="6_st_DFR_V=0.zip", |
|
version=VERSION, |
|
description="This part of my dataset covers a first domain", |
|
), |
|
MJPDatasetsBuilderConfig( |
|
name="DFR_V=1", |
|
file_name="6_st_DFR_V=1.zip", |
|
version=VERSION, |
|
description="This part of my dataset covers a first domain", |
|
), |
|
MJPDatasetsBuilderConfig( |
|
name="DFR_V=2", |
|
file_name="6_st_DFR_V=2.zip", |
|
version=VERSION, |
|
description="This part of my dataset covers a first domain", |
|
), |
|
MJPDatasetsBuilderConfig( |
|
name="DFR_V=3", |
|
file_name="6_st_DFR_V=3.zip", |
|
version=VERSION, |
|
description="This part of my dataset covers a first domain", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "DFR_V=0" |
|
|
|
files_to_load = { |
|
"observation_grid": "fine_grid_grid.pt", |
|
"observation_values": "fine_grid_noisy_sample_paths.pt", |
|
"seq_lengths": "fine_grid_mask_seq_lengths.pt", |
|
"time_normalization_factors": "fine_grid_time_normalization_factors.pt", |
|
"intensity_matrices": "fine_grid_intensity_matrices.pt", |
|
"adjacency_matrices": "fine_grid_adjacency_matrices.pt", |
|
"initial_distributions": "fine_grid_initial_distributions.pt", |
|
} |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"observation_grid": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32")))), |
|
"observation_values": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("uint32")))), |
|
"time_normalization_factors": datasets.Value("float32"), |
|
"seq_lengths": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))), |
|
"intensity_matrices": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
"adjacency_matrices": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
"initial_distributions": datasets.Sequence(datasets.Value("uint64")), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
urls = f"{_ROOT_URL}/{self.config.file_name}" |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"datadir": pathlib.Path(data_dir) / self.config.file_name.split(".")[0]}, |
|
) |
|
] |
|
|
|
def __get_files(self, path: Path) -> Paths: |
|
files_to_load = [(key, pathlib.Path(path) / file_name) for key, file_name in self.files_to_load.items()] |
|
return files_to_load |
|
|
|
|
|
def _generate_examples(self, datadir): |
|
data = defaultdict(list) |
|
files_to_load = self.__get_files(datadir) |
|
for key, file_path in files_to_load: |
|
data[key].append(load_file(file_path)) |
|
for k, v in data.items(): |
|
data[k] = torch.cat(v) |
|
|
|
for id in range(len(data["observation_grid"])): |
|
yield id, {k: v[id].tolist() for k, v in data.items() if k in self.info.features} |
|
|