File size: 13,509 Bytes
896e91b aaec57c b006fb8 3380ec9 22c6081 aaec57c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
---
license: apache-2.0
task_categories:
- question-answering
- text-generation
language:
- zh
tags:
- medical
- biology
- chemistry
size_categories:
- 100K<n<1M
---
# CMB Chinese-Medical-Benchmark
<p align="center">
🌐 <a href="" target="_blank">Website</a> • 🤗 <a href="https://huggingface.co/datasets/FreedomIntelligence/CMB" target="_blank">Hugging Face</a> • 📃 <a href="" target="_blank">Paper</a> <br> <a href="https://github.com/FreedomIntelligence/CMB"> 中文</a> | <a href="">English
</p>
## 🌈 更新
* **[2023.07.25]** 🎉🎉🎉 CMB公开!感谢支持~🎉🎉🎉
## 🌐 数据下载
- 方法一:直接下载使用[zip压缩文件](https://github.com/FreedomIntelligence/CMB/tree/main/data)
- 方法二:使用[Hugging Face datasets](https://huggingface.co/datasets/FreedomIntelligence/CMB)直接加载数据集 示例如下:
```python
from datasets import load_dataset
# main datasets (multiple choice)
main_datasets = load_dataset('FreedomIntelligence/CMB','main')
# exam paper datasets (multiple choice)
exam_datasets = load_dataset('FreedomIntelligence/CMB','exampaper')
# QA datasets
qa_datasets = load_dataset('FreedomIntelligence/CMB','qa')
```
## 🥇 排行榜
我们在初始版本中进行评估的模型的zero-shot和five-shot准确率,请访问我们[官方排行榜]()了解详细结果。
## 🥸 数据集介绍
### 组成部分
- CMB-main: 全方位多层次测评模型医疗知识;
- 结构: 6大项28小项,详见[目录](catalog.md);
- CMB-test: 11200道题目,每一小项400道题目;
- CMB-val: 280道附带详细解析的题目; Few Shot数据集;
- CMB-train: 304743道题目; 模型医疗知识注入;
- CME-qa: 测评复杂临床问诊能力
- 数据: 73例复杂病例问诊;
- CMB-exampaper: 测评模型是否通过考试
- 数据: 9小项,25套共6571道题目,详见[套题目录](exam-catalog.md);
### CMB-main & CME-exampaper Item
```json
{
"exam_type": "医师考试",
"exam_class": "执业医师",
"exam_subject": "口腔执业医师",
"question": "患者,男性,11岁。近2个月来时有低热(37~38℃),全身无明显症状。查体无明显阳性体征。X线检查发现右肺中部有一直径约0.8cm类圆形病灶,边缘稍模糊,肺门淋巴结肿大。此男孩可能患",
"answer": "D",
"question_type": "单项选择题",
"option": {
"A": "小叶型肺炎",
"B": "浸润性肺结核",
"C": "继发性肺结核",
"D": "原发性肺结核",
"E": "粟粒型肺结核"
}
},
```
- exam_type: 大项分类;
- exam_class: 小项分类;
- exam_subject: 具体科室或细分学科分类;
- question_type: 只有"单项选择题"和"多项选择题";
### CMB-qa Item
```json
{
"id": "0",
"title": "案例分析-腹外疝",
"description": "现病史\n(1)病史摘要\n 病人,男,49岁,3小时前解大便后出现右下腹疼痛,右下腹可触及一包块,既往体健。\n(2)主诉\n 右下腹痛并自扪及包块3小时。\n\n体格检查\n体温: T 37.8℃,P 101次/分,呼吸22次/分,BP 100/60mmHg,腹软,未见胃肠型蠕动波,肝脾肋下未及,于右侧腹股沟区可扪及一圆形肿块,约4cm×4cm大小,有压痛、界欠清,且肿块位于腹股沟韧带上内方。\n\n辅助检查\n(1)实验室检查\n 血常规:WBC 5.0×109/L,N 78%。\n 尿常规正常。\n(2)多普勒超声检查\n 沿腹股沟纵切可见一多层分布的混合回声区,宽窄不等,远端膨大,边界整齐,长约4~5cm。\n(3)腹部X线检查\n 可见阶梯状液气平。",
"QA_pairs": [
{
"question": "简述该病人的诊断及诊断依据。",
"answer": "诊断:嵌顿性腹股沟斜疝合并肠梗阻。\n 诊断依据:\n ①右下腹痛并自扪及包块3小时;\n ②有腹胀、呕吐,类似肠梗阻表现;腹部平片可见阶梯状液平,考虑肠梗阻可能;腹部B超考虑, \n腹部包块内可能为肠管可能;\n ③有轻度毒性反应或是中毒反应,如 T 37.8℃,P 101次/分,白细胞中性分类78%;\n ④腹股沟区包块位于腹股沟韧带上内方。"
},
{
"question": "简述该病人的鉴别诊断。",
"answer": "(1)睾丸鞘膜积液:鞘膜积液所呈现的肿块完全局限在阴囊内,其上界可以清楚地摸到;用透光试验检查肿块,鞘膜积液多为透光(阳性),而疝块则不能透光。\n (2)交通性鞘膜积液:肿块的外形与睾丸鞘膜积液相似。于每日起床后或站立活动时肿块缓慢地出现并增大。平卧或睡觉后肿块逐渐缩小,挤压肿块,其体积也可逐渐缩小。透光试验为阳性。\n (3)精索鞘膜积液:肿块较小,在腹股沟管内,牵拉同侧睾丸可见肿块移动。\n (4)隐睾:腹股沟管内下降不全的睾丸可被误诊为斜疝或精索鞘膜积液。隐睾肿块较小,挤压时可出现特有的胀痛感觉。如患侧阴囊内睾丸缺如,则诊断更为明确。\n (5)急性肠梗阻:肠管被嵌顿的疝可伴发急性肠梗阻,但不应仅满足于肠梗阻的诊断而忽略疝的存在;尤其是病人比较肥胖或疝块较小时,更易发生这类问题而导致治疗上的错误。\n (6)此外,腹股沟区肿块还应与以下疾病鉴别:肿大的淋巴结、动(静)脉瘤、软组织肿瘤、脓肿、\n圆韧带囊肿、子宫内膜异位症等。"
},
{
"question": "简述该病人的治疗原则。",
"answer": "嵌顿性疝原则上需要紧急手术治疗,以防止疝内容物坏死并解除伴发的肠梗阻。术前应做好必要的准备,如有脱水和电解质紊乱,应迅速补液加以纠正。手术的关键在于正确判断疝内容物的活力,然后根据病情确定处理方法。在扩张或切开疝环、解除疝环压迫的前提下,凡肠管呈紫黑色,失去光泽和弹性,刺激后无蠕动和相应肠系膜内无动脉搏动者,即可判定为肠坏死。如肠管尚未坏死,则可将其送回腹腔,按一般易复性疝处理,即行疝囊高位结扎+疝修补术。如肠管确已坏死或一时不能肯定肠管是否已失去活力时,则应在病人全身情况允许的前提下,切除该段肠管并进行一期吻合。凡施行肠切除吻合术的病人,因手术区污染,在高位结扎疝囊后,一般不宜作疝修补术,以免因感染而致修补失败。"
}
]
}
```
- title: 病例疾病名称;
- description: 病例信息;
- QA_pairs: 一系列诊断问题和对应标准回答;
## ℹ️ 如何进行评测和提交
### 修改模型配置文件
`configs/model_config.yaml` 示例如下:
```
my_model:
model_id: 'my_model'
load:
# HuggingFace模型权重文件夹
config_dir: "path/to/full/model"
# 使用peft加载LoRA模型
# llama_dir: "path/to/base"
# lora_dir: "path/to/lora"
device: 'cuda' # 当前仅支持cuda推理
precision: 'fp16' # 推理精度,支持 fp16, fp32
# inference解码超参,支持 transformers.GenerationConfig 的所有参数
generation_config:
max_new_tokens: 512
min_new_tokens: 1
do_sample: False
```
### 添加模型加载代码及prompt格式
在 `workers/mymodel.py`中修改以下部分:
1. 加载 model 和 tokenizer
```
def load_model_and_tokenizer(self, load_config):
# TODO: load your model here
hf_model_config = {"pretrained_model_name_or_path": load_config['config_dir'],'trust_remote_code': True, 'low_cpu_mem_usage': True}
hf_tokenizer_config = {"pretrained_model_name_or_path": load_config['config_dir'], 'padding_side': 'left', 'trust_remote_code': True}
precision = load_config.get('precision', 'fp16')
device = load_config.get('device', 'cuda')
if precision == 'fp16':
hf_model_config.update({"torch_dtype": torch.float16})
model = AutoModelForCausalLM.from_pretrained(**hf_model_config)
tokenizer = AutoTokenizer.from_pretrained(**hf_tokenizer_config)
model.eval()
return model, tokenizer # cpu
```
2. system prompt
```
@property
def system_prompt(self):
return "你是一个人工智能助手。"
```
3. 指令模板
```
@property
def instruction_template(self):
return self.system_prompt + '问:{instruction}\n答:' # 必须带有{instruction}的placeholder
```
4. fewshot指令模板
```
@property
def instruction_template_with_fewshot(self,):
return self.system_prompt + '{fewshot_examples}问:{instruction}\n答:' # 必须带有 {instruction} 和 {fewshot_examples} 的placeholder
```
5. 单轮对话模板,用于生成模型fewshot数据
```
@property
def fewshot_template(self):
return "问:{user}\n答:{gpt}\n" # 必须带有 {user} 和 {gpt} 的placeholder
```
### 修改运行配置文件
`generate_answers.sh` 示例如下:
```
# # 输入文件路径
# test_data_path='./data/CMB-main/CMB-test/CMB-test-choice-question-merge.json' # 医疗模型能力测评数据集
# test_data_path='./data/CMB-test-exampaper/CMB-test-exam-merge.json' # 真题测评数据集
# test_data_path='./data/CMB-test-qa/CMB-test-qa.json' # 真实病例诊断能力测评数据集
task_name='Zero-test-cot'
port_id=27272
model_id="my_model" # 模型id,应与`./configs/model_config.yaml` 中添加的model_id保持一致
accelerate launch \
--gpu_ids='all' \ # 使用所有可用GPU
--main_process_port $port_id \ # 端口
--config_file ./configs/accelerate_config.yaml \ # accelerate 配置文件路径
./src/generate_answers.py \ # 主程序
--model_id=$model_id \ # 模型ID
--cot_flag \ # 是否使用CoT prompt模板
--batch_size 3\ # 推理的batch size
--input_path=$test_data_path \ # 输入文件路径
--output_path=./result/${task_name}/${model_id}/answers.json \ # 输出文件路径
--model_config_path="./configs/model_config.yaml" # 模型配置文件路径
```
### 开始评测
Step 1: 生成回答 + 抽取答案
```
bash generate_answers.sh
```
Step 2: 计算得分
CMB-Exampaper:
```
bash score_exam.sh # Exam数据集
```
CMB-test:
将**Step 1**的输出文件提交至[email protected],我们将在第一时间返回详细测评结果。
### 提交结果
将 [开始评测](#开始评测) 中 **Step 2** 输出文件提交至[email protected],我们将在第一时间更新排行榜。
## ✅ CMB评测细节
Generate参数: 为了减少方差,一致将Sample设置为False进行Greedy Decoding。
### CMB Test & Train & Exampaper Prompt
[CMB-main Item](#cmb-main--cme-exampaper-item)
#### Answer-only Prompt
```
{System_prompt}
<{Role_1}>:以下是中国{exam_type}中{exam_class}考试的一道{question_type},不需要做任何分析和解释,直接输出答案选项。。
{题目}
A. {选项A}
B. {选项B}
...
<{Role_2}>:A
[n-shot demo, n is 0 for the zero-shot case]
<{Role_1}>:以下是中国{exam_type}中{exam_class}考试的一道{question_type},不需要做任何分析和解释,直接输出答案选项。
{题目}
A. {选项A}
B. {选项B}
...
<{Role_2}>:
```
#### Chain-of-thought Prompt
```
{System_prompt}
<{Role_1}>:以下是中国{exam_type}中{exam_class}考试的一道{question_type},请分析每个选项,并最后给出答案。
{题目}
A. {选项A}
B. {选项B}
...
<{Role_2}>:.......所以答案是A
[n-shot demo, n is 0 for the zero-shot case]
<{Role_1}>:以下是中国{exam_type}中{exam_class}考试的一道{question_type},请分析每个选项,并最后给出答案。
{题目}
A. {选项A}
B. {选项B}
...
<{Role_2}>:
```
### CMB-qa Prompt
[CMB-qa Item](#cmb-qa-item)
```
{System_prompt}
<{Role_1}>:以下是一位病人的病例:
{description}
{QA_pairs[0]['question']}
<{Role_2}>:..........
[n-question based on the len(QA_pairs)]
```
## 局限性
```
1. 没有采用真正的多轮对话评估,而是将多轮对话转化为CoT的形式(也可以说:这样对只经过指令微调的模型更公平)
2. 答案提取方式有bias。
```
## 😘 引用
```
@misc{llm-zoo-2023,
title={CMB: Chinese Medical Benchmark},
author={Xidong Wang*, Guiming Hardy Chen*, Dingjie Song*, Zhiyi Zhang*, Qingying Xiao, Xiangbo Wu, Feng Jiang, Jianquan Li, Benyou Wang},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/FreedomIntelligence/CMB}},
}
```
## 致谢
感谢[深圳市大数据研究院](http://www.sribd.cn/)对此项目提供的大力支持。
|