Fraser-Greenlee
add dataset code
3bdb76c
raw
history blame
17.5 kB
from collections import OrderedDict
import datetime
import json
import os
import pickle
import random as random
import subprocess
import sys
import time
try:
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
except:
print("WARNING: Could not import torch. This is only okay when doing pypy compression.",
file=sys.stderr)
from dreamcoder.domains.logo.makeLogoTasks import makeTasks, montageTasks, drawLogo
from dreamcoder.domains.logo.logoPrimitives import primitives, turtle, tangle, tlength
from dreamcoder.dreamcoder import ecIterator
from dreamcoder.grammar import Grammar
from dreamcoder.program import Program
try:
from dreamcoder.recognition import variable, maybe_cuda
except:
print("WARNING: Could not import recognition. This is only okay when doing pypy compression.",
file=sys.stderr)
from dreamcoder.task import Task
from dreamcoder.type import arrow
from dreamcoder.utilities import eprint, testTrainSplit, loadPickle
def animateSolutions(allFrontiers):
programs = []
filenames = []
for n,(t,f) in enumerate(allFrontiers.items()):
if f.empty: continue
programs.append(f.bestPosterior.program)
filenames.append(f"/tmp/logo_animation_{n}")
drawLogo(*programs, pretty=True, smoothPretty=True, resolution=128, animate=True,
filenames=filenames)
def dreamFromGrammar(g, directory, N=100):
if isinstance(g,Grammar):
programs = [ p
for _ in range(N)
for p in [g.sample(arrow(turtle,turtle),
maximumDepth=20)]
if p is not None]
else:
programs = g
drawLogo(*programs,
pretty=False, smoothPretty=False,
resolution=512,
filenames=[f"{directory}/{n}.png" for n in range(len(programs)) ],
timeout=1)
drawLogo(*programs,
pretty=True, smoothPretty=False,
resolution=512,
filenames=[f"{directory}/{n}_pretty.png" for n in range(len(programs)) ],
timeout=1)
drawLogo(*programs,
pretty=False, smoothPretty=True,
resolution=512,
filenames=[f"{directory}/{n}_smooth_pretty.png" for n in range(len(programs)) ],
timeout=1)
for n,p in enumerate(programs):
with open(f"{directory}/{n}.dream","w") as handle:
handle.write(str(p))
try:
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
return x.view(x.size(0), -1)
class LogoFeatureCNN(nn.Module):
special = "LOGO"
def __init__(self, tasks, testingTasks=[], cuda=False, H=64):
super(LogoFeatureCNN, self).__init__()
self.sub = prefix_dreams + str(int(time.time()))
self.recomputeTasks = False
def conv_block(in_channels, out_channels, p=True):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1),
# nn.BatchNorm2d(out_channels),
nn.ReLU(),
# nn.Conv2d(out_channels, out_channels, 3, padding=1),
# nn.ReLU(),
nn.MaxPool2d(2))
self.inputImageDimension = 128
self.resizedDimension = 128
assert self.inputImageDimension % self.resizedDimension == 0
# channels for hidden
hid_dim = 64
z_dim = 64
self.encoder = nn.Sequential(
conv_block(1, hid_dim),
conv_block(hid_dim, hid_dim),
conv_block(hid_dim, hid_dim),
conv_block(hid_dim, hid_dim),
conv_block(hid_dim, hid_dim),
conv_block(hid_dim, z_dim),
Flatten()
)
self.outputDimensionality = 256
def forward(self, v):
assert len(v) == self.inputImageDimension*self.inputImageDimension
floatOnlyTask = list(map(float, v))
reshaped = [floatOnlyTask[i:i + self.inputImageDimension]
for i in range(0, len(floatOnlyTask), self.inputImageDimension)]
v = variable(reshaped).float()
# insert channel and batch
v = torch.unsqueeze(v, 0)
v = torch.unsqueeze(v, 0)
v = maybe_cuda(v, next(self.parameters()).is_cuda)/256.
window = int(self.inputImageDimension/self.resizedDimension)
v = F.avg_pool2d(v, (window,window))
v = self.encoder(v)
return v.view(-1)
def featuresOfTask(self, t): # Take a task and returns [features]
return self(t.highresolution)
def tasksOfPrograms(self, ps, types):
images = drawLogo(*ps, resolution=128)
if len(ps) == 1: images = [images]
tasks = []
for i in images:
if isinstance(i, str): tasks.append(None)
else:
t = Task("Helm", arrow(turtle,turtle), [])
t.highresolution = i
tasks.append(t)
return tasks
def taskOfProgram(self, p, t):
return self.tasksOfPrograms([p], None)[0]
except:
pass
def list_options(parser):
parser.add_argument("--proto",
default=False,
action="store_true",
help="Should we use prototypical networks?")
parser.add_argument("--target", type=str,
default=[],
action='append',
help="Which tasks should this try to solve")
parser.add_argument("--reduce", type=str,
default=[],
action='append',
help="Which tasks should this try to solve")
parser.add_argument("--save", type=str,
default=None,
help="Filepath output the grammar if this is a child")
parser.add_argument("--prefix", type=str,
default="experimentOutputs/",
help="Filepath output the grammar if this is a child")
parser.add_argument("--dreamCheckpoint", type=str,
default=None,
help="File to load in order to get dreams")
parser.add_argument("--dreamDirectory", type=str,
default=None,
help="Directory in which to dream from --dreamCheckpoint")
parser.add_argument("--visualize",
default=None, type=str)
parser.add_argument("--cost", default=False, action='store_true',
help="Impose a smooth cost on using ink")
parser.add_argument("--split",
default=1., type=float)
parser.add_argument("--animate",
default=None, type=str)
def outputDreams(checkpoint, directory):
from dreamcoder.utilities import loadPickle
result = loadPickle(checkpoint)
eprint(" [+] Loaded checkpoint",checkpoint)
g = result.grammars[-1]
if directory is None:
randomStr = ''.join(random.choice('0123456789') for _ in range(10))
directory = "/tmp/" + randomStr
eprint(" Dreaming into",directory)
os.system("mkdir -p %s"%directory)
dreamFromGrammar(g, directory)
def enumerateDreams(checkpoint, directory):
from dreamcoder.dreaming import backgroundHelmholtzEnumeration
from dreamcoder.utilities import loadPickle
result = loadPickle(checkpoint)
eprint(" [+] Loaded checkpoint",checkpoint)
g = result.grammars[-1]
if directory is None: assert False, "please specify a directory"
eprint(" Dreaming into",directory)
os.system("mkdir -p %s"%directory)
frontiers = backgroundHelmholtzEnumeration(makeTasks(None,None), g, 100,
evaluationTimeout=0.01,
special=LogoFeatureCNN.special)()
print(f"{len(frontiers)} total frontiers.")
MDL = 0
def L(f):
return -list(f.entries)[0].logPrior
frontiers.sort(key=lambda f: -L(f))
while len(frontiers) > 0:
# get frontiers whose MDL is between [MDL,MDL + 1)
fs = []
while len(frontiers) > 0 and L(frontiers[-1]) < MDL + 1:
fs.append(frontiers.pop(len(frontiers) - 1))
if fs:
random.shuffle(fs)
print(f"{len(fs)} programs with MDL between [{MDL}, {MDL + 1})")
fs = fs[:500]
os.system(f"mkdir {directory}/{MDL}")
dreamFromGrammar([list(f.entries)[0].program for f in fs],
f"{directory}/{MDL}")
MDL += 1
def visualizePrimitives(primitives, export='/tmp/logo_primitives.png'):
from itertools import product
from dreamcoder.program import Index,Abstraction,Application
from dreamcoder.utilities import montageMatrix,makeNiceArray
from dreamcoder.type import tint
import scipy.misc
from dreamcoder.domains.logo.makeLogoTasks import parseLogo
angles = [Program.parse(a)
for a in ["logo_ZA",
"logo_epsA",
"(logo_MULA logo_epsA 2)",
"(logo_DIVA logo_UA 4)",
"(logo_DIVA logo_UA 5)",
"(logo_DIVA logo_UA 7)",
"(logo_DIVA logo_UA 9)",
] ]
specialAngles = {"#(lambda (lambda (logo_forLoop logo_IFTY (lambda (lambda (logo_FWRT (logo_MULL logo_UL 3) (logo_MULA $2 4) $0))) $1)))":
[Program.parse("(logo_MULA logo_epsA 4)")]+[Program.parse("(logo_DIVA logo_UA %d)"%n) for n in [7,9] ]}
numbers = [Program.parse(n)
for n in ["1","2","5","7","logo_IFTY"] ]
specialNumbers = {"#(lambda (#(lambda (lambda (lambda (lambda (logo_forLoop $2 (lambda (lambda (logo_FWRT $5 (logo_DIVA logo_UA $3) $0))) $0))))) (logo_MULL logo_UL $0) 4 4))":
[Program.parse(str(n)) for n in [1,2,3] ]}
distances = [Program.parse(l)
for l in ["logo_ZL",
"logo_epsL",
"(logo_MULL logo_epsL 2)",
"(logo_DIVL logo_UL 2)",
"logo_UL"] ]
subprograms = [parseLogo(sp)
for sp in ["(move 1d 0a)",
"(loop i infinity (move (*l epsilonLength 4) (*a epsilonAngle 2)))",
"(loop i infinity (move (*l epsilonLength 5) (/a epsilonAngle 2)))",
"(loop i 4 (move 1d (/a 1a 4)))"]]
entireArguments = {"#(lambda (lambda (#(#(lambda (lambda (lambda (logo_forLoop $2 (lambda (lambda (logo_FWRT $2 $3 $0))))))) logo_IFTY) (logo_MULA (#(logo_DIVA logo_UA) $1) $0) (#(logo_MULL logo_UL) 3))))":
[[Program.parse(str(x)) for x in xs ]
for xs in [("3", "1", "$0"),
("4", "1", "$0"),
("5", "1", "$0"),
("5", "3", "$0"),
("7", "3", "$0")]]}
specialDistances = {"#(lambda (lambda (logo_forLoop 7 (lambda (lambda (#(lambda (lambda (lambda (#(lambda (lambda (lambda (logo_forLoop $2 (lambda (lambda (logo_FWRT $2 $3 $0))))))) 7 $1 $2 $0)))) $3 logo_epsA $0))) $0)))":
[Program.parse("(logo_MULL logo_epsL %d)"%n) for n in range(5)]}
matrix = []
for p in primitives:
if not p.isInvented: continue
t = p.tp
eprint(p,":",p.tp)
if t.returns() != turtle:
eprint("\t(does not return a turtle)")
continue
def argumentChoices(t):
if t == turtle:
return [Index(0)]
elif t == arrow(turtle,turtle):
return subprograms
elif t == tint:
return specialNumbers.get(str(p),numbers)
elif t == tangle:
return specialAngles.get(str(p),angles)
elif t == tlength:
return specialDistances.get(str(p),distances)
else: return []
ts = []
for arguments in entireArguments.get(str(p),product(*[argumentChoices(t) for t in t.functionArguments() ])):
eprint(arguments)
pp = p
for a in arguments: pp = Application(pp,a)
pp = Abstraction(pp)
i = np.reshape(np.array(drawLogo(pp, resolution=128)), (128,128))
if i is not None:
ts.append(i)
if ts == []: continue
matrix.append(ts)
if len(ts) < 6: ts = [ts]
else: ts = makeNiceArray(ts)
r = montageMatrix(ts)
fn = "/tmp/logo_primitive_%d.png"%len(matrix)
eprint("\tExported to",fn)
scipy.misc.imsave(fn, r)
matrix = montageMatrix(matrix)
scipy.misc.imsave(export, matrix)
def main(args):
"""
Takes the return value of the `commandlineArguments()` function as input and
trains/tests the model on LOGO tasks.
"""
# The below legacy global statement is required since prefix_dreams is used by LogoFeatureCNN.
# TODO(lcary): use argument passing instead of global variables.
global prefix_dreams
# The below global statement is required since primitives is modified within main().
# TODO(lcary): use a function call to retrieve and declare primitives instead.
global primitives
visualizeCheckpoint = args.pop("visualize")
if visualizeCheckpoint is not None:
with open(visualizeCheckpoint,'rb') as handle:
primitives = pickle.load(handle).grammars[-1].primitives
visualizePrimitives(primitives)
sys.exit(0)
dreamCheckpoint = args.pop("dreamCheckpoint")
dreamDirectory = args.pop("dreamDirectory")
proto = args.pop("proto")
if dreamCheckpoint is not None:
#outputDreams(dreamCheckpoint, dreamDirectory)
enumerateDreams(dreamCheckpoint, dreamDirectory)
sys.exit(0)
animateCheckpoint = args.pop("animate")
if animateCheckpoint is not None:
animateSolutions(loadPickle(animateCheckpoint).allFrontiers)
sys.exit(0)
target = args.pop("target")
red = args.pop("reduce")
save = args.pop("save")
prefix = args.pop("prefix")
prefix_dreams = prefix + "/dreams/" + ('_'.join(target)) + "/"
prefix_pickles = prefix + "/logo." + ('.'.join(target))
if not os.path.exists(prefix_dreams):
os.makedirs(prefix_dreams)
tasks = makeTasks(target, proto)
eprint("Generated", len(tasks), "tasks")
costMatters = args.pop("cost")
for t in tasks:
t.specialTask[1]["costMatters"] = costMatters
# disgusting hack - include whether cost matters in the dummy input
if costMatters: t.examples = [(([1]), t.examples[0][1])]
os.chdir("prototypical-networks")
subprocess.Popen(["python","./protonet_server.py"])
time.sleep(3)
os.chdir("..")
test, train = testTrainSplit(tasks, args.pop("split"))
eprint("Split tasks into %d/%d test/train" % (len(test), len(train)))
try:
if test: montageTasks(test,"test_")
montageTasks(train,"train_")
except:
eprint("WARNING: couldn't generate montage. Do you have an old version of scipy?")
if red is not []:
for reducing in red:
try:
with open(reducing, 'r') as f:
prods = json.load(f)
for e in prods:
e = Program.parse(e)
if e.isInvented:
primitives.append(e)
except EOFError:
eprint("Couldn't grab frontier from " + reducing)
except IOError:
eprint("Couldn't grab frontier from " + reducing)
except json.decoder.JSONDecodeError:
eprint("Couldn't grab frontier from " + reducing)
primitives = list(OrderedDict((x, True) for x in primitives).keys())
baseGrammar = Grammar.uniform(primitives, continuationType=turtle)
eprint(baseGrammar)
timestamp = datetime.datetime.now().isoformat()
outputDirectory = "experimentOutputs/logo/%s"%timestamp
os.system("mkdir -p %s"%outputDirectory)
generator = ecIterator(baseGrammar, train,
testingTasks=test,
outputPrefix="%s/logo"%outputDirectory,
evaluationTimeout=0.01,
**args)
r = None
for result in generator:
iteration = len(result.learningCurve)
dreamDirectory = "%s/dreams_%d"%(outputDirectory, iteration)
os.system("mkdir -p %s"%dreamDirectory)
eprint("Dreaming into directory",dreamDirectory)
dreamFromGrammar(result.grammars[-1],
dreamDirectory)
r = result
needsExport = [str(z)
for _, _, z
in r.grammars[-1].productions
if z.isInvented]
if save is not None:
with open(save, 'w') as f:
json.dump(needsExport, f)