Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,8 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: cc
|
3 |
-
task_categories:
|
4 |
-
- time-series-forecasting
|
5 |
-
size_categories:
|
6 |
-
- n<1K
|
7 |
-
---
|
8 |
-
# DFR Dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mjp.py
CHANGED
@@ -113,25 +113,25 @@ class MJP(datasets.GeneratorBasedBuilder):
|
|
113 |
DEFAULT_CONFIG_NAME = "DFR_V=0"
|
114 |
|
115 |
files_to_load = {
|
116 |
-
"
|
117 |
"observation_values": "fine_grid_noisy_sample_paths.pt",
|
|
|
118 |
"time_normalization_factors": "fine_grid_time_normalization_factors.pt",
|
119 |
-
"
|
120 |
-
"ground_truth_intensity_matrices": "fine_grid_intensity_matrices.pt",
|
121 |
"adjacency_matrices": "fine_grid_adjacency_matrices.pt",
|
122 |
-
"
|
123 |
}
|
124 |
|
125 |
def _info(self):
|
126 |
features = datasets.Features(
|
127 |
{
|
128 |
-
"
|
129 |
"observation_values": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("uint32")))),
|
130 |
"time_normalization_factors": datasets.Value("float32"),
|
131 |
-
"
|
132 |
-
"
|
133 |
"adjacency_matrices": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
|
134 |
-
"
|
135 |
}
|
136 |
)
|
137 |
|
@@ -170,6 +170,5 @@ class MJP(datasets.GeneratorBasedBuilder):
|
|
170 |
data[key].append(load_file(file_path))
|
171 |
for k, v in data.items():
|
172 |
data[k] = torch.cat(v)
|
173 |
-
print(k, data[k].shape)
|
174 |
for id in range(len(data["observation_times"])):
|
175 |
yield id, {k: v[id].tolist() for k, v in data.items() if k in self.info.features}
|
|
|
113 |
DEFAULT_CONFIG_NAME = "DFR_V=0"
|
114 |
|
115 |
files_to_load = {
|
116 |
+
"observation_grid": "fine_grid_grid.pt",
|
117 |
"observation_values": "fine_grid_noisy_sample_paths.pt",
|
118 |
+
"mask_seq_lengths": "fine_grid_mask_seq_lengths.pt",
|
119 |
"time_normalization_factors": "fine_grid_time_normalization_factors.pt",
|
120 |
+
"intensity_matrices": "fine_grid_intensity_matrices.pt",
|
|
|
121 |
"adjacency_matrices": "fine_grid_adjacency_matrices.pt",
|
122 |
+
"initial_distributions": "fine_grid_initial_distributions.pt",
|
123 |
}
|
124 |
|
125 |
def _info(self):
|
126 |
features = datasets.Features(
|
127 |
{
|
128 |
+
"observation_grid": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32")))),
|
129 |
"observation_values": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("uint32")))),
|
130 |
"time_normalization_factors": datasets.Value("float32"),
|
131 |
+
"mask_seq_lengths": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
|
132 |
+
"intensity_matrices": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
|
133 |
"adjacency_matrices": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
|
134 |
+
"initial_distributions": datasets.Sequence(datasets.Value("uint64")),
|
135 |
}
|
136 |
)
|
137 |
|
|
|
170 |
data[key].append(load_file(file_path))
|
171 |
for k, v in data.items():
|
172 |
data[k] = torch.cat(v)
|
|
|
173 |
for id in range(len(data["observation_times"])):
|
174 |
yield id, {k: v[id].tolist() for k, v in data.items() if k in self.info.features}
|