File size: 13,813 Bytes
3bdb76c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import random
from collections import defaultdict
import json
import math
import os
import datetime
from dreamcoder.dreamcoder import explorationCompression
from dreamcoder.utilities import eprint, flatten, testTrainSplit
from dreamcoder.grammar import Grammar
from dreamcoder.task import Task
from dreamcoder.type import Context, arrow, tbool, tlist, tint, t0, UnificationFailure
from dreamcoder.domains.list.listPrimitives import basePrimitives, primitives, McCarthyPrimitives, bootstrapTarget_extra, no_length
from dreamcoder.domains.list.makeListTasks import make_list_bootstrap_tasks, sortBootstrap, EASYLISTTASKS
def retrieveJSONTasks(filename, features=False):
"""
For JSON of the form:
{"name": str,
"type": {"input" : bool|int|list-of-bool|list-of-int,
"output": bool|int|list-of-bool|list-of-int},
"examples": [{"i": data, "o": data}]}
"""
with open(filename, "r") as f:
loaded = json.load(f)
TP = {
"bool": tbool,
"int": tint,
"list-of-bool": tlist(tbool),
"list-of-int": tlist(tint),
}
return [Task(
item["name"],
arrow(TP[item["type"]["input"]], TP[item["type"]["output"]]),
[((ex["i"],), ex["o"]) for ex in item["examples"]],
features=(None if not features else list_features(
[((ex["i"],), ex["o"]) for ex in item["examples"]])),
cache=False,
) for item in loaded]
def list_features(examples):
if any(isinstance(i, int) for (i,), _ in examples):
# obtain features for number inputs as list of numbers
examples = [(([i],), o) for (i,), o in examples]
elif any(not isinstance(i, list) for (i,), _ in examples):
# can't handle non-lists
return []
elif any(isinstance(x, list) for (xs,), _ in examples for x in xs):
# nested lists are hard to extract features for, so we'll
# obtain features as if flattened
examples = [(([x for xs in ys for x in xs],), o)
for (ys,), o in examples]
# assume all tasks have the same number of examples
# and all inputs are lists
features = []
ot = type(examples[0][1])
def mean(l): return 0 if not l else sum(l) / len(l)
imean = [mean(i) for (i,), o in examples]
ivar = [sum((v - imean[idx])**2
for v in examples[idx][0][0])
for idx in range(len(examples))]
# DISABLED length of each input and output
# total difference between length of input and output
# DISABLED normalized count of numbers in input but not in output
# total normalized count of numbers in input but not in output
# total difference between means of input and output
# total difference between variances of input and output
# output type (-1=bool, 0=int, 1=list)
# DISABLED outputs if integers, else -1s
# DISABLED outputs if bools (-1/1), else 0s
if ot == list: # lists of ints or bools
omean = [mean(o) for (i,), o in examples]
ovar = [sum((v - omean[idx])**2
for v in examples[idx][1])
for idx in range(len(examples))]
def cntr(
l, o): return 0 if not l else len(
set(l).difference(
set(o))) / len(l)
cnt_not_in_output = [cntr(i, o) for (i,), o in examples]
#features += [len(i) for (i,), o in examples]
#features += [len(o) for (i,), o in examples]
features.append(sum(len(i) - len(o) for (i,), o in examples))
#features += cnt_not_int_output
features.append(sum(cnt_not_in_output))
features.append(sum(om - im for im, om in zip(imean, omean)))
features.append(sum(ov - iv for iv, ov in zip(ivar, ovar)))
features.append(1)
# features += [-1 for _ in examples]
# features += [0 for _ in examples]
elif ot == bool:
outs = [o for (i,), o in examples]
#features += [len(i) for (i,), o in examples]
#features += [-1 for _ in examples]
features.append(sum(len(i) for (i,), o in examples))
#features += [0 for _ in examples]
features.append(0)
features.append(sum(imean))
features.append(sum(ivar))
features.append(-1)
# features += [-1 for _ in examples]
# features += [1 if o else -1 for o in outs]
else: # int
def cntr(
l, o): return 0 if not l else len(
set(l).difference(
set(o))) / len(l)
cnt_not_in_output = [cntr(i, [o]) for (i,), o in examples]
outs = [o for (i,), o in examples]
#features += [len(i) for (i,), o in examples]
#features += [1 for (i,), o in examples]
features.append(sum(len(i) for (i,), o in examples))
#features += cnt_not_int_output
features.append(sum(cnt_not_in_output))
features.append(sum(o - im for im, o in zip(imean, outs)))
features.append(sum(ivar))
features.append(0)
# features += outs
# features += [0 for _ in examples]
return features
def isListFunction(tp):
try:
Context().unify(tp, arrow(tlist(tint), t0))
return True
except UnificationFailure:
return False
def isIntFunction(tp):
try:
Context().unify(tp, arrow(tint, t0))
return True
except UnificationFailure:
return False
try:
from dreamcoder.recognition import RecurrentFeatureExtractor
class LearnedFeatureExtractor(RecurrentFeatureExtractor):
H = 64
special = None
def tokenize(self, examples):
def sanitize(l): return [z if z in self.lexicon else "?"
for z_ in l
for z in (z_ if isinstance(z_, list) else [z_])]
tokenized = []
for xs, y in examples:
if isinstance(y, list):
y = ["LIST_START"] + y + ["LIST_END"]
else:
y = [y]
y = sanitize(y)
if len(y) > self.maximumLength:
return None
serializedInputs = []
for xi, x in enumerate(xs):
if isinstance(x, list):
x = ["LIST_START"] + x + ["LIST_END"]
else:
x = [x]
x = sanitize(x)
if len(x) > self.maximumLength:
return None
serializedInputs.append(x)
tokenized.append((tuple(serializedInputs), y))
return tokenized
def __init__(self, tasks, testingTasks=[], cuda=False):
self.lexicon = set(flatten((t.examples for t in tasks + testingTasks), abort=lambda x: isinstance(
x, str))).union({"LIST_START", "LIST_END", "?"})
# Calculate the maximum length
self.maximumLength = float('inf') # Believe it or not this is actually important to have here
self.maximumLength = max(len(l)
for t in tasks + testingTasks
for xs, y in self.tokenize(t.examples)
for l in [y] + [x for x in xs])
self.recomputeTasks = True
super(
LearnedFeatureExtractor,
self).__init__(
lexicon=list(
self.lexicon),
tasks=tasks,
cuda=cuda,
H=self.H,
bidirectional=True)
except: pass
def train_necessary(t):
if t.name in {"head", "is-primes", "len", "pop", "repeat-many", "tail", "keep primes", "keep squares"}:
return True
if any(t.name.startswith(x) for x in {
"add-k", "append-k", "bool-identify-geq-k", "count-k", "drop-k",
"empty", "evens", "has-k", "index-k", "is-mod-k", "kth-largest",
"kth-smallest", "modulo-k", "mult-k", "remove-index-k",
"remove-mod-k", "repeat-k", "replace-all-with-index-k", "rotate-k",
"slice-k-n", "take-k",
}):
return "some"
return False
def list_options(parser):
parser.add_argument(
"--noMap", action="store_true", default=False,
help="Disable built-in map primitive")
parser.add_argument(
"--noUnfold", action="store_true", default=False,
help="Disable built-in unfold primitive")
parser.add_argument(
"--noLength", action="store_true", default=False,
help="Disable built-in length primitive")
parser.add_argument(
"--dataset",
type=str,
default="Lucas-old",
choices=[
"bootstrap",
"sorting",
"Lucas-old",
"Lucas-depth1",
"Lucas-depth2",
"Lucas-depth3"])
parser.add_argument("--maxTasks", type=int,
default=None,
help="truncate tasks to fit within this boundary")
parser.add_argument("--primitives",
default="common",
help="Which primitive set to use",
choices=["McCarthy", "base", "rich", "common", "noLength"])
parser.add_argument("--extractor", type=str,
choices=["hand", "deep", "learned"],
default="learned")
parser.add_argument("--split", metavar="TRAIN_RATIO",
type=float,
help="split test/train")
parser.add_argument("-H", "--hidden", type=int,
default=64,
help="number of hidden units")
parser.add_argument("--random-seed", type=int, default=17)
def main(dataset='Lucas-old', maxTasks=10_000):
"""
Takes the return value of the `commandlineArguments()` function as input and
trains/tests the model on manipulating sequences of numbers.
"""
random.seed(9)
tasks = {
"Lucas-old": lambda: retrieveJSONTasks("data/list_tasks.json") + sortBootstrap(),
"bootstrap": make_list_bootstrap_tasks,
"sorting": sortBootstrap,
# removed as file over 10MB
# "Lucas-depth1": lambda: retrieveJSONTasks("data/list_tasks2.json")[:105],
# "Lucas-depth2": lambda: retrieveJSONTasks("data/list_tasks2.json")[:4928],
# "Lucas-depth3": lambda: retrieveJSONTasks("data/list_tasks2.json"),
}[dataset]()
if maxTasks and len(tasks) > maxTasks:
necessaryTasks = [] # maxTasks will not consider these
if dataset.startswith("Lucas2.0") and dataset != "Lucas2.0-depth1":
necessaryTasks = tasks[:105]
eprint("Unwilling to handle {} tasks, truncating..".format(len(tasks)))
random.shuffle(tasks)
del tasks[maxTasks:]
tasks = necessaryTasks + tasks
if dataset.startswith("Lucas"):
# extra tasks for filter
tasks.extend([
Task("remove empty lists",
arrow(tlist(tlist(tbool)), tlist(tlist(tbool))),
[((ls,), list(filter(lambda l: len(l) > 0, ls)))
for _ in range(15)
for ls in [[[random.random() < 0.5 for _ in range(random.randint(0, 3))]
for _ in range(4)]]]),
Task("keep squares",
arrow(tlist(tint), tlist(tint)),
[((xs,), list(filter(lambda x: int(math.sqrt(x)) ** 2 == x,
xs)))
for _ in range(15)
for xs in [[random.choice([0, 1, 4, 9, 16, 25])
if random.random() < 0.5
else random.randint(0, 9)
for _ in range(7)]]]),
Task("keep primes",
arrow(tlist(tint), tlist(tint)),
[((xs,), list(filter(lambda x: x in {2, 3, 5, 7, 11, 13, 17,
19, 23, 29, 31, 37}, xs)))
for _ in range(15)
for xs in [[random.choice([2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37])
if random.random() < 0.5
else random.randint(0, 9)
for _ in range(7)]]]),
])
for i in range(4):
tasks.extend([
Task("keep eq %s" % i,
arrow(tlist(tint), tlist(tint)),
[((xs,), list(filter(lambda x: x == i, xs)))
for _ in range(15)
for xs in [[random.randint(0, 6) for _ in range(5)]]]),
Task("remove eq %s" % i,
arrow(tlist(tint), tlist(tint)),
[((xs,), list(filter(lambda x: x != i, xs)))
for _ in range(15)
for xs in [[random.randint(0, 6) for _ in range(5)]]]),
Task("keep gt %s" % i,
arrow(tlist(tint), tlist(tint)),
[((xs,), list(filter(lambda x: x > i, xs)))
for _ in range(15)
for xs in [[random.randint(0, 6) for _ in range(5)]]]),
Task("remove gt %s" % i,
arrow(tlist(tint), tlist(tint)),
[((xs,), list(filter(lambda x: not x > i, xs)))
for _ in range(15)
for xs in [[random.randint(0, 6) for _ in range(5)]]])
])
def isIdentityTask(t):
return all( len(xs) == 1 and xs[0] == y for xs, y in t.examples )
eprint("Removed", sum(isIdentityTask(t) for t in tasks), "tasks that were just the identity function")
tasks = [t for t in tasks if not isIdentityTask(t) ]
return tasks
|