|
import datasets |
|
import pandas as pd |
|
from datetime import datetime |
|
|
|
_DESCRIPTION = "Датасет для анализа запросов и ответов нейронной сети." |
|
_URL = "faq_dataset.csv" |
|
|
|
class InstructAnalysis(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="default", version=VERSION, description="Стандартная конфигурация для анализа запросов и ответов."), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
"request": datasets.Value("string"), |
|
"response": datasets.Value("string"), |
|
"frequency": datasets.Value("int32"), |
|
"average_response": datasets.Value("string"), |
|
"timestamp": datasets.Value("string"), |
|
}) |
|
return datasets.DatasetInfo(description=_DESCRIPTION, features=features) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_file = dl_manager.download(_URL) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"path": downloaded_file}), |
|
] |
|
|
|
def _generate_examples(self, path): |
|
|
|
data = pd.read_csv(path) |
|
for index, row in data.iterrows(): |
|
yield index, { |
|
"request": row["request"], |
|
"response": row["response"], |
|
"frequency": row["frequency"], |
|
"average_response": row["average_response"], |
|
"timestamp": row["timestamp"], |
|
} |
|
|
|
def save_faq(self, request, response): |
|
|
|
try: |
|
df = pd.read_csv('faq_dataset.csv') |
|
except FileNotFoundError: |
|
df = pd.DataFrame(columns=["request", "response", "frequency", "average_response", "timestamp"]) |
|
|
|
|
|
if request in df['request'].values: |
|
|
|
df.loc[df['request'] == request, 'frequency'] += 1 |
|
|
|
existing_response = df.loc[df['request'] == request, 'average_response'].values[0] |
|
new_average_response = f"{existing_response}; {response}" |
|
df.loc[df['request'] == request, 'average_response'] = new_average_response |
|
else: |
|
|
|
new_entry = { |
|
"request": request, |
|
"response": response, |
|
"frequency": 1, |
|
"average_response": response, |
|
"timestamp": datetime.now().isoformat() |
|
} |
|
df = df.append(new_entry, ignore_index=True) |
|
|
|
|
|
df.to_csv('faq_dataset.csv', index=False) |