Dataset card
Browse files
README.md
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"overview": {
|
3 |
+
"where": {
|
4 |
+
"has-leaderboard": "no",
|
5 |
+
"leaderboard-url": "N/A",
|
6 |
+
"leaderboard-description": "N/A",
|
7 |
+
"website": "http://abductivecommonsense.xyz/",
|
8 |
+
"data-url": "https://storage.googleapis.com/ai2-mosaic/public/abductive-commonsense-reasoning-iclr2020/anlg.zip",
|
9 |
+
"paper-url": "https://openreview.net/pdf?id=Byg1v1HKDB",
|
10 |
+
"paper-bibtext": "@inproceedings{\nBhagavatula2020Abductive,\ntitle={Abductive Commonsense Reasoning},\nauthor={Chandra Bhagavatula and Ronan Le Bras and Chaitanya Malaviya and Keisuke Sakaguchi and Ari Holtzman and Hannah Rashkin and Doug Downey and Wen-tau Yih and Yejin Choi},\nbooktitle={International Conference on Learning Representations},\nyear={2020},\nurl={https://openreview.net/forum?id=Byg1v1HKDB}\n}",
|
11 |
+
"contact-name": "Chandra Bhagavatulla",
|
12 |
+
"contact-email": "[email protected]"
|
13 |
+
},
|
14 |
+
"languages": {
|
15 |
+
"is-multilingual": "no",
|
16 |
+
"license": "apache-2.0: Apache License 2.0",
|
17 |
+
"task-other": "N/A",
|
18 |
+
"language-names": [
|
19 |
+
"English"
|
20 |
+
],
|
21 |
+
"language-speakers": "Crowdworkers on the Amazon Mechanical Turk platform based in the U.S, Canada, U.K and Australia. ",
|
22 |
+
"intended-use": "To study the viability of language-based abductive reasoning. Training and evaluating models to generate a plausible hypothesis to explain two given observations.",
|
23 |
+
"license-other": "N/A",
|
24 |
+
"task": "Reasoning"
|
25 |
+
},
|
26 |
+
"credit": {
|
27 |
+
"organization-type": [
|
28 |
+
"industry"
|
29 |
+
],
|
30 |
+
"organization-names": "Allen Institute for AI",
|
31 |
+
"creators": "Chandra Bhagavatula (AI2), Ronan Le Bras (AI2), Chaitanya Malaviya (AI2), Keisuke Sakaguchi (AI2), Ari Holtzman (AI2, UW), Hannah Rashkin (AI2, UW), Doug Downey (AI2), Wen-tau Yih (AI2), Yejin Choi (AI2, UW)",
|
32 |
+
"funding": "Allen Institute for AI",
|
33 |
+
"gem-added-by": "Chandra Bhagavatula (AI2), Ronan LeBras (AI2), Aman Madaan (CMU), Nico Daheim (RWTH Aachen University)"
|
34 |
+
},
|
35 |
+
"structure": {
|
36 |
+
"data-fields": "- observation_1: A string describing an observation / event.\n- observation_2: A string describing an observation / event.\n- label: A string that plausibly explains why observation_1 and observation_2 might have happened.",
|
37 |
+
"structure-labels": "Explanations were authored by crowdworkers on the Amazon Mechanical Turk platform using a custom template designed by the creators of the dataset.",
|
38 |
+
"structure-example": "{\n'gem_id': 'GEM-ART-validation-0',\n'observation_1': 'Stephen was at a party.',\n'observation_2': 'He checked it but it was completely broken.',\n'label': 'Stephen knocked over a vase while drunk.'\n}",
|
39 |
+
"structure-splits": "- train: Consists of training instances. \n- dev: Consists of dev instances.\n- test: Consists of test instances.\n"
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"gem": {
|
43 |
+
"rationale": {
|
44 |
+
"contribution": "Abductive reasoning is a crucial capability of humans and ART is the first dataset curated to study language-based abductive reasoning.",
|
45 |
+
"sole-task-dataset": "no",
|
46 |
+
"distinction-description": "N/A",
|
47 |
+
"model-ability": "Whether models can reason abductively about a given pair of observations."
|
48 |
+
},
|
49 |
+
"curation": {
|
50 |
+
"has-additional-curation": "no",
|
51 |
+
"modification-types": [],
|
52 |
+
"modification-description": "N/A",
|
53 |
+
"has-additional-splits": "no",
|
54 |
+
"additional-splits-description": "N/A",
|
55 |
+
"additional-splits-capacicites": "N/A"
|
56 |
+
},
|
57 |
+
"starting": {
|
58 |
+
"research-pointers": "- Paper: https://arxiv.org/abs/1908.05739\n- Code: https://github.com/allenai/abductive-commonsense-reasoning"
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"results": {
|
62 |
+
"results": {
|
63 |
+
"model-abilities": "Whether models can reason abductively about a given pair of observations.",
|
64 |
+
"metrics": [
|
65 |
+
"BLEU",
|
66 |
+
"BERT-Score",
|
67 |
+
"ROUGE"
|
68 |
+
],
|
69 |
+
"other-metrics-definitions": "N/A",
|
70 |
+
"has-previous-results": "no",
|
71 |
+
"current-evaluation": "N/A",
|
72 |
+
"previous-results": "N/A"
|
73 |
+
}
|
74 |
+
},
|
75 |
+
"curation": {
|
76 |
+
"original": {
|
77 |
+
"is-aggregated": "no",
|
78 |
+
"aggregated-sources": "N/A"
|
79 |
+
},
|
80 |
+
"language": {
|
81 |
+
"obtained": [
|
82 |
+
"Crowdsourced"
|
83 |
+
],
|
84 |
+
"found": [],
|
85 |
+
"crowdsourced": [
|
86 |
+
"Amazon Mechanical Turk"
|
87 |
+
],
|
88 |
+
"created": "N/A",
|
89 |
+
"machine-generated": "N/A",
|
90 |
+
"producers-description": "Language producers were English speakers in U.S., Canada, U.K and Australia.",
|
91 |
+
"topics": "No",
|
92 |
+
"validated": "validated by crowdworker",
|
93 |
+
"pre-processed": "N/A",
|
94 |
+
"is-filtered": "algorithmically",
|
95 |
+
"filtered-criteria": "Adversarial filtering algorithm as described in the paper: https://arxiv.org/abs/1908.05739"
|
96 |
+
},
|
97 |
+
"annotations": {
|
98 |
+
"origin": "automatically created",
|
99 |
+
"rater-number": "N/A",
|
100 |
+
"rater-qualifications": "N/A",
|
101 |
+
"rater-training-num": "N/A",
|
102 |
+
"rater-test-num": "N/A",
|
103 |
+
"rater-annotation-service-bool": "no",
|
104 |
+
"rater-annotation-service": [],
|
105 |
+
"values": "Each observation is associated with a list of COMET (https://arxiv.org/abs/1906.05317) inferences.",
|
106 |
+
"quality-control": "none",
|
107 |
+
"quality-control-details": "N/A"
|
108 |
+
},
|
109 |
+
"consent": {
|
110 |
+
"has-consent": "no",
|
111 |
+
"consent-policy": "N/A",
|
112 |
+
"consent-other": "N/A"
|
113 |
+
},
|
114 |
+
"pii": {
|
115 |
+
"has-pii": "no PII",
|
116 |
+
"no-pii-justification": "The dataset contains day-to-day events. It does not contain names, emails, addresses etc. ",
|
117 |
+
"pii-categories": [],
|
118 |
+
"is-pii-identified": "N/A",
|
119 |
+
"pii-identified-method": "N/A",
|
120 |
+
"is-pii-replaced": "N/A",
|
121 |
+
"pii-replaced-method": "N/A"
|
122 |
+
},
|
123 |
+
"maintenance": {
|
124 |
+
"has-maintenance": "no",
|
125 |
+
"description": "N/A",
|
126 |
+
"contact": "N/A",
|
127 |
+
"contestation-mechanism": "N/A",
|
128 |
+
"contestation-link": "N/A",
|
129 |
+
"contestation-description": "N/A"
|
130 |
+
}
|
131 |
+
},
|
132 |
+
"context": {
|
133 |
+
"previous": {
|
134 |
+
"is-deployed": "no",
|
135 |
+
"described-risks": "N/A",
|
136 |
+
"changes-from-observation": "N/A"
|
137 |
+
},
|
138 |
+
"underserved": {
|
139 |
+
"helps-underserved": "no",
|
140 |
+
"underserved-description": "N/A"
|
141 |
+
},
|
142 |
+
"biases": {
|
143 |
+
"has-biases": "no",
|
144 |
+
"bias-analyses": "N/A"
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"considerations": {
|
148 |
+
"pii": {
|
149 |
+
"risks-description": "None"
|
150 |
+
},
|
151 |
+
"licenses": {
|
152 |
+
"dataset-restrictions": [
|
153 |
+
"public domain"
|
154 |
+
],
|
155 |
+
"dataset-restrictions-other": "N/A",
|
156 |
+
"data-copyright": [
|
157 |
+
"public domain"
|
158 |
+
],
|
159 |
+
"data-copyright-other": "N/A"
|
160 |
+
},
|
161 |
+
"limitations": {}
|
162 |
+
}
|
163 |
+
}
|