Datasets:
GEM
/

Tasks:
Other
Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 7,013 Bytes
3e8d3c5
 
 
 
 
 
 
114bacb
 
 
3e8d3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114bacb
3e8d3c5
114bacb
 
 
 
 
3e8d3c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
{
  "overview": {
    "where": {
      "has-leaderboard": "no",
      "leaderboard-url": "N/A",
      "leaderboard-description": "N/A",
      "website": "http://abductivecommonsense.xyz/",
      "data-url": "[Link](https://storage.googleapis.com/ai2-mosaic/public/abductive-commonsense-reasoning-iclr2020/anlg.zip)",
      "paper-url": "[Link](https://openreview.net/pdf?id=Byg1v1HKDB)",
      "paper-bibtext": "```\n@inproceedings{\nBhagavatula2020Abductive,\ntitle={Abductive Commonsense Reasoning},\nauthor={Chandra Bhagavatula and Ronan Le Bras and Chaitanya Malaviya and Keisuke Sakaguchi and Ari Holtzman and Hannah Rashkin and Doug Downey and Wen-tau Yih and Yejin Choi},\nbooktitle={International Conference on Learning Representations},\nyear={2020},\nurl={https://openreview.net/forum?id=Byg1v1HKDB}\n}\n```",
      "contact-name": "Chandra Bhagavatulla",
      "contact-email": "[email protected]"
    },
    "languages": {
      "is-multilingual": "no",
      "license": "apache-2.0: Apache License 2.0",
      "task-other": "N/A",
      "language-names": [
        "English"
      ],
      "language-speakers": "Crowdworkers on the Amazon Mechanical Turk platform based in the U.S, Canada, U.K and Australia. ",
      "intended-use": "To study the viability of language-based abductive reasoning. Training and evaluating models to generate a plausible hypothesis to explain two given observations.",
      "license-other": "N/A",
      "task": "Reasoning"
    },
    "credit": {
      "organization-type": [
        "industry"
      ],
      "organization-names": "Allen Institute for AI",
      "creators": "Chandra Bhagavatula (AI2), Ronan Le Bras (AI2), Chaitanya Malaviya (AI2), Keisuke Sakaguchi (AI2), Ari Holtzman (AI2, UW), Hannah Rashkin (AI2, UW), Doug Downey (AI2), Wen-tau Yih (AI2), Yejin Choi  (AI2, UW)",
      "funding": "Allen Institute for AI",
      "gem-added-by": "Chandra Bhagavatula (AI2), Ronan LeBras (AI2), Aman Madaan (CMU), Nico Daheim (RWTH Aachen University)"
    },
    "structure": {
      "data-fields": "- `observation_1`: A string describing an observation / event.\n- `observation_2`: A string describing an observation / event.\n- `label`: A string that plausibly explains why observation_1 and observation_2 might have happened.",
      "structure-labels": "Explanations were authored by crowdworkers on the Amazon Mechanical Turk platform using a custom template designed by the creators of the dataset.",
      "structure-example": "```\n{\n'gem_id': 'GEM-ART-validation-0',\n'observation_1': 'Stephen was at a party.',\n'observation_2': 'He checked it but it was completely broken.',\n'label': 'Stephen knocked over a vase while drunk.'\n}\n```",
      "structure-splits": "- `train`: Consists of training instances. \n- `dev`: Consists of dev instances.\n- `test`: Consists of test instances.\n"
    },
    "what": {
      "dataset": "Abductive reasoning is inference to the most plausible explanation. For example, if Jenny finds her house in a mess when she returns from work, and remembers that she left a window open, she can hypothesize that a thief broke into her house and caused the mess, as the most plausible explanation.\nThis data loader focuses on abductive NLG: a conditional English generation task for explaining given observations in natural language. "
    }
  },
  "gem": {
    "rationale": {
      "contribution": "Abductive reasoning is a crucial capability of humans and ART is the first dataset curated to study language-based abductive reasoning.",
      "sole-task-dataset": "no",
      "distinction-description": "N/A",
      "model-ability": "Whether models can reason abductively about a given pair of observations."
    },
    "curation": {
      "has-additional-curation": "no",
      "modification-types": [],
      "modification-description": "N/A",
      "has-additional-splits": "no",
      "additional-splits-description": "N/A",
      "additional-splits-capacicites": "N/A"
    },
    "starting": {
      "research-pointers": "- Paper: https://arxiv.org/abs/1908.05739\n- Code: https://github.com/allenai/abductive-commonsense-reasoning"
    }
  },
  "results": {
    "results": {
      "model-abilities": "Whether models can reason abductively about a given pair of observations.",
      "metrics": [
        "BLEU",
        "BERT-Score",
        "ROUGE"
      ],
      "other-metrics-definitions": "N/A",
      "has-previous-results": "no",
      "current-evaluation": "N/A",
      "previous-results": "N/A"
    }
  },
  "curation": {
    "original": {
      "is-aggregated": "no",
      "aggregated-sources": "N/A"
    },
    "language": {
      "obtained": [
        "Crowdsourced"
      ],
      "found": [],
      "crowdsourced": [
        "Amazon Mechanical Turk"
      ],
      "created": "N/A",
      "machine-generated": "N/A",
      "producers-description": "Language producers were English speakers in U.S., Canada, U.K and Australia.",
      "topics": "No",
      "validated": "validated by crowdworker",
      "pre-processed": "N/A",
      "is-filtered": "algorithmically",
      "filtered-criteria": "Adversarial filtering algorithm as described in the paper: https://arxiv.org/abs/1908.05739"
    },
    "annotations": {
      "origin": "automatically created",
      "rater-number": "N/A",
      "rater-qualifications": "N/A",
      "rater-training-num": "N/A",
      "rater-test-num": "N/A",
      "rater-annotation-service-bool": "no",
      "rater-annotation-service": [],
      "values": "Each observation is associated with a list of COMET (https://arxiv.org/abs/1906.05317) inferences.",
      "quality-control": "none",
      "quality-control-details": "N/A"
    },
    "consent": {
      "has-consent": "no",
      "consent-policy": "N/A",
      "consent-other": "N/A"
    },
    "pii": {
      "has-pii": "no PII",
      "no-pii-justification": "The dataset contains day-to-day events. It does not contain names, emails, addresses etc. ",
      "pii-categories": [],
      "is-pii-identified": "N/A",
      "pii-identified-method": "N/A",
      "is-pii-replaced": "N/A",
      "pii-replaced-method": "N/A"
    },
    "maintenance": {
      "has-maintenance": "no",
      "description": "N/A",
      "contact": "N/A",
      "contestation-mechanism": "N/A",
      "contestation-link": "N/A",
      "contestation-description": "N/A"
    }
  },
  "context": {
    "previous": {
      "is-deployed": "no",
      "described-risks": "N/A",
      "changes-from-observation": "N/A"
    },
    "underserved": {
      "helps-underserved": "no",
      "underserved-description": "N/A"
    },
    "biases": {
      "has-biases": "no",
      "bias-analyses": "N/A"
    }
  },
  "considerations": {
    "pii": {
      "risks-description": "None"
    },
    "licenses": {
      "dataset-restrictions": [
        "public domain"
      ],
      "dataset-restrictions-other": "N/A",
      "data-copyright": [
        "public domain"
      ],
      "data-copyright-other": "N/A"
    },
    "limitations": {}
  }
}