Datasets:

cvejoski commited on
Commit
0d56887
·
verified ·
1 Parent(s): 7cb07fb

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +0 -8
  2. mjp.py +8 -9
README.md CHANGED
@@ -1,8 +0,0 @@
1
- ---
2
- license: cc
3
- task_categories:
4
- - time-series-forecasting
5
- size_categories:
6
- - n<1K
7
- ---
8
- # DFR Dataset
 
 
 
 
 
 
 
 
 
mjp.py CHANGED
@@ -113,25 +113,25 @@ class MJP(datasets.GeneratorBasedBuilder):
113
  DEFAULT_CONFIG_NAME = "DFR_V=0"
114
 
115
  files_to_load = {
116
- "observation_times": "fine_grid_grid.pt",
117
  "observation_values": "fine_grid_noisy_sample_paths.pt",
 
118
  "time_normalization_factors": "fine_grid_time_normalization_factors.pt",
119
- "sequence_lengths": "fine_grid_mask_seq_lengths.pt",
120
- "ground_truth_intensity_matrices": "fine_grid_intensity_matrices.pt",
121
  "adjacency_matrices": "fine_grid_adjacency_matrices.pt",
122
- "ground_truth_initial_distributions": "fine_grid_initial_distributions.pt",
123
  }
124
 
125
  def _info(self):
126
  features = datasets.Features(
127
  {
128
- "observation_times": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32")))),
129
  "observation_values": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("uint32")))),
130
  "time_normalization_factors": datasets.Value("float32"),
131
- "sequence_lengths": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
132
- "ground_truth_intensity_matrices": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
133
  "adjacency_matrices": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
134
- "ground_truth_initial_distributions": datasets.Sequence(datasets.Value("uint64")),
135
  }
136
  )
137
 
@@ -170,6 +170,5 @@ class MJP(datasets.GeneratorBasedBuilder):
170
  data[key].append(load_file(file_path))
171
  for k, v in data.items():
172
  data[k] = torch.cat(v)
173
- print(k, data[k].shape)
174
  for id in range(len(data["observation_times"])):
175
  yield id, {k: v[id].tolist() for k, v in data.items() if k in self.info.features}
 
113
  DEFAULT_CONFIG_NAME = "DFR_V=0"
114
 
115
  files_to_load = {
116
+ "observation_grid": "fine_grid_grid.pt",
117
  "observation_values": "fine_grid_noisy_sample_paths.pt",
118
+ "mask_seq_lengths": "fine_grid_mask_seq_lengths.pt",
119
  "time_normalization_factors": "fine_grid_time_normalization_factors.pt",
120
+ "intensity_matrices": "fine_grid_intensity_matrices.pt",
 
121
  "adjacency_matrices": "fine_grid_adjacency_matrices.pt",
122
+ "initial_distributions": "fine_grid_initial_distributions.pt",
123
  }
124
 
125
  def _info(self):
126
  features = datasets.Features(
127
  {
128
+ "observation_grid": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32")))),
129
  "observation_values": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("uint32")))),
130
  "time_normalization_factors": datasets.Value("float32"),
131
+ "mask_seq_lengths": datasets.Sequence(datasets.Sequence(datasets.Value("int32"))),
132
+ "intensity_matrices": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
133
  "adjacency_matrices": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
134
+ "initial_distributions": datasets.Sequence(datasets.Value("uint64")),
135
  }
136
  )
137
 
 
170
  data[key].append(load_file(file_path))
171
  for k, v in data.items():
172
  data[k] = torch.cat(v)
 
173
  for id in range(len(data["observation_times"])):
174
  yield id, {k: v[id].tolist() for k, v in data.items() if k in self.info.features}