|
from dreamcoder.dreamcoder import ecIterator |
|
from dreamcoder.domains.text.makeTextTasks import makeTasks, loadPBETasks |
|
from dreamcoder.domains.text.textPrimitives import primitives |
|
from dreamcoder.domains.list.listPrimitives import bootstrapTarget |
|
from dreamcoder.enumeration import * |
|
|
|
import os |
|
import datetime |
|
import random |
|
from functools import reduce |
|
import dill |
|
|
|
|
|
class ConstantInstantiateVisitor(object): |
|
def __init__(self, words): |
|
self.words = words |
|
|
|
def primitive(self, e): |
|
if e.name == "STRING": |
|
return Primitive("STRING", e.tp, random.choice(self.words)) |
|
return e |
|
|
|
def invented(self, e): return e.body.visit(self) |
|
|
|
def index(self, e): return e |
|
|
|
def application(self, e): |
|
return Application(e.f.visit(self), e.x.visit(self)) |
|
|
|
def abstraction(self, e): |
|
return Abstraction(e.body.visit(self)) |
|
|
|
|
|
try: |
|
from dreamcoder.recognition import * |
|
class LearnedFeatureExtractor(RecurrentFeatureExtractor): |
|
special = 'string' |
|
|
|
def tokenize(self, examples): |
|
def tokenize_example(xs,y): |
|
if not isinstance(y, list): y = [y] |
|
return xs,y |
|
return [tokenize_example(*e) for e in examples] |
|
|
|
def __init__(self, tasks, testingTasks=[], cuda=False): |
|
lexicon = {c |
|
for t in tasks + testingTasks |
|
for xs, y in self.tokenize(t.examples) |
|
for c in reduce(lambda u, v: u + v, list(xs) + [y])} |
|
self.recomputeTasks = True |
|
|
|
super(LearnedFeatureExtractor, self).__init__(lexicon=list(lexicon), |
|
H=64, |
|
tasks=tasks, |
|
bidirectional=True, |
|
cuda=cuda) |
|
self.MAXINPUTS = 8 |
|
|
|
def taskOfProgram(self, p, tp): |
|
|
|
p = p.visit(ConstantInstantiateVisitor.SINGLE) |
|
return super(LearnedFeatureExtractor, self).taskOfProgram(p, tp) |
|
except: |
|
pass |
|
|
|
|
|
|
|
def competeOnOneTask(checkpoint, task, |
|
CPUs=8, timeout=3600, evaluationTimeout=0.0005): |
|
if checkpoint.recognitionModel is not None: |
|
recognizer = checkpoint.recognitionModel |
|
challengeFrontiers, times, bestSearchTime = \ |
|
recognizer.enumerateFrontiers([task], |
|
CPUs=CPUs, |
|
maximumFrontier=1, |
|
enumerationTimeout=timeout, |
|
evaluationTimeout=evaluationTimeout) |
|
else: |
|
challengeFrontiers, times, bestSearchTimes = \ |
|
multicoreEnumeration(checkpoint.grammars[-1], [task], |
|
CPUs=CPUs, |
|
maximumFrontier=1, |
|
enumerationTimeout=timeout, |
|
evaluationTimeout=evaluationTimeout) |
|
if len(times) == 0: return None, task |
|
assert len(times) == 1 |
|
return times[0], task |
|
|
|
|
|
|
|
def sygusCompetition(checkpoints, tasks): |
|
from pathos.multiprocessing import Pool |
|
import datetime |
|
|
|
|
|
|
|
searchTimes = {t: [] for t in tasks} |
|
|
|
CPUs = int(8/len(checkpoints)) |
|
maxWorkers = int(numberOfCPUs()/CPUs) |
|
workers = Pool(maxWorkers) |
|
eprint(f"You gave me {len(checkpoints)} checkpoints to ensemble. Each checkpoint will get {CPUs} CPUs. Creating a pool of {maxWorkers} worker processes.") |
|
timeout = 3600 |
|
|
|
|
|
promises = [] |
|
for t in tasks: |
|
for checkpoint in checkpoints: |
|
promise = workers.apply_async(competeOnOneTask, |
|
(checkpoint,t), |
|
{"CPUs": CPUs, |
|
"timeout": timeout}) |
|
promises.append(promise) |
|
eprint(f"Queued {len(promises)} jobs.") |
|
for promise in promises: |
|
dt, task = promise.get() |
|
if dt is not None: |
|
searchTimes[task].append(dt) |
|
|
|
searchTimes = {t: min(ts) if len(ts) > 0 else None |
|
for t,ts in searchTimes.items()} |
|
|
|
fn = "experimentOutputs/text_competition_%s.p"%(datetime.datetime.now().isoformat()) |
|
with open(fn,"wb") as handle: |
|
pickle.dump(searchTimes, handle) |
|
eprint() |
|
|
|
hits = sum( t is not None for t in searchTimes.values() ) |
|
total = len(searchTimes) |
|
percentage = 100*hits/total |
|
eprint("Hits %d/%d = %f\n"%(hits, total, percentage)) |
|
eprint() |
|
eprint("Exported competition results to",fn) |
|
|
|
|
|
|
|
def text_options(parser): |
|
parser.add_argument( |
|
"--showTasks", |
|
action="store_true", |
|
default=False, |
|
help="show the training test and challenge tasks and then exit") |
|
parser.add_argument( |
|
"--trainChallenge", |
|
action="store_true", |
|
default=False, |
|
help="Incorporate a random 50% of the challenge problems into the training set") |
|
parser.add_argument( |
|
"--onlyChallenge", |
|
action="store_true", |
|
default=False, |
|
help="Only train on challenge problems and have testing problems.") |
|
parser.add_argument( |
|
"--latest", |
|
action="store_true", |
|
default=False, |
|
help="evaluate on latest sygus problems rather than problems used in ec2 paper") |
|
parser.add_argument( |
|
"--noMap", action="store_true", default=False, |
|
help="Disable built-in map primitive") |
|
parser.add_argument( |
|
"--noLength", action="store_true", default=False, |
|
help="Disable built-in length primitive") |
|
parser.add_argument( |
|
"--noUnfold", action="store_true", default=False, |
|
help="Disable built-in unfold primitive") |
|
parser.add_argument( |
|
"--compete", |
|
nargs='+', |
|
default=None, |
|
type=str, |
|
help="Do a simulated sygus competition (1hr+8cpus/problem) on the sygus tasks, restoring from provided checkpoint(s). If multiple checkpoints are provided, then we ensemble the models.") |
|
|
|
|
|
def main(arguments): |
|
""" |
|
Takes the return value of the `commandlineArguments()` function as input and |
|
trains/tests the model on manipulating sequences of text. |
|
""" |
|
|
|
tasks = makeTasks() |
|
eprint("Generated", len(tasks), "tasks") |
|
|
|
for t in tasks: |
|
t.mustTrain = False |
|
|
|
test, train = testTrainSplit(tasks, 1.) |
|
eprint("Split tasks into %d/%d test/train" % (len(test), len(train))) |
|
|
|
latest = arguments.pop("latest") |
|
challenge, challengeCheating = loadPBETasks("data/sygus" if latest else "PBE_Strings_Track") |
|
eprint("Got %d challenge PBE tasks" % len(challenge)) |
|
|
|
if arguments.pop('trainChallenge'): |
|
challengeTest, challengeTrain = testTrainSplit(challenge, 0.5) |
|
challenge = challengeTest |
|
train += challengeTrain |
|
eprint( |
|
"Incorporating %d (50%%) challenge problems into the training set." % |
|
(len(challengeTrain)), |
|
"We will evaluate on the held out challenge problems.", |
|
"This makes a total of %d training problems." % |
|
len(train)) |
|
|
|
if arguments.pop('onlyChallenge'): |
|
train = challenge |
|
test = [] |
|
challenge = [] |
|
eprint("Training only on sygus problems.") |
|
|
|
|
|
ConstantInstantiateVisitor.SINGLE = \ |
|
ConstantInstantiateVisitor(list(map(list, list({tuple([c for c in s]) |
|
for t in test + train + challenge |
|
for s in t.stringConstants})))) |
|
|
|
haveLength = not arguments.pop("noLength") |
|
haveMap = not arguments.pop("noMap") |
|
haveUnfold = not arguments.pop("noUnfold") |
|
eprint(f"Including map as a primitive? {haveMap}") |
|
eprint(f"Including length as a primitive? {haveLength}") |
|
eprint(f"Including unfold as a primitive? {haveUnfold}") |
|
baseGrammar = Grammar.uniform(primitives + [p |
|
for p in bootstrapTarget() |
|
if (p.name != "map" or haveMap) and \ |
|
(p.name != "unfold" or haveUnfold) and \ |
|
(p.name != "length" or haveLength)]) |
|
challengeGrammar = baseGrammar |
|
|
|
evaluationTimeout = 0.0005 |
|
|
|
challengeTimeout = 10 * 60 |
|
|
|
for t in train + test + challenge: |
|
t.maxParameters = 2 |
|
|
|
if arguments.pop("showTasks"): |
|
for source, ts in [("train",tasks),("test",test),("challenge",challenge)]: |
|
print(source,"tasks:") |
|
for t in ts: |
|
print(t.name) |
|
for xs, y in t.examples: |
|
xs = ['"' + "".join(x) + '"' for x in xs] |
|
y = "".join(y) if isinstance(y,list) else y |
|
print('f(%s) = "%s"' % (", ".join(xs), y)) |
|
print("\t{%s}" % (t.stringConstants)) |
|
print() |
|
sys.exit(0) |
|
|
|
|
|
competitionCheckpoints = arguments.pop("compete") |
|
if competitionCheckpoints: |
|
checkpoints = [] |
|
for competitionCheckpoint in competitionCheckpoints: |
|
with open(competitionCheckpoint, 'rb') as handle: |
|
checkpoints.append(dill.load(handle)) |
|
sygusCompetition(checkpoints, challenge) |
|
sys.exit(0) |
|
|
|
timestamp = datetime.datetime.now().isoformat() |
|
outputDirectory = "experimentOutputs/text/%s"%timestamp |
|
os.system("mkdir -p %s"%outputDirectory) |
|
|
|
generator = ecIterator(baseGrammar, train, |
|
testingTasks=test + challenge, |
|
outputPrefix="%s/text"%outputDirectory, |
|
evaluationTimeout=evaluationTimeout, |
|
**arguments) |
|
for result in generator: |
|
pass |
|
|