File size: 13,813 Bytes
3bdb76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import random
from collections import defaultdict
import json
import math
import os
import datetime

from dreamcoder.dreamcoder import explorationCompression
from dreamcoder.utilities import eprint, flatten, testTrainSplit
from dreamcoder.grammar import Grammar
from dreamcoder.task import Task
from dreamcoder.type import Context, arrow, tbool, tlist, tint, t0, UnificationFailure
from dreamcoder.domains.list.listPrimitives import basePrimitives, primitives, McCarthyPrimitives, bootstrapTarget_extra, no_length
from dreamcoder.domains.list.makeListTasks import make_list_bootstrap_tasks, sortBootstrap, EASYLISTTASKS


def retrieveJSONTasks(filename, features=False):
    """
    For JSON of the form:
        {"name": str,
         "type": {"input" : bool|int|list-of-bool|list-of-int,
                  "output": bool|int|list-of-bool|list-of-int},
         "examples": [{"i": data, "o": data}]}
    """
    with open(filename, "r") as f:
        loaded = json.load(f)
    TP = {
        "bool": tbool,
        "int": tint,
        "list-of-bool": tlist(tbool),
        "list-of-int": tlist(tint),
    }
    return [Task(
        item["name"],
        arrow(TP[item["type"]["input"]], TP[item["type"]["output"]]),
        [((ex["i"],), ex["o"]) for ex in item["examples"]],
        features=(None if not features else list_features(
            [((ex["i"],), ex["o"]) for ex in item["examples"]])),
        cache=False,
    ) for item in loaded]


def list_features(examples):
    if any(isinstance(i, int) for (i,), _ in examples):
        # obtain features for number inputs as list of numbers
        examples = [(([i],), o) for (i,), o in examples]
    elif any(not isinstance(i, list) for (i,), _ in examples):
        # can't handle non-lists
        return []
    elif any(isinstance(x, list) for (xs,), _ in examples for x in xs):
        # nested lists are hard to extract features for, so we'll
        # obtain features as if flattened
        examples = [(([x for xs in ys for x in xs],), o)
                    for (ys,), o in examples]

    # assume all tasks have the same number of examples
    # and all inputs are lists
    features = []
    ot = type(examples[0][1])

    def mean(l): return 0 if not l else sum(l) / len(l)
    imean = [mean(i) for (i,), o in examples]
    ivar = [sum((v - imean[idx])**2
                for v in examples[idx][0][0])
            for idx in range(len(examples))]

    # DISABLED length of each input and output
    # total difference between length of input and output
    # DISABLED normalized count of numbers in input but not in output
    # total normalized count of numbers in input but not in output
    # total difference between means of input and output
    # total difference between variances of input and output
    # output type (-1=bool, 0=int, 1=list)
    # DISABLED outputs if integers, else -1s
    # DISABLED outputs if bools (-1/1), else 0s
    if ot == list:  # lists of ints or bools
        omean = [mean(o) for (i,), o in examples]
        ovar = [sum((v - omean[idx])**2
                    for v in examples[idx][1])
                for idx in range(len(examples))]

        def cntr(
            l, o): return 0 if not l else len(
            set(l).difference(
                set(o))) / len(l)
        cnt_not_in_output = [cntr(i, o) for (i,), o in examples]

        #features += [len(i) for (i,), o in examples]
        #features += [len(o) for (i,), o in examples]
        features.append(sum(len(i) - len(o) for (i,), o in examples))
        #features += cnt_not_int_output
        features.append(sum(cnt_not_in_output))
        features.append(sum(om - im for im, om in zip(imean, omean)))
        features.append(sum(ov - iv for iv, ov in zip(ivar, ovar)))
        features.append(1)
        # features += [-1 for _ in examples]
        # features += [0 for _ in examples]
    elif ot == bool:
        outs = [o for (i,), o in examples]

        #features += [len(i) for (i,), o in examples]
        #features += [-1 for _ in examples]
        features.append(sum(len(i) for (i,), o in examples))
        #features += [0 for _ in examples]
        features.append(0)
        features.append(sum(imean))
        features.append(sum(ivar))
        features.append(-1)
        # features += [-1 for _ in examples]
        # features += [1 if o else -1 for o in outs]
    else:  # int
        def cntr(
            l, o): return 0 if not l else len(
            set(l).difference(
                set(o))) / len(l)
        cnt_not_in_output = [cntr(i, [o]) for (i,), o in examples]
        outs = [o for (i,), o in examples]

        #features += [len(i) for (i,), o in examples]
        #features += [1 for (i,), o in examples]
        features.append(sum(len(i) for (i,), o in examples))
        #features += cnt_not_int_output
        features.append(sum(cnt_not_in_output))
        features.append(sum(o - im for im, o in zip(imean, outs)))
        features.append(sum(ivar))
        features.append(0)
        # features += outs
        # features += [0 for _ in examples]

    return features


def isListFunction(tp):
    try:
        Context().unify(tp, arrow(tlist(tint), t0))
        return True
    except UnificationFailure:
        return False


def isIntFunction(tp):
    try:
        Context().unify(tp, arrow(tint, t0))
        return True
    except UnificationFailure:
        return False

try:
    from dreamcoder.recognition import RecurrentFeatureExtractor
    class LearnedFeatureExtractor(RecurrentFeatureExtractor):
        H = 64

        special = None

        def tokenize(self, examples):
            def sanitize(l): return [z if z in self.lexicon else "?"
                                     for z_ in l
                                     for z in (z_ if isinstance(z_, list) else [z_])]

            tokenized = []
            for xs, y in examples:
                if isinstance(y, list):
                    y = ["LIST_START"] + y + ["LIST_END"]
                else:
                    y = [y]
                y = sanitize(y)
                if len(y) > self.maximumLength:
                    return None

                serializedInputs = []
                for xi, x in enumerate(xs):
                    if isinstance(x, list):
                        x = ["LIST_START"] + x + ["LIST_END"]
                    else:
                        x = [x]
                    x = sanitize(x)
                    if len(x) > self.maximumLength:
                        return None
                    serializedInputs.append(x)

                tokenized.append((tuple(serializedInputs), y))

            return tokenized

        def __init__(self, tasks, testingTasks=[], cuda=False):
            self.lexicon = set(flatten((t.examples for t in tasks + testingTasks), abort=lambda x: isinstance(
                x, str))).union({"LIST_START", "LIST_END", "?"})

            # Calculate the maximum length
            self.maximumLength = float('inf') # Believe it or not this is actually important to have here
            self.maximumLength = max(len(l)
                                     for t in tasks + testingTasks
                                     for xs, y in self.tokenize(t.examples)
                                     for l in [y] + [x for x in xs])

            self.recomputeTasks = True

            super(
                LearnedFeatureExtractor,
                self).__init__(
                lexicon=list(
                    self.lexicon),
                tasks=tasks,
                cuda=cuda,
                H=self.H,
                bidirectional=True)
except: pass

def train_necessary(t):
    if t.name in {"head", "is-primes", "len", "pop", "repeat-many", "tail", "keep primes", "keep squares"}:
        return True
    if any(t.name.startswith(x) for x in {
        "add-k", "append-k", "bool-identify-geq-k", "count-k", "drop-k",
        "empty", "evens", "has-k", "index-k", "is-mod-k", "kth-largest",
        "kth-smallest", "modulo-k", "mult-k", "remove-index-k",
        "remove-mod-k", "repeat-k", "replace-all-with-index-k", "rotate-k",
        "slice-k-n", "take-k",
    }):
        return "some"
    return False


def list_options(parser):
    parser.add_argument(
        "--noMap", action="store_true", default=False,
        help="Disable built-in map primitive")
    parser.add_argument(
        "--noUnfold", action="store_true", default=False,
        help="Disable built-in unfold primitive")
    parser.add_argument(
        "--noLength", action="store_true", default=False,
        help="Disable built-in length primitive")
    parser.add_argument(
        "--dataset",
        type=str,
        default="Lucas-old",
        choices=[
            "bootstrap",
            "sorting",
            "Lucas-old",
            "Lucas-depth1",
            "Lucas-depth2",
            "Lucas-depth3"])
    parser.add_argument("--maxTasks", type=int,
                        default=None,
                        help="truncate tasks to fit within this boundary")
    parser.add_argument("--primitives",
                        default="common",
                        help="Which primitive set to use",
                        choices=["McCarthy", "base", "rich", "common", "noLength"])
    parser.add_argument("--extractor", type=str,
                        choices=["hand", "deep", "learned"],
                        default="learned")
    parser.add_argument("--split", metavar="TRAIN_RATIO",
                        type=float,
                        help="split test/train")
    parser.add_argument("-H", "--hidden", type=int,
                        default=64,
                        help="number of hidden units")
    parser.add_argument("--random-seed", type=int, default=17)


def main(dataset='Lucas-old', maxTasks=10_000):
    """
    Takes the return value of the `commandlineArguments()` function as input and
    trains/tests the model on manipulating sequences of numbers.
    """
    random.seed(9)

    tasks = {
        "Lucas-old": lambda: retrieveJSONTasks("data/list_tasks.json") + sortBootstrap(),
        "bootstrap": make_list_bootstrap_tasks,
        "sorting": sortBootstrap,
        # removed as file over 10MB
        # "Lucas-depth1": lambda: retrieveJSONTasks("data/list_tasks2.json")[:105],
        # "Lucas-depth2": lambda: retrieveJSONTasks("data/list_tasks2.json")[:4928],
        # "Lucas-depth3": lambda: retrieveJSONTasks("data/list_tasks2.json"),
    }[dataset]()

    if maxTasks and len(tasks) > maxTasks:
        necessaryTasks = []  # maxTasks will not consider these
        if dataset.startswith("Lucas2.0") and dataset != "Lucas2.0-depth1":
            necessaryTasks = tasks[:105]

        eprint("Unwilling to handle {} tasks, truncating..".format(len(tasks)))
        random.shuffle(tasks)
        del tasks[maxTasks:]
        tasks = necessaryTasks + tasks

    if dataset.startswith("Lucas"):
        # extra tasks for filter
        tasks.extend([
            Task("remove empty lists",
                 arrow(tlist(tlist(tbool)), tlist(tlist(tbool))),
                 [((ls,), list(filter(lambda l: len(l) > 0, ls)))
                  for _ in range(15)
                  for ls in [[[random.random() < 0.5 for _ in range(random.randint(0, 3))]
                              for _ in range(4)]]]),
            Task("keep squares",
                 arrow(tlist(tint), tlist(tint)),
                 [((xs,), list(filter(lambda x: int(math.sqrt(x)) ** 2 == x,
                                      xs)))
                  for _ in range(15)
                  for xs in [[random.choice([0, 1, 4, 9, 16, 25])
                              if random.random() < 0.5
                              else random.randint(0, 9)
                              for _ in range(7)]]]),
            Task("keep primes",
                 arrow(tlist(tint), tlist(tint)),
                 [((xs,), list(filter(lambda x: x in {2, 3, 5, 7, 11, 13, 17,
                                                      19, 23, 29, 31, 37}, xs)))
                  for _ in range(15)
                  for xs in [[random.choice([2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37])
                              if random.random() < 0.5
                              else random.randint(0, 9)
                              for _ in range(7)]]]),
        ])
        for i in range(4):
            tasks.extend([
                Task("keep eq %s" % i,
                     arrow(tlist(tint), tlist(tint)),
                     [((xs,), list(filter(lambda x: x == i, xs)))
                      for _ in range(15)
                      for xs in [[random.randint(0, 6) for _ in range(5)]]]),
                Task("remove eq %s" % i,
                     arrow(tlist(tint), tlist(tint)),
                     [((xs,), list(filter(lambda x: x != i, xs)))
                      for _ in range(15)
                      for xs in [[random.randint(0, 6) for _ in range(5)]]]),
                Task("keep gt %s" % i,
                     arrow(tlist(tint), tlist(tint)),
                     [((xs,), list(filter(lambda x: x > i, xs)))
                      for _ in range(15)
                      for xs in [[random.randint(0, 6) for _ in range(5)]]]),
                Task("remove gt %s" % i,
                     arrow(tlist(tint), tlist(tint)),
                     [((xs,), list(filter(lambda x: not x > i, xs)))
                      for _ in range(15)
                      for xs in [[random.randint(0, 6) for _ in range(5)]]])
            ])

    def isIdentityTask(t):
        return all( len(xs) == 1 and xs[0] == y for xs, y in t.examples  )
    eprint("Removed", sum(isIdentityTask(t) for t in tasks), "tasks that were just the identity function")
    tasks = [t for t in tasks if not isIdentityTask(t) ]
    return tasks