Update files from the datasets library (from 1.6.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.6.0
- dataset_infos.json +0 -0
- dummy/common_gen/{1.0.0 → 1.1.0}/dummy_data.zip +2 -2
- dummy/cs_restaurants/{1.0.0 → 1.1.0}/dummy_data.zip +2 -2
- dummy/dart/{1.0.0 → 1.1.0}/dummy_data.zip +0 -0
- dummy/e2e_nlg/{1.0.0 → 1.1.0}/dummy_data.zip +2 -2
- dummy/mlsum_de/{1.0.0 → 1.1.0}/dummy_data.zip +2 -2
- dummy/mlsum_es/1.0.0/dummy_data.zip +0 -3
- dummy/mlsum_es/1.1.0/dummy_data.zip +3 -0
- dummy/schema_guided_dialog/1.1.0/dummy_data.zip +3 -0
- dummy/totto/1.0.0/dummy_data.zip +0 -3
- dummy/totto/1.1.0/dummy_data.zip +3 -0
- dummy/web_nlg_en/1.0.0/dummy_data.zip +0 -3
- dummy/{schema_guided_dialog/1.0.0 → web_nlg_en/1.1.0}/dummy_data.zip +2 -2
- dummy/web_nlg_ru/1.0.0/dummy_data.zip +0 -3
- dummy/web_nlg_ru/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_auto_asset_turk/1.0.0/dummy_data.zip +0 -3
- dummy/wiki_auto_asset_turk/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_arabic_ar/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_chinese_zh/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_czech_cs/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_dutch_nl/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_english_en/1.1.0/dummy_data.zip +3 -0
- dummy/{wiki_lingua_es_en/1.0.0 → wiki_lingua_es_en_v0/1.1.0}/dummy_data.zip +0 -0
- dummy/wiki_lingua_french_fr/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_german_de/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_hindi_hi/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_indonesian_id/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_italian_it/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_japanese_ja/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_korean_ko/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_portuguese_pt/1.1.0/dummy_data.zip +3 -0
- dummy/{wiki_lingua_ru_en/1.0.0 → wiki_lingua_ru_en_v0/1.1.0}/dummy_data.zip +0 -0
- dummy/wiki_lingua_russian_ru/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_spanish_es/1.1.0/dummy_data.zip +3 -0
- dummy/wiki_lingua_thai_th/1.1.0/dummy_data.zip +3 -0
- dummy/{wiki_lingua_tr_en/1.0.0 → wiki_lingua_tr_en_v0/1.1.0}/dummy_data.zip +0 -0
- dummy/wiki_lingua_turkish_tr/1.1.0/dummy_data.zip +3 -0
- dummy/{wiki_lingua_vi_en/1.0.0 → wiki_lingua_vi_en_v0/1.1.0}/dummy_data.zip +0 -0
- dummy/wiki_lingua_vietnamese_vi/1.1.0/dummy_data.zip +3 -0
- dummy/xsum/1.0.0/dummy_data.zip +0 -3
- dummy/xsum/1.1.0/dummy_data.zip +3 -0
- gem.py +742 -215
dataset_infos.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
dummy/common_gen/{1.0.0 → 1.1.0}/dummy_data.zip
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:686315482fae8bbd0d847372d76c07aa9119c374ab780aaed5b9f41979349a92
|
3 |
+
size 4735
|
dummy/cs_restaurants/{1.0.0 → 1.1.0}/dummy_data.zip
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fbd30e7d0d1d211ea2da944c800ec76b8bdeebebc4f696b792237069e8ae1d9
|
3 |
+
size 4230
|
dummy/dart/{1.0.0 → 1.1.0}/dummy_data.zip
RENAMED
File without changes
|
dummy/e2e_nlg/{1.0.0 → 1.1.0}/dummy_data.zip
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d266d483e50599c7b4eedce57d5df1f92f000aa90cbd7fa31eb57f7959a94f1
|
3 |
+
size 3689
|
dummy/mlsum_de/{1.0.0 → 1.1.0}/dummy_data.zip
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df4ed9c1975aff72e507da3a8edc236321945612a835a54ca93b5ea2ed0d4c61
|
3 |
+
size 34048
|
dummy/mlsum_es/1.0.0/dummy_data.zip
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:587408dc43119abcf6d3000266a916233ac5ccabfb5f01e87da55539df303597
|
3 |
-
size 23066
|
|
|
|
|
|
|
|
dummy/mlsum_es/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:816565f2e923373a93c639d308ab17ca2faae27d226c8186cb391e22db46bc36
|
3 |
+
size 40918
|
dummy/schema_guided_dialog/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b27ba315658a1cabdfc16ef83eee6bc525347183906bad9dddf4d33b5c48c11a
|
3 |
+
size 12875
|
dummy/totto/1.0.0/dummy_data.zip
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a730949a9fa8a9d5affcd9ec6069470a531903856f97f73971d5a3ef2f8a8801
|
3 |
-
size 24427
|
|
|
|
|
|
|
|
dummy/totto/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3aa6b2a296ad9a2c6f52066352132f297fd0eb833c106fbd76fe387c6772a19
|
3 |
+
size 32908
|
dummy/web_nlg_en/1.0.0/dummy_data.zip
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:11e43d5dc953eae0070317b95ad533a46b8f2dc0c5751d33234d29b1e832bc75
|
3 |
-
size 2623
|
|
|
|
|
|
|
|
dummy/{schema_guided_dialog/1.0.0 → web_nlg_en/1.1.0}/dummy_data.zip
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca1d503751ebb251b1b9315e03d222ba85a6f70d69a80c42259ed0b83a307854
|
3 |
+
size 5754
|
dummy/web_nlg_ru/1.0.0/dummy_data.zip
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:428efef997ade4b3c7f9b110a681d2a24abe57f40c4f342826f57f85f8fb9ca7
|
3 |
-
size 3822
|
|
|
|
|
|
|
|
dummy/web_nlg_ru/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64caee03808e0724f6abe03cd8d438305520b99a8d4c8016b3757ed9d40ac5e4
|
3 |
+
size 6279
|
dummy/wiki_auto_asset_turk/1.0.0/dummy_data.zip
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:80352624751ac6f5a3cb44439470ec3ffec0a901e9eafe83bcf14c61372dbfa0
|
3 |
-
size 10318
|
|
|
|
|
|
|
|
dummy/wiki_auto_asset_turk/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1344de60da0c4ca84f918e8c587d3fed5326a1deed5924566efe9525f7645843
|
3 |
+
size 23815
|
dummy/wiki_lingua_arabic_ar/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9bb7f2baf7423770d9f44d84084850c23e36cbf6462b94e5943a49a35d29282
|
3 |
+
size 17747
|
dummy/wiki_lingua_chinese_zh/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5647262bf23f33dcc884c5674b5f43eca71fc25bddbb9eed291efc9feb7bf05c
|
3 |
+
size 18261
|
dummy/wiki_lingua_czech_cs/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e829391b38736a189bcaff05356983c52d500fca4bd86b186b26501989e260dd
|
3 |
+
size 21235
|
dummy/wiki_lingua_dutch_nl/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b567d06578f0a7793a7435058601533b4d279ed9a86879fe7eaa76ed048157e
|
3 |
+
size 17063
|
dummy/wiki_lingua_english_en/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:472a8592c0bf412172670a1fafd23a54e4bb42ab58c45fae69927420db31a4d5
|
3 |
+
size 9106
|
dummy/{wiki_lingua_es_en/1.0.0 → wiki_lingua_es_en_v0/1.1.0}/dummy_data.zip
RENAMED
File without changes
|
dummy/wiki_lingua_french_fr/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b23ebb87a54b58bfea9ac012e6a894f381ae560df51218f25f2fe6c30dde0bb
|
3 |
+
size 19014
|
dummy/wiki_lingua_german_de/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8bcfa7beb23d687c91be4ded92b92df8eddaccad78c88ecce7995206d95df5e
|
3 |
+
size 17761
|
dummy/wiki_lingua_hindi_hi/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:208ebb495ce596e6c6f089c0e56c3dde89bb9fa1c33f8aa761c3c3f13388806e
|
3 |
+
size 19685
|
dummy/wiki_lingua_indonesian_id/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88233d0425c7dfc79c1b8d391362aac9c9187be46510ce945f0dab7c5f9eab69
|
3 |
+
size 17529
|
dummy/wiki_lingua_italian_it/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc45ca716a30d44aa48e471ca2323903f8a6c74c1f77cefdb1d76ed2f46415c7
|
3 |
+
size 19783
|
dummy/wiki_lingua_japanese_ja/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ce04ea92ab7b9ac1ab1521df2e31c1eeb4cf62d72fda5a4d18c02797c919c07
|
3 |
+
size 17113
|
dummy/wiki_lingua_korean_ko/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb813186e3e1470817745f88f16e801cd7cdeb529a7a4660b71e885139298a77
|
3 |
+
size 18429
|
dummy/wiki_lingua_portuguese_pt/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9445b917df8e18396338b11c0d8593d6069166449ef7ef8bc51d3c06711449b
|
3 |
+
size 19252
|
dummy/{wiki_lingua_ru_en/1.0.0 → wiki_lingua_ru_en_v0/1.1.0}/dummy_data.zip
RENAMED
File without changes
|
dummy/wiki_lingua_russian_ru/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13450e16cec76a371afde6da6ad11b2eb60a39f7eb99dd4b8d7165483b6fcbc3
|
3 |
+
size 18047
|
dummy/wiki_lingua_spanish_es/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1052e008149de5507c6006ec31ff3bd9f94f0d3756cc2c3742d15c4eca9b417b
|
3 |
+
size 18129
|
dummy/wiki_lingua_thai_th/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56e58e66d2e99394206f05f8e4cc6d5d488b3339c7c23cf59e6ce6f4cc346230
|
3 |
+
size 17239
|
dummy/{wiki_lingua_tr_en/1.0.0 → wiki_lingua_tr_en_v0/1.1.0}/dummy_data.zip
RENAMED
File without changes
|
dummy/wiki_lingua_turkish_tr/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3aa9612fd7f32c5d741b6a260ea8eae4c898c66a738d44de6b9df7911aceca7c
|
3 |
+
size 17698
|
dummy/{wiki_lingua_vi_en/1.0.0 → wiki_lingua_vi_en_v0/1.1.0}/dummy_data.zip
RENAMED
File without changes
|
dummy/wiki_lingua_vietnamese_vi/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25756c0fa718689d2e7f6948d58afc055431a1338c4c6e4de0d9b59f40269d5d
|
3 |
+
size 21258
|
dummy/xsum/1.0.0/dummy_data.zip
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c5f62f61f9fdb8eed99b3368c890cfc148e950665e53957f575d4c2b65d9fc48
|
3 |
-
size 2919
|
|
|
|
|
|
|
|
dummy/xsum/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1f81d5669e596bf21e4438bf909d134dc474c3e489bcff6e64434dff67b5427
|
3 |
+
size 22590
|
gem.py
CHANGED
@@ -14,7 +14,6 @@
|
|
14 |
# limitations under the License.
|
15 |
"""GEM: Generation Evaluation Metrics supporting datasets"""
|
16 |
|
17 |
-
from __future__ import absolute_import, division, print_function
|
18 |
|
19 |
import csv
|
20 |
import json
|
@@ -23,13 +22,71 @@ import os
|
|
23 |
import datasets
|
24 |
|
25 |
|
26 |
-
# TODO: Add BibTeX citation
|
27 |
_CITATION = """\
|
28 |
-
@
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
}
|
34 |
"""
|
35 |
|
@@ -53,7 +110,30 @@ _LICENSE = "CC-BY-SA-4.0"
|
|
53 |
_TASKS = {
|
54 |
"summarization": {
|
55 |
"mlsum": ["mlsum_de", "mlsum_es"],
|
56 |
-
"wiki_lingua": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
"xsum": ["xsum"],
|
58 |
},
|
59 |
"struct2text": {
|
@@ -75,11 +155,13 @@ _TASKS = {
|
|
75 |
_URLs = {
|
76 |
"common_gen": {
|
77 |
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/common_gen/commongen_data.zip",
|
|
|
78 |
},
|
79 |
"cs_restaurants": {
|
80 |
"train": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/train.json",
|
81 |
"validation": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/devel.json",
|
82 |
"test": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/test.json",
|
|
|
83 |
},
|
84 |
"dart": {
|
85 |
"train": "https://raw.githubusercontent.com/Yale-LILY/dart/master/data/v1.1.1/dart-v1.1.1-full-train.json",
|
@@ -90,68 +172,130 @@ _URLs = {
|
|
90 |
"train": "https://github.com/tuetschek/e2e-cleaning/raw/master/cleaned-data/train-fixed.no-ol.csv",
|
91 |
"validation": "https://github.com/tuetschek/e2e-cleaning/raw/master/cleaned-data/devel-fixed.no-ol.csv",
|
92 |
"test": "https://github.com/tuetschek/e2e-cleaning/raw/master/cleaned-data/test-fixed.csv",
|
|
|
93 |
},
|
94 |
"mlsum_de": {
|
95 |
"train": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_train.zip",
|
96 |
"validation": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_val.zip",
|
97 |
"test": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_test.zip",
|
98 |
"bad_ids": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_mlsum_bad_ids_fixed.json",
|
|
|
99 |
},
|
100 |
"mlsum_es": {
|
101 |
"train": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_train.zip",
|
102 |
"validation": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_val.zip",
|
103 |
"test": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_test.zip",
|
104 |
"bad_ids": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_mlsum_bad_ids_fixed.json",
|
|
|
105 |
},
|
106 |
"schema_guided_dialog": {
|
107 |
-
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/
|
|
|
108 |
},
|
109 |
"totto": {
|
110 |
"data": "https://storage.googleapis.com/totto/totto_data.zip",
|
|
|
111 |
},
|
112 |
"web_nlg_en": {
|
113 |
"train": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_web_nlg/webnlg_en_train.json",
|
114 |
"validation": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_web_nlg/webnlg_en_val.json",
|
115 |
"test": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_web_nlg/webnlg_en_test.json",
|
|
|
116 |
},
|
117 |
"web_nlg_ru": {
|
118 |
"train": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_web_nlg/webnlg_ru_train.json",
|
119 |
"validation": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_web_nlg/webnlg_ru_val.json",
|
120 |
"test": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_web_nlg/webnlg_ru_test.json",
|
|
|
121 |
},
|
122 |
"wiki_auto_asset_turk": {
|
123 |
-
"train": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-
|
124 |
-
"validation": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-
|
|
|
|
|
125 |
},
|
126 |
-
"
|
127 |
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua.zip",
|
128 |
},
|
129 |
-
"
|
130 |
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua.zip",
|
131 |
},
|
132 |
-
"
|
133 |
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua.zip",
|
134 |
},
|
135 |
-
"
|
136 |
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua.zip",
|
137 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
"xsum": {
|
139 |
"data": "http://bollin.inf.ed.ac.uk/public/direct/XSUM-EMNLP18-Summary-Data-Original.tar.gz",
|
140 |
"splits": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_xsum_confidence_0.8.json",
|
|
|
141 |
},
|
142 |
}
|
143 |
|
144 |
-
# Add
|
|
|
|
|
|
|
145 |
for i in range(10):
|
146 |
_URLs["wiki_auto_asset_turk"][
|
147 |
f"test_asset_{i}"
|
148 |
] = f"https://github.com/facebookresearch/asset/raw/master/dataset/asset.test.simp.{i}"
|
149 |
|
150 |
-
for i in range(8):
|
151 |
-
_URLs["wiki_auto_asset_turk"][
|
152 |
-
f"test_turk_{i}"
|
153 |
-
] = f"https://raw.githubusercontent.com/cocoxu/simplification/master/data/turkcorpus/GEM/test.8turkers.tok.turk.{i}"
|
154 |
-
|
155 |
_SGD_ACTS = [
|
156 |
"AFFIRM",
|
157 |
"AFFIRM_INTENT",
|
@@ -196,7 +340,7 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
196 |
BUILDER_CONFIGS = [
|
197 |
datasets.BuilderConfig(
|
198 |
name=conf,
|
199 |
-
version=datasets.Version("1.
|
200 |
description=f"GEM benchmark: {task} task, {conf} subset",
|
201 |
)
|
202 |
for task, dset_confs in _TASKS.items()
|
@@ -211,6 +355,7 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
211 |
features = datasets.Features(
|
212 |
{
|
213 |
"gem_id": datasets.Value("string"),
|
|
|
214 |
"concept_set_id": datasets.Value("int32"),
|
215 |
"concepts": [datasets.Value("string")],
|
216 |
"target": datasets.Value("string"), # single target for train
|
@@ -221,6 +366,7 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
221 |
features = datasets.Features(
|
222 |
{
|
223 |
"gem_id": datasets.Value("string"),
|
|
|
224 |
"dialog_act": datasets.Value("string"),
|
225 |
"dialog_act_delexicalized": datasets.Value("string"),
|
226 |
"target_delexicalized": datasets.Value("string"),
|
@@ -232,6 +378,7 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
232 |
features = datasets.Features(
|
233 |
{
|
234 |
"gem_id": datasets.Value("string"),
|
|
|
235 |
"dart_id": datasets.Value("int32"),
|
236 |
"tripleset": [[datasets.Value("string")]], # list of triples
|
237 |
"subtree_was_extended": datasets.Value("bool"),
|
@@ -244,6 +391,7 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
244 |
features = datasets.Features(
|
245 |
{
|
246 |
"gem_id": datasets.Value("string"),
|
|
|
247 |
"meaning_representation": datasets.Value("string"),
|
248 |
"target": datasets.Value("string"),
|
249 |
"references": [datasets.Value("string")],
|
@@ -253,6 +401,7 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
253 |
features = datasets.Features(
|
254 |
{
|
255 |
"gem_id": datasets.Value("string"),
|
|
|
256 |
"text": datasets.Value("string"),
|
257 |
"topic": datasets.Value("string"),
|
258 |
"url": datasets.Value("string"),
|
@@ -266,6 +415,7 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
266 |
features = datasets.Features(
|
267 |
{
|
268 |
"gem_id": datasets.Value("string"),
|
|
|
269 |
"dialog_acts": [
|
270 |
{
|
271 |
"act": datasets.ClassLabel(names=_SGD_ACTS),
|
@@ -273,7 +423,9 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
273 |
"values": [datasets.Value("string")],
|
274 |
}
|
275 |
],
|
|
|
276 |
"dialog_id": datasets.Value("string"),
|
|
|
277 |
"turn_id": datasets.Value("int32"),
|
278 |
"prompt": datasets.Value("string"),
|
279 |
"target": datasets.Value("string"),
|
@@ -284,6 +436,7 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
284 |
features = datasets.Features(
|
285 |
{
|
286 |
"gem_id": datasets.Value("string"),
|
|
|
287 |
"totto_id": datasets.Value("int32"),
|
288 |
"table_page_title": datasets.Value("string"),
|
289 |
"table_webpage_url": datasets.Value("string"),
|
@@ -318,6 +471,7 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
318 |
features = datasets.Features(
|
319 |
{
|
320 |
"gem_id": datasets.Value("string"),
|
|
|
321 |
"input": [datasets.Value("string")],
|
322 |
"target": datasets.Value("string"), # single target for train
|
323 |
"references": [datasets.Value("string")],
|
@@ -329,26 +483,41 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
329 |
features = datasets.Features(
|
330 |
{
|
331 |
"gem_id": datasets.Value("string"),
|
332 |
-
"
|
333 |
-
"target_id": datasets.Value("string"),
|
334 |
"source": datasets.Value("string"),
|
335 |
"target": datasets.Value("string"),
|
336 |
"references": [datasets.Value("string")],
|
337 |
}
|
338 |
)
|
339 |
elif self.config.name.startswith("wiki_lingua"):
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
elif self.config.name == "xsum":
|
349 |
features = datasets.Features(
|
350 |
{
|
351 |
"gem_id": datasets.Value("string"),
|
|
|
352 |
"xsum_id": datasets.Value("string"),
|
353 |
"document": datasets.Value("string"),
|
354 |
"target": datasets.Value("string"),
|
@@ -368,6 +537,11 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
368 |
"""Returns SplitGenerators."""
|
369 |
dl_dir = dl_manager.download_and_extract(_URLs[self.config.name])
|
370 |
if self.config.name == "common_gen":
|
|
|
|
|
|
|
|
|
|
|
371 |
return [
|
372 |
datasets.SplitGenerator(
|
373 |
name=datasets.Split.TRAIN,
|
@@ -390,11 +564,34 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
390 |
"split": "test",
|
391 |
},
|
392 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
]
|
394 |
elif self.config.name == "cs_restaurants":
|
|
|
|
|
|
|
|
|
|
|
395 |
return [
|
396 |
datasets.SplitGenerator(name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl})
|
397 |
for spl in ["train", "validation", "test"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
]
|
399 |
elif self.config.name == "dart":
|
400 |
return [
|
@@ -402,12 +599,31 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
402 |
for spl in ["train", "validation", "test"]
|
403 |
]
|
404 |
elif self.config.name == "e2e_nlg":
|
|
|
|
|
|
|
|
|
|
|
405 |
return [
|
406 |
datasets.SplitGenerator(name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl})
|
407 |
for spl in ["train", "validation", "test"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
]
|
409 |
elif self.config.name.startswith("mlsum"):
|
410 |
lang = self.config.name.split("_")[1]
|
|
|
|
|
|
|
|
|
|
|
411 |
return [
|
412 |
datasets.SplitGenerator(
|
413 |
name=datasets.Split.TRAIN,
|
@@ -436,15 +652,53 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
436 |
"filepaths": dl_dir["bad_ids"],
|
437 |
},
|
438 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
]
|
440 |
elif self.config.name == "schema_guided_dialog":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
return [
|
442 |
datasets.SplitGenerator(
|
443 |
name=spl, gen_kwargs={"filepath": os.path.join(dl_dir["data"], "gem_sgd.json"), "split": spl}
|
444 |
)
|
445 |
for spl in ["train", "validation", "test"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
446 |
]
|
447 |
elif self.config.name == "totto":
|
|
|
|
|
|
|
|
|
|
|
448 |
return [
|
449 |
datasets.SplitGenerator(
|
450 |
name=datasets.Split.TRAIN,
|
@@ -467,13 +721,63 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
467 |
"split": "test",
|
468 |
},
|
469 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
]
|
471 |
elif self.config.name.startswith("web_nlg"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
return [
|
473 |
datasets.SplitGenerator(name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl})
|
474 |
for spl in ["train", "validation", "test"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
]
|
476 |
elif self.config.name == "wiki_auto_asset_turk":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
return [
|
478 |
datasets.SplitGenerator(
|
479 |
name=datasets.Split.TRAIN,
|
@@ -493,46 +797,94 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
493 |
name="test_asset",
|
494 |
gen_kwargs={
|
495 |
"filepath": "",
|
496 |
-
"split": "
|
497 |
-
"filepaths": [dl_dir[f"test_asset_{i}"] for i in range(10)],
|
498 |
},
|
499 |
),
|
500 |
datasets.SplitGenerator(
|
501 |
name="test_turk",
|
502 |
gen_kwargs={
|
503 |
-
"filepath": "",
|
504 |
-
"split": "
|
505 |
-
"filepaths": [dl_dir[f"test_turk_{i}"] for i in range(8)],
|
506 |
},
|
507 |
),
|
508 |
-
]
|
509 |
-
elif self.config.name.startswith("wiki_lingua"):
|
510 |
-
lang = self.config.name.split("_")[-2]
|
511 |
-
base_dir = os.path.join(dl_dir["data"], "GEM_data_crosslingual", f"{lang}_en")
|
512 |
-
return [
|
513 |
datasets.SplitGenerator(
|
514 |
-
name=
|
515 |
gen_kwargs={
|
516 |
-
"filepath":
|
517 |
-
"split":
|
518 |
},
|
519 |
-
)
|
520 |
-
|
521 |
-
name=datasets.Split.VALIDATION,
|
522 |
-
gen_kwargs={
|
523 |
-
"filepath": base_dir,
|
524 |
-
"split": "val",
|
525 |
-
},
|
526 |
-
),
|
527 |
-
datasets.SplitGenerator(
|
528 |
-
name=datasets.Split.TEST,
|
529 |
-
gen_kwargs={
|
530 |
-
"filepath": base_dir,
|
531 |
-
"split": "test",
|
532 |
-
},
|
533 |
-
),
|
534 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
elif self.config.name == "xsum":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
536 |
return [
|
537 |
datasets.SplitGenerator(
|
538 |
name=datasets.Split.TRAIN,
|
@@ -558,50 +910,86 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
558 |
"filepaths": os.path.join(dl_dir["data"], "bbc-summary-data"),
|
559 |
},
|
560 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
561 |
]
|
562 |
|
563 |
def _generate_examples(self, filepath, split, filepaths=None, lang=None):
|
564 |
""" Yields examples. """
|
565 |
if self.config.name == "common_gen":
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
id_ += 1
|
577 |
yield id_, {
|
578 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
579 |
-
"
|
|
|
580 |
"concepts": concepts,
|
581 |
-
"target": scene,
|
582 |
-
"references": [],
|
583 |
}
|
584 |
-
|
585 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
586 |
yield id_, {
|
587 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
588 |
-
"
|
589 |
-
"
|
590 |
-
"
|
591 |
-
"
|
|
|
|
|
592 |
}
|
593 |
-
elif self.config.name == "cs_restaurants":
|
594 |
-
with open(filepath, encoding="utf8") as f:
|
595 |
-
data = json.load(f)
|
596 |
-
for id_, instance in enumerate(data):
|
597 |
-
yield id_, {
|
598 |
-
"gem_id": f"{self.config.name}-{split}-{id_}",
|
599 |
-
"dialog_act": instance["da"],
|
600 |
-
"dialog_act_delexicalized": instance["delex_da"],
|
601 |
-
"target": instance["text"],
|
602 |
-
"target_delexicalized": instance["delex_text"],
|
603 |
-
"references": [] if split == "train" else [instance["text"]],
|
604 |
-
}
|
605 |
elif self.config.name == "dart":
|
606 |
with open(filepath, encoding="utf-8") as f:
|
607 |
data = json.loads(f.read())
|
@@ -614,6 +1002,7 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
614 |
id_ += 1
|
615 |
yield id_, {
|
616 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
|
|
617 |
"dart_id": i,
|
618 |
"tripleset": example["tripleset"],
|
619 |
"subtree_was_extended": example.get("subtree_was_extended", None), # some are missing
|
@@ -625,6 +1014,7 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
625 |
id_ += 1
|
626 |
yield id_, {
|
627 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
|
|
628 |
"dart_id": id_,
|
629 |
"tripleset": example["tripleset"],
|
630 |
"subtree_was_extended": example.get("subtree_was_extended", None), # some are missing
|
@@ -633,69 +1023,145 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
633 |
"references": [annotation["text"] for annotation in example["annotations"]],
|
634 |
}
|
635 |
elif self.config.name == "e2e_nlg":
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
"references": [] if split == "train" else [example["ref"]],
|
644 |
-
}
|
645 |
-
elif self.config.name.startswith("mlsum"):
|
646 |
-
bad_ids_dct = json.load(open(filepaths, encoding="utf-8"))
|
647 |
-
bad_ids = dict((bad_url, True) for _, bad_url in bad_ids_dct[f"{lang}-{split}"])
|
648 |
-
with open(filepath, encoding="utf-8") as f:
|
649 |
-
id_ = -1
|
650 |
-
for line in f:
|
651 |
-
data = json.loads(line)
|
652 |
-
if data["url"] in bad_ids: # TODO : check | i or i-1?
|
653 |
continue
|
654 |
-
|
655 |
-
|
|
|
|
|
|
|
|
|
|
|
656 |
yield id_, {
|
657 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
658 |
-
"
|
659 |
-
"
|
660 |
-
"
|
661 |
-
"
|
662 |
-
"url": data["url"],
|
663 |
-
"title": data["title"],
|
664 |
-
"date": data["date"],
|
665 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
666 |
elif self.config.name == "schema_guided_dialog":
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
"
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
685 |
elif self.config.name == "totto":
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
695 |
id_ += 1
|
696 |
response = {
|
697 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
698 |
-
"
|
|
|
699 |
"table_page_title": result["table_page_title"],
|
700 |
"table_webpage_url": result["table_webpage_url"],
|
701 |
"table_section_title": result["table_section_title"],
|
@@ -703,106 +1169,167 @@ class Gem(datasets.GeneratorBasedBuilder):
|
|
703 |
"table": result["table"],
|
704 |
"highlighted_cells": result["highlighted_cells"],
|
705 |
"example_id": str(result["example_id"]),
|
706 |
-
"overlap_subset": "
|
707 |
-
"sentence_annotations": [sentence],
|
708 |
-
"references": [],
|
709 |
-
"target": sentence["final_sentence"],
|
710 |
}
|
|
|
|
|
|
|
|
|
|
|
711 |
yield id_, response
|
712 |
-
else:
|
713 |
-
id_ += 1
|
714 |
-
response = {
|
715 |
-
"gem_id": f"{self.config.name}-{split}-{id_}",
|
716 |
-
"totto_id": id_,
|
717 |
-
"table_page_title": result["table_page_title"],
|
718 |
-
"table_webpage_url": result["table_webpage_url"],
|
719 |
-
"table_section_title": result["table_section_title"],
|
720 |
-
"table_section_text": result["table_section_text"],
|
721 |
-
"table": result["table"],
|
722 |
-
"highlighted_cells": result["highlighted_cells"],
|
723 |
-
"example_id": str(result["example_id"]),
|
724 |
-
"overlap_subset": str(result["overlap_subset"]),
|
725 |
-
}
|
726 |
-
response["sentence_annotations"] = [] if split == "test" else result["sentence_annotations"]
|
727 |
-
response["references"] = [
|
728 |
-
sentence["final_sentence"] for sentence in response["sentence_annotations"]
|
729 |
-
]
|
730 |
-
response["target"] = response["references"][0] if len(response["references"]) > 0 else ""
|
731 |
-
yield id_, response
|
732 |
elif self.config.name.startswith("web_nlg"):
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
739 |
id_ += 1
|
740 |
yield id_, {
|
741 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
|
|
742 |
"input": example["input"],
|
743 |
-
"target": target,
|
744 |
-
"references":
|
745 |
"category": example["category"],
|
746 |
"webnlg_id": example["webnlg-id"],
|
747 |
}
|
748 |
-
else:
|
749 |
-
id_ += 1
|
750 |
-
yield id_, {
|
751 |
-
"gem_id": f"{self.config.name}-{split}-{id_}",
|
752 |
-
"input": example["input"],
|
753 |
-
"target": example["target"][0] if len(example["target"]) > 0 else "",
|
754 |
-
"references": example["target"],
|
755 |
-
"category": example["category"],
|
756 |
-
"webnlg_id": example["webnlg-id"],
|
757 |
-
}
|
758 |
elif self.config.name == "wiki_auto_asset_turk":
|
759 |
if split in ["train", "validation"]:
|
760 |
keys = [
|
761 |
-
"target_id",
|
762 |
-
"source_id",
|
763 |
-
"target",
|
764 |
"source",
|
|
|
765 |
]
|
766 |
with open(filepath, encoding="utf-8") as f:
|
767 |
for id_, line in enumerate(f):
|
768 |
values = line.strip().split("\t")
|
769 |
-
assert len(values) ==
|
770 |
-
example = dict([(k, val) for k, val in zip(keys, values
|
771 |
example["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
|
|
772 |
example["references"] = [] if split == "train" else [example["target"]]
|
773 |
yield id_, example
|
774 |
-
elif split
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
775 |
files = [open(f_name, encoding="utf-8") for f_name in filepaths]
|
776 |
for id_, lines in enumerate(zip(*files)):
|
777 |
yield id_, {
|
778 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
779 |
-
"
|
780 |
-
"target_id": "",
|
781 |
"target": lines[1].strip(),
|
782 |
"source": lines[0].strip(),
|
783 |
"references": [line.strip() for line in lines[1:]],
|
784 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
785 |
elif self.config.name.startswith("wiki_lingua"):
|
786 |
-
|
787 |
-
with open(os.path.join(filepath, f"{split}.
|
788 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
789 |
yield id_, {
|
790 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
791 |
-
"
|
792 |
-
"
|
793 |
-
"
|
|
|
|
|
794 |
}
|
795 |
-
elif self.config.name == "xsum":
|
796 |
-
with open(filepath, "r", encoding="utf-8") as f:
|
797 |
-
split_ids = json.load(f)
|
798 |
-
for id_, i in enumerate(split_ids[split]):
|
799 |
-
with open(os.path.join(filepaths, i + ".summary"), "r", encoding="utf-8") as f:
|
800 |
-
text = "".join([line for line in f.readlines() if line not in _XSUM_REMOVE_LINES and line.strip()])
|
801 |
-
segs = text.split("[SN]")
|
802 |
-
yield id_, {
|
803 |
-
"gem_id": f"{self.config.name}-{split}-{id_}",
|
804 |
-
"xsum_id": i,
|
805 |
-
"document": segs[8].strip(),
|
806 |
-
"target": segs[6].strip(),
|
807 |
-
"references": [] if split == "train" else [segs[6].strip()],
|
808 |
-
}
|
|
|
14 |
# limitations under the License.
|
15 |
"""GEM: Generation Evaluation Metrics supporting datasets"""
|
16 |
|
|
|
17 |
|
18 |
import csv
|
19 |
import json
|
|
|
22 |
import datasets
|
23 |
|
24 |
|
|
|
25 |
_CITATION = """\
|
26 |
+
@article{gem_benchmark,
|
27 |
+
author = {Sebastian Gehrmann and
|
28 |
+
Tosin P. Adewumi and
|
29 |
+
Karmanya Aggarwal and
|
30 |
+
Pawan Sasanka Ammanamanchi and
|
31 |
+
Aremu Anuoluwapo and
|
32 |
+
Antoine Bosselut and
|
33 |
+
Khyathi Raghavi Chandu and
|
34 |
+
Miruna{-}Adriana Clinciu and
|
35 |
+
Dipanjan Das and
|
36 |
+
Kaustubh D. Dhole and
|
37 |
+
Wanyu Du and
|
38 |
+
Esin Durmus and
|
39 |
+
Ondrej Dusek and
|
40 |
+
Chris Emezue and
|
41 |
+
Varun Gangal and
|
42 |
+
Cristina Garbacea and
|
43 |
+
Tatsunori Hashimoto and
|
44 |
+
Yufang Hou and
|
45 |
+
Yacine Jernite and
|
46 |
+
Harsh Jhamtani and
|
47 |
+
Yangfeng Ji and
|
48 |
+
Shailza Jolly and
|
49 |
+
Dhruv Kumar and
|
50 |
+
Faisal Ladhak and
|
51 |
+
Aman Madaan and
|
52 |
+
Mounica Maddela and
|
53 |
+
Khyati Mahajan and
|
54 |
+
Saad Mahamood and
|
55 |
+
Bodhisattwa Prasad Majumder and
|
56 |
+
Pedro Henrique Martins and
|
57 |
+
Angelina McMillan{-}Major and
|
58 |
+
Simon Mille and
|
59 |
+
Emiel van Miltenburg and
|
60 |
+
Moin Nadeem and
|
61 |
+
Shashi Narayan and
|
62 |
+
Vitaly Nikolaev and
|
63 |
+
Rubungo Andre Niyongabo and
|
64 |
+
Salomey Osei and
|
65 |
+
Ankur P. Parikh and
|
66 |
+
Laura Perez{-}Beltrachini and
|
67 |
+
Niranjan Ramesh Rao and
|
68 |
+
Vikas Raunak and
|
69 |
+
Juan Diego Rodriguez and
|
70 |
+
Sashank Santhanam and
|
71 |
+
Joao Sedoc and
|
72 |
+
Thibault Sellam and
|
73 |
+
Samira Shaikh and
|
74 |
+
Anastasia Shimorina and
|
75 |
+
Marco Antonio Sobrevilla Cabezudo and
|
76 |
+
Hendrik Strobelt and
|
77 |
+
Nishant Subramani and
|
78 |
+
Wei Xu and
|
79 |
+
Diyi Yang and
|
80 |
+
Akhila Yerukola and
|
81 |
+
Jiawei Zhou},
|
82 |
+
title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and
|
83 |
+
Metrics},
|
84 |
+
journal = {CoRR},
|
85 |
+
volume = {abs/2102.01672},
|
86 |
+
year = {2021},
|
87 |
+
url = {https://arxiv.org/abs/2102.01672},
|
88 |
+
archivePrefix = {arXiv},
|
89 |
+
eprint = {2102.01672}
|
90 |
}
|
91 |
"""
|
92 |
|
|
|
110 |
_TASKS = {
|
111 |
"summarization": {
|
112 |
"mlsum": ["mlsum_de", "mlsum_es"],
|
113 |
+
"wiki_lingua": [
|
114 |
+
"wiki_lingua_es_en_v0",
|
115 |
+
"wiki_lingua_ru_en_v0",
|
116 |
+
"wiki_lingua_tr_en_v0",
|
117 |
+
"wiki_lingua_vi_en_v0",
|
118 |
+
"wiki_lingua_arabic_ar",
|
119 |
+
"wiki_lingua_chinese_zh",
|
120 |
+
"wiki_lingua_czech_cs",
|
121 |
+
"wiki_lingua_dutch_nl",
|
122 |
+
"wiki_lingua_english_en",
|
123 |
+
"wiki_lingua_french_fr",
|
124 |
+
"wiki_lingua_german_de",
|
125 |
+
"wiki_lingua_hindi_hi",
|
126 |
+
"wiki_lingua_indonesian_id",
|
127 |
+
"wiki_lingua_italian_it",
|
128 |
+
"wiki_lingua_japanese_ja",
|
129 |
+
"wiki_lingua_korean_ko",
|
130 |
+
"wiki_lingua_portuguese_pt",
|
131 |
+
"wiki_lingua_russian_ru",
|
132 |
+
"wiki_lingua_spanish_es",
|
133 |
+
"wiki_lingua_thai_th",
|
134 |
+
"wiki_lingua_turkish_tr",
|
135 |
+
"wiki_lingua_vietnamese_vi",
|
136 |
+
],
|
137 |
"xsum": ["xsum"],
|
138 |
},
|
139 |
"struct2text": {
|
|
|
155 |
_URLs = {
|
156 |
"common_gen": {
|
157 |
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/common_gen/commongen_data.zip",
|
158 |
+
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/common_gen.zip",
|
159 |
},
|
160 |
"cs_restaurants": {
|
161 |
"train": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/train.json",
|
162 |
"validation": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/devel.json",
|
163 |
"test": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/test.json",
|
164 |
+
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/cs_restaurants.zip",
|
165 |
},
|
166 |
"dart": {
|
167 |
"train": "https://raw.githubusercontent.com/Yale-LILY/dart/master/data/v1.1.1/dart-v1.1.1-full-train.json",
|
|
|
172 |
"train": "https://github.com/tuetschek/e2e-cleaning/raw/master/cleaned-data/train-fixed.no-ol.csv",
|
173 |
"validation": "https://github.com/tuetschek/e2e-cleaning/raw/master/cleaned-data/devel-fixed.no-ol.csv",
|
174 |
"test": "https://github.com/tuetschek/e2e-cleaning/raw/master/cleaned-data/test-fixed.csv",
|
175 |
+
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/e2e_nlg.zip",
|
176 |
},
|
177 |
"mlsum_de": {
|
178 |
"train": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_train.zip",
|
179 |
"validation": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_val.zip",
|
180 |
"test": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/de_test.zip",
|
181 |
"bad_ids": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_mlsum_bad_ids_fixed.json",
|
182 |
+
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/mlsum_de.zip",
|
183 |
},
|
184 |
"mlsum_es": {
|
185 |
"train": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_train.zip",
|
186 |
"validation": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_val.zip",
|
187 |
"test": "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/es_test.zip",
|
188 |
"bad_ids": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_mlsum_bad_ids_fixed.json",
|
189 |
+
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/mlsum_es.zip",
|
190 |
},
|
191 |
"schema_guided_dialog": {
|
192 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_sgd_context.zip",
|
193 |
+
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/schema_guided_dialog.zip",
|
194 |
},
|
195 |
"totto": {
|
196 |
"data": "https://storage.googleapis.com/totto/totto_data.zip",
|
197 |
+
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/totto.zip",
|
198 |
},
|
199 |
"web_nlg_en": {
|
200 |
"train": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_web_nlg/webnlg_en_train.json",
|
201 |
"validation": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_web_nlg/webnlg_en_val.json",
|
202 |
"test": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_web_nlg/webnlg_en_test.json",
|
203 |
+
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/web_nlg_en.zip",
|
204 |
},
|
205 |
"web_nlg_ru": {
|
206 |
"train": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_web_nlg/webnlg_ru_train.json",
|
207 |
"validation": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_web_nlg/webnlg_ru_val.json",
|
208 |
"test": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_web_nlg/webnlg_ru_test.json",
|
209 |
+
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/web_nlg_ru.zip",
|
210 |
},
|
211 |
"wiki_auto_asset_turk": {
|
212 |
+
"train": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/GEM2021/full_with_split/train.tsv",
|
213 |
+
"validation": "https://github.com/chaojiang06/wiki-auto/raw/master/wiki-auto/GEM2021/full_with_split/valid.tsv",
|
214 |
+
"test_turk": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_turk_detokenized.json",
|
215 |
+
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/wiki_auto_asset_turk_train_valid.zip",
|
216 |
},
|
217 |
+
"wiki_lingua_es_en_v0": {
|
218 |
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua.zip",
|
219 |
},
|
220 |
+
"wiki_lingua_ru_en_v0": {
|
221 |
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua.zip",
|
222 |
},
|
223 |
+
"wiki_lingua_tr_en_v0": {
|
224 |
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua.zip",
|
225 |
},
|
226 |
+
"wiki_lingua_vi_en_v0": {
|
227 |
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua.zip",
|
228 |
},
|
229 |
+
"wiki_lingua_arabic_ar": {
|
230 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/arabic.zip",
|
231 |
+
},
|
232 |
+
"wiki_lingua_chinese_zh": {
|
233 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/chinese.zip",
|
234 |
+
},
|
235 |
+
"wiki_lingua_czech_cs": {
|
236 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/czech.zip",
|
237 |
+
},
|
238 |
+
"wiki_lingua_dutch_nl": {
|
239 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/dutch.zip",
|
240 |
+
},
|
241 |
+
"wiki_lingua_english_en": {
|
242 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/english.zip",
|
243 |
+
},
|
244 |
+
"wiki_lingua_french_fr": {
|
245 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/french.zip",
|
246 |
+
},
|
247 |
+
"wiki_lingua_german_de": {
|
248 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/german.zip",
|
249 |
+
},
|
250 |
+
"wiki_lingua_hindi_hi": {
|
251 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/hindi.zip",
|
252 |
+
},
|
253 |
+
"wiki_lingua_indonesian_id": {
|
254 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/indonesian.zip",
|
255 |
+
},
|
256 |
+
"wiki_lingua_italian_it": {
|
257 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/italian.zip",
|
258 |
+
},
|
259 |
+
"wiki_lingua_japanese_ja": {
|
260 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/japanese.zip",
|
261 |
+
},
|
262 |
+
"wiki_lingua_korean_ko": {
|
263 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/korean.zip",
|
264 |
+
},
|
265 |
+
"wiki_lingua_portuguese_pt": {
|
266 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/portuguese.zip",
|
267 |
+
},
|
268 |
+
"wiki_lingua_russian_ru": {
|
269 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/russian.zip",
|
270 |
+
},
|
271 |
+
"wiki_lingua_spanish_es": {
|
272 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/spanish.zip",
|
273 |
+
},
|
274 |
+
"wiki_lingua_thai_th": {
|
275 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/thai.zip",
|
276 |
+
},
|
277 |
+
"wiki_lingua_turkish_tr": {
|
278 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/turkish.zip",
|
279 |
+
},
|
280 |
+
"wiki_lingua_vietnamese_vi": {
|
281 |
+
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_wikilingua_full/vietnamese.zip",
|
282 |
+
},
|
283 |
"xsum": {
|
284 |
"data": "http://bollin.inf.ed.ac.uk/public/direct/XSUM-EMNLP18-Summary-Data-Original.tar.gz",
|
285 |
"splits": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_xsum_confidence_0.8.json",
|
286 |
+
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/xsum.zip",
|
287 |
},
|
288 |
}
|
289 |
|
290 |
+
# Add Asset files
|
291 |
+
_URLs["wiki_auto_asset_turk"][
|
292 |
+
"test_asset_orig"
|
293 |
+
] = "https://github.com/facebookresearch/asset/raw/master/dataset/asset.test.orig"
|
294 |
for i in range(10):
|
295 |
_URLs["wiki_auto_asset_turk"][
|
296 |
f"test_asset_{i}"
|
297 |
] = f"https://github.com/facebookresearch/asset/raw/master/dataset/asset.test.simp.{i}"
|
298 |
|
|
|
|
|
|
|
|
|
|
|
299 |
_SGD_ACTS = [
|
300 |
"AFFIRM",
|
301 |
"AFFIRM_INTENT",
|
|
|
340 |
BUILDER_CONFIGS = [
|
341 |
datasets.BuilderConfig(
|
342 |
name=conf,
|
343 |
+
version=datasets.Version("1.1.0"),
|
344 |
description=f"GEM benchmark: {task} task, {conf} subset",
|
345 |
)
|
346 |
for task, dset_confs in _TASKS.items()
|
|
|
355 |
features = datasets.Features(
|
356 |
{
|
357 |
"gem_id": datasets.Value("string"),
|
358 |
+
"gem_parent_id": datasets.Value("string"),
|
359 |
"concept_set_id": datasets.Value("int32"),
|
360 |
"concepts": [datasets.Value("string")],
|
361 |
"target": datasets.Value("string"), # single target for train
|
|
|
366 |
features = datasets.Features(
|
367 |
{
|
368 |
"gem_id": datasets.Value("string"),
|
369 |
+
"gem_parent_id": datasets.Value("string"),
|
370 |
"dialog_act": datasets.Value("string"),
|
371 |
"dialog_act_delexicalized": datasets.Value("string"),
|
372 |
"target_delexicalized": datasets.Value("string"),
|
|
|
378 |
features = datasets.Features(
|
379 |
{
|
380 |
"gem_id": datasets.Value("string"),
|
381 |
+
"gem_parent_id": datasets.Value("string"),
|
382 |
"dart_id": datasets.Value("int32"),
|
383 |
"tripleset": [[datasets.Value("string")]], # list of triples
|
384 |
"subtree_was_extended": datasets.Value("bool"),
|
|
|
391 |
features = datasets.Features(
|
392 |
{
|
393 |
"gem_id": datasets.Value("string"),
|
394 |
+
"gem_parent_id": datasets.Value("string"),
|
395 |
"meaning_representation": datasets.Value("string"),
|
396 |
"target": datasets.Value("string"),
|
397 |
"references": [datasets.Value("string")],
|
|
|
401 |
features = datasets.Features(
|
402 |
{
|
403 |
"gem_id": datasets.Value("string"),
|
404 |
+
"gem_parent_id": datasets.Value("string"),
|
405 |
"text": datasets.Value("string"),
|
406 |
"topic": datasets.Value("string"),
|
407 |
"url": datasets.Value("string"),
|
|
|
415 |
features = datasets.Features(
|
416 |
{
|
417 |
"gem_id": datasets.Value("string"),
|
418 |
+
"gem_parent_id": datasets.Value("string"),
|
419 |
"dialog_acts": [
|
420 |
{
|
421 |
"act": datasets.ClassLabel(names=_SGD_ACTS),
|
|
|
423 |
"values": [datasets.Value("string")],
|
424 |
}
|
425 |
],
|
426 |
+
"context": [datasets.Value("string")],
|
427 |
"dialog_id": datasets.Value("string"),
|
428 |
+
"service": datasets.Value("string"),
|
429 |
"turn_id": datasets.Value("int32"),
|
430 |
"prompt": datasets.Value("string"),
|
431 |
"target": datasets.Value("string"),
|
|
|
436 |
features = datasets.Features(
|
437 |
{
|
438 |
"gem_id": datasets.Value("string"),
|
439 |
+
"gem_parent_id": datasets.Value("string"),
|
440 |
"totto_id": datasets.Value("int32"),
|
441 |
"table_page_title": datasets.Value("string"),
|
442 |
"table_webpage_url": datasets.Value("string"),
|
|
|
471 |
features = datasets.Features(
|
472 |
{
|
473 |
"gem_id": datasets.Value("string"),
|
474 |
+
"gem_parent_id": datasets.Value("string"),
|
475 |
"input": [datasets.Value("string")],
|
476 |
"target": datasets.Value("string"), # single target for train
|
477 |
"references": [datasets.Value("string")],
|
|
|
483 |
features = datasets.Features(
|
484 |
{
|
485 |
"gem_id": datasets.Value("string"),
|
486 |
+
"gem_parent_id": datasets.Value("string"),
|
|
|
487 |
"source": datasets.Value("string"),
|
488 |
"target": datasets.Value("string"),
|
489 |
"references": [datasets.Value("string")],
|
490 |
}
|
491 |
)
|
492 |
elif self.config.name.startswith("wiki_lingua"):
|
493 |
+
if "v0" in self.config.name:
|
494 |
+
features = datasets.Features(
|
495 |
+
{
|
496 |
+
"gem_id": datasets.Value("string"),
|
497 |
+
"gem_parent_id": datasets.Value("string"),
|
498 |
+
"source": datasets.Value("string"),
|
499 |
+
"target": datasets.Value("string"),
|
500 |
+
"references": [datasets.Value("string")],
|
501 |
+
}
|
502 |
+
)
|
503 |
+
else:
|
504 |
+
ln = self.config.name.split("_")[-1]
|
505 |
+
features = datasets.Features(
|
506 |
+
{
|
507 |
+
"gem_id": datasets.Value("string"),
|
508 |
+
"gem_parent_id": datasets.Value("string"),
|
509 |
+
"source_aligned": datasets.Translation(languages=[ln, "en"]),
|
510 |
+
"target_aligned": datasets.Translation(languages=[ln, "en"]),
|
511 |
+
"source": datasets.Value("string"),
|
512 |
+
"target": datasets.Value("string"),
|
513 |
+
"references": [datasets.Value("string")],
|
514 |
+
}
|
515 |
+
)
|
516 |
elif self.config.name == "xsum":
|
517 |
features = datasets.Features(
|
518 |
{
|
519 |
"gem_id": datasets.Value("string"),
|
520 |
+
"gem_parent_id": datasets.Value("string"),
|
521 |
"xsum_id": datasets.Value("string"),
|
522 |
"document": datasets.Value("string"),
|
523 |
"target": datasets.Value("string"),
|
|
|
537 |
"""Returns SplitGenerators."""
|
538 |
dl_dir = dl_manager.download_and_extract(_URLs[self.config.name])
|
539 |
if self.config.name == "common_gen":
|
540 |
+
challenge_sets = [
|
541 |
+
("challenge_train_sample", "train_common_gen_RandomSample500.json"),
|
542 |
+
("challenge_validation_sample", "validation_common_gen_RandomSample500.json"),
|
543 |
+
("challenge_test_scramble", "test_common_gen_ScrambleInputStructure500.json"),
|
544 |
+
]
|
545 |
return [
|
546 |
datasets.SplitGenerator(
|
547 |
name=datasets.Split.TRAIN,
|
|
|
564 |
"split": "test",
|
565 |
},
|
566 |
),
|
567 |
+
] + [
|
568 |
+
datasets.SplitGenerator(
|
569 |
+
name=challenge_split,
|
570 |
+
gen_kwargs={
|
571 |
+
"filepath": os.path.join(dl_dir["challenge_set"], self.config.name, filename),
|
572 |
+
"split": challenge_split,
|
573 |
+
},
|
574 |
+
)
|
575 |
+
for challenge_split, filename in challenge_sets
|
576 |
]
|
577 |
elif self.config.name == "cs_restaurants":
|
578 |
+
challenge_sets = [
|
579 |
+
("challenge_train_sample", "train_cs_restaurants_RandomSample500.json"),
|
580 |
+
("challenge_validation_sample", "validation_cs_restaurants_RandomSample500.json"),
|
581 |
+
("challenge_test_scramble", "test_cs_restaurants_ScrambleInputStructure500.json"),
|
582 |
+
]
|
583 |
return [
|
584 |
datasets.SplitGenerator(name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl})
|
585 |
for spl in ["train", "validation", "test"]
|
586 |
+
] + [
|
587 |
+
datasets.SplitGenerator(
|
588 |
+
name=challenge_split,
|
589 |
+
gen_kwargs={
|
590 |
+
"filepath": os.path.join(dl_dir["challenge_set"], self.config.name, filename),
|
591 |
+
"split": challenge_split,
|
592 |
+
},
|
593 |
+
)
|
594 |
+
for challenge_split, filename in challenge_sets
|
595 |
]
|
596 |
elif self.config.name == "dart":
|
597 |
return [
|
|
|
599 |
for spl in ["train", "validation", "test"]
|
600 |
]
|
601 |
elif self.config.name == "e2e_nlg":
|
602 |
+
challenge_sets = [
|
603 |
+
("challenge_train_sample", "train_e2e_nlg_RandomSample500.json"),
|
604 |
+
("challenge_validation_sample", "validation_e2e_nlg_RandomSample500.json"),
|
605 |
+
("challenge_test_scramble", "test_e2e_nlg_ScrambleInputStructure500.json"),
|
606 |
+
]
|
607 |
return [
|
608 |
datasets.SplitGenerator(name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl})
|
609 |
for spl in ["train", "validation", "test"]
|
610 |
+
] + [
|
611 |
+
datasets.SplitGenerator(
|
612 |
+
name=challenge_split,
|
613 |
+
gen_kwargs={
|
614 |
+
"filepath": os.path.join(dl_dir["challenge_set"], self.config.name, filename),
|
615 |
+
"split": challenge_split,
|
616 |
+
},
|
617 |
+
)
|
618 |
+
for challenge_split, filename in challenge_sets
|
619 |
]
|
620 |
elif self.config.name.startswith("mlsum"):
|
621 |
lang = self.config.name.split("_")[1]
|
622 |
+
challenge_sets = [
|
623 |
+
("challenge_train_sample", f"train_mlsum_{lang}_RandomSample500.json"),
|
624 |
+
("challenge_validation_sample", f"validation_mlsum_{lang}_RandomSample500.json"),
|
625 |
+
("challenge_test_covid", f"{lang}_test_covid19_cleaned.jsonl"),
|
626 |
+
]
|
627 |
return [
|
628 |
datasets.SplitGenerator(
|
629 |
name=datasets.Split.TRAIN,
|
|
|
652 |
"filepaths": dl_dir["bad_ids"],
|
653 |
},
|
654 |
),
|
655 |
+
] + [
|
656 |
+
datasets.SplitGenerator(
|
657 |
+
name=challenge_split,
|
658 |
+
gen_kwargs={
|
659 |
+
"filepath": os.path.join(dl_dir["challenge_set"], self.config.name, filename),
|
660 |
+
"split": challenge_split,
|
661 |
+
},
|
662 |
+
)
|
663 |
+
for challenge_split, filename in challenge_sets
|
664 |
]
|
665 |
elif self.config.name == "schema_guided_dialog":
|
666 |
+
challenge_sets = [
|
667 |
+
("challenge_train_sample", "train_schema_guided_dialog_RandomSample500_reformatted.json"),
|
668 |
+
("challenge_validation_sample", "validation_schema_guided_dialog_RandomSample500_reformatted.json"),
|
669 |
+
("challenge_test_backtranslation", "test_schema_guided_dialog_BackTranslation500_reformatted.json"),
|
670 |
+
(
|
671 |
+
"challenge_test_bfp02",
|
672 |
+
"test_schema_guided_dialog_ButterFingersPerturbation_p=0.02_500_reformatted.json",
|
673 |
+
),
|
674 |
+
(
|
675 |
+
"challenge_test_bfp05",
|
676 |
+
"test_schema_guided_dialog_ButterFingersPerturbation_p=0.05_500_reformatted.json",
|
677 |
+
),
|
678 |
+
("challenge_test_nopunc", "test_schema_guided_dialog_WithoutPunctuation500_reformatted.json"),
|
679 |
+
("challenge_test_scramble", "test_schema_guided_dialog_ScrambleInputStructure500_reformatted.json"),
|
680 |
+
]
|
681 |
return [
|
682 |
datasets.SplitGenerator(
|
683 |
name=spl, gen_kwargs={"filepath": os.path.join(dl_dir["data"], "gem_sgd.json"), "split": spl}
|
684 |
)
|
685 |
for spl in ["train", "validation", "test"]
|
686 |
+
] + [
|
687 |
+
datasets.SplitGenerator(
|
688 |
+
name=challenge_split,
|
689 |
+
gen_kwargs={
|
690 |
+
"filepath": os.path.join(dl_dir["challenge_set"], self.config.name, filename),
|
691 |
+
"split": challenge_split,
|
692 |
+
},
|
693 |
+
)
|
694 |
+
for challenge_split, filename in challenge_sets
|
695 |
]
|
696 |
elif self.config.name == "totto":
|
697 |
+
challenge_sets = [
|
698 |
+
("challenge_train_sample", "train_totto_RandomSample500.json"),
|
699 |
+
("challenge_validation_sample", "validation_totto_RandomSample500.json"),
|
700 |
+
("challenge_test_scramble", "test_totto_ScrambleInputStructure500.json"),
|
701 |
+
]
|
702 |
return [
|
703 |
datasets.SplitGenerator(
|
704 |
name=datasets.Split.TRAIN,
|
|
|
721 |
"split": "test",
|
722 |
},
|
723 |
),
|
724 |
+
] + [
|
725 |
+
datasets.SplitGenerator(
|
726 |
+
name=challenge_split,
|
727 |
+
gen_kwargs={
|
728 |
+
"filepath": os.path.join(dl_dir["challenge_set"], self.config.name, filename),
|
729 |
+
"split": challenge_split,
|
730 |
+
},
|
731 |
+
)
|
732 |
+
for challenge_split, filename in challenge_sets
|
733 |
]
|
734 |
elif self.config.name.startswith("web_nlg"):
|
735 |
+
ln = self.config.name.split("_")[-1]
|
736 |
+
challenge_sets = [
|
737 |
+
("challenge_train_sample", f"train_web_nlg_{ln}_RandomSample500.json"),
|
738 |
+
("challenge_validation_sample", f"validation_web_nlg_{ln}_RandomSample500.json"),
|
739 |
+
("challenge_test_scramble", f"test_web_nlg_{ln}_ScrambleInputStructure500.json"),
|
740 |
+
]
|
741 |
+
if ln == "en":
|
742 |
+
challenge_sets += [("challenge_test_numbers", f"test_web_nlg_{ln}_replace_numbers_500.json")]
|
743 |
return [
|
744 |
datasets.SplitGenerator(name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl})
|
745 |
for spl in ["train", "validation", "test"]
|
746 |
+
] + [
|
747 |
+
datasets.SplitGenerator(
|
748 |
+
name=challenge_split,
|
749 |
+
gen_kwargs={
|
750 |
+
"filepath": os.path.join(dl_dir["challenge_set"], self.config.name, filename),
|
751 |
+
"split": challenge_split,
|
752 |
+
},
|
753 |
+
)
|
754 |
+
for challenge_split, filename in challenge_sets
|
755 |
]
|
756 |
elif self.config.name == "wiki_auto_asset_turk":
|
757 |
+
challenge_sets = [
|
758 |
+
("challenge_train_sample", "train_wiki_auto_asset_turk_RandomSample500.json"),
|
759 |
+
("challenge_validation_sample", "validation_wiki_auto_asset_turk_RandomSample500.json"),
|
760 |
+
("challenge_test_asset_backtranslation", "test_asset_wiki_auto_asset_turk_BackTranslation.json"),
|
761 |
+
(
|
762 |
+
"challenge_test_asset_bfp02",
|
763 |
+
"test_asset_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.02.json",
|
764 |
+
),
|
765 |
+
(
|
766 |
+
"challenge_test_asset_bfp05",
|
767 |
+
"test_asset_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.05.json",
|
768 |
+
),
|
769 |
+
("challenge_test_asset_nopunc", "test_asset_wiki_auto_asset_turk_WithoutPunctuation.json"),
|
770 |
+
("challenge_test_turk_backtranslation", "detok_test_turk_wiki_auto_asset_turk_BackTranslation.json"),
|
771 |
+
(
|
772 |
+
"challenge_test_turk_bfp02",
|
773 |
+
"detok_test_turk_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.02.json",
|
774 |
+
),
|
775 |
+
(
|
776 |
+
"challenge_test_turk_bfp05",
|
777 |
+
"detok_test_turk_wiki_auto_asset_turk_ButterFingersPerturbation_p=0.05.json",
|
778 |
+
),
|
779 |
+
("challenge_test_turk_nopunc", "detok_test_turk_wiki_auto_asset_turk_WithoutPunctuation.json"),
|
780 |
+
]
|
781 |
return [
|
782 |
datasets.SplitGenerator(
|
783 |
name=datasets.Split.TRAIN,
|
|
|
797 |
name="test_asset",
|
798 |
gen_kwargs={
|
799 |
"filepath": "",
|
800 |
+
"split": "test_asset",
|
801 |
+
"filepaths": [dl_dir["test_asset_orig"]] + [dl_dir[f"test_asset_{i}"] for i in range(10)],
|
802 |
},
|
803 |
),
|
804 |
datasets.SplitGenerator(
|
805 |
name="test_turk",
|
806 |
gen_kwargs={
|
807 |
+
"filepath": dl_dir["test_turk"],
|
808 |
+
"split": "test_turk",
|
|
|
809 |
},
|
810 |
),
|
811 |
+
] + [
|
|
|
|
|
|
|
|
|
812 |
datasets.SplitGenerator(
|
813 |
+
name=challenge_split,
|
814 |
gen_kwargs={
|
815 |
+
"filepath": os.path.join(dl_dir["challenge_set"], "wiki_auto_asset_turk", filename),
|
816 |
+
"split": challenge_split,
|
817 |
},
|
818 |
+
)
|
819 |
+
for challenge_split, filename in challenge_sets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
820 |
]
|
821 |
+
elif self.config.name.startswith("wiki_lingua"):
|
822 |
+
if "v0" in self.config.name:
|
823 |
+
lang = self.config.name.split("_")[-3]
|
824 |
+
base_dir = os.path.join(dl_dir["data"], "GEM_data_crosslingual", f"{lang}_en")
|
825 |
+
return [
|
826 |
+
datasets.SplitGenerator(
|
827 |
+
name=datasets.Split.TRAIN,
|
828 |
+
gen_kwargs={
|
829 |
+
"filepath": base_dir,
|
830 |
+
"split": "train",
|
831 |
+
},
|
832 |
+
),
|
833 |
+
datasets.SplitGenerator(
|
834 |
+
name=datasets.Split.VALIDATION,
|
835 |
+
gen_kwargs={
|
836 |
+
"filepath": base_dir,
|
837 |
+
"split": "val",
|
838 |
+
},
|
839 |
+
),
|
840 |
+
datasets.SplitGenerator(
|
841 |
+
name=datasets.Split.TEST,
|
842 |
+
gen_kwargs={
|
843 |
+
"filepath": base_dir,
|
844 |
+
"split": "test",
|
845 |
+
},
|
846 |
+
),
|
847 |
+
]
|
848 |
+
else:
|
849 |
+
lang_name = self.config.name.split("_")[-2]
|
850 |
+
lang = self.config.name.split("_")[-1]
|
851 |
+
base_dir = os.path.join(dl_dir["data"], lang_name)
|
852 |
+
return [
|
853 |
+
datasets.SplitGenerator(
|
854 |
+
name=datasets.Split.TRAIN,
|
855 |
+
gen_kwargs={
|
856 |
+
"filepath": base_dir,
|
857 |
+
"split": "train",
|
858 |
+
"lang": lang,
|
859 |
+
},
|
860 |
+
),
|
861 |
+
datasets.SplitGenerator(
|
862 |
+
name=datasets.Split.VALIDATION,
|
863 |
+
gen_kwargs={
|
864 |
+
"filepath": base_dir,
|
865 |
+
"split": "val",
|
866 |
+
"lang": lang,
|
867 |
+
},
|
868 |
+
),
|
869 |
+
datasets.SplitGenerator(
|
870 |
+
name=datasets.Split.TEST,
|
871 |
+
gen_kwargs={
|
872 |
+
"filepath": base_dir,
|
873 |
+
"split": "test",
|
874 |
+
"lang": lang,
|
875 |
+
},
|
876 |
+
),
|
877 |
+
]
|
878 |
elif self.config.name == "xsum":
|
879 |
+
challenge_sets = [
|
880 |
+
("challenge_train_sample", "train_xsum_RandomSample500.json"),
|
881 |
+
("challenge_validation_sample", "validation_xsum_RandomSample500.json"),
|
882 |
+
("challenge_test_backtranslation", "test_xsum_BackTranslation500.json"),
|
883 |
+
("challenge_test_bfp_02", "test_xsum_ButterFingersPerturbation_p=0.02_500.json"),
|
884 |
+
("challenge_test_bfp_05", "test_xsum_ButterFingersPerturbation_p=0.05_500.json"),
|
885 |
+
("challenge_test_nopunc", "test_xsum_WithoutPunctuation500.json"),
|
886 |
+
("challenge_test_covid", f"en_test_covid19.jsonl"),
|
887 |
+
]
|
888 |
return [
|
889 |
datasets.SplitGenerator(
|
890 |
name=datasets.Split.TRAIN,
|
|
|
910 |
"filepaths": os.path.join(dl_dir["data"], "bbc-summary-data"),
|
911 |
},
|
912 |
),
|
913 |
+
] + [
|
914 |
+
datasets.SplitGenerator(
|
915 |
+
name=challenge_split,
|
916 |
+
gen_kwargs={
|
917 |
+
"filepath": os.path.join(dl_dir["challenge_set"], "xsum", filename),
|
918 |
+
"split": challenge_split,
|
919 |
+
},
|
920 |
+
)
|
921 |
+
for challenge_split, filename in challenge_sets
|
922 |
]
|
923 |
|
924 |
def _generate_examples(self, filepath, split, filepaths=None, lang=None):
|
925 |
""" Yields examples. """
|
926 |
if self.config.name == "common_gen":
|
927 |
+
if split.startswith("challenge"):
|
928 |
+
exples = json.load(open(filepath, encoding="utf-8"))
|
929 |
+
if isinstance(exples, dict):
|
930 |
+
assert len(exples) == 1, "multiple entries found"
|
931 |
+
exples = list(exples.values())[0]
|
932 |
+
for id_, exple in enumerate(exples):
|
933 |
+
if len(exple) == 0:
|
934 |
+
continue
|
935 |
+
exple["gem_parent_id"] = exple["gem_id"]
|
936 |
+
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
937 |
+
yield id_, exple
|
938 |
+
else:
|
939 |
+
with open(filepath, encoding="utf-8") as f:
|
940 |
+
id_ = -1
|
941 |
+
i = -1
|
942 |
+
for row in f:
|
943 |
+
row = row.replace(", }", "}") # Fix possible JSON format error
|
944 |
+
data = json.loads(row)
|
945 |
+
concepts = [word for word in data["concept_set"].split("#")]
|
946 |
+
if split == "train":
|
947 |
+
i += 1
|
948 |
+
for scene in data["scene"]:
|
949 |
+
id_ += 1
|
950 |
+
yield id_, {
|
951 |
+
"gem_id": f"{self.config.name}-{split}-{id_}",
|
952 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
953 |
+
"concept_set_id": i,
|
954 |
+
"concepts": concepts,
|
955 |
+
"target": scene,
|
956 |
+
"references": [],
|
957 |
+
}
|
958 |
+
else:
|
959 |
id_ += 1
|
960 |
yield id_, {
|
961 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
962 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
963 |
+
"concept_set_id": id_,
|
964 |
"concepts": concepts,
|
965 |
+
"target": "" if split == "test" else data["scene"][0],
|
966 |
+
"references": [] if split == "test" else data["scene"],
|
967 |
}
|
968 |
+
elif self.config.name == "cs_restaurants":
|
969 |
+
if split.startswith("challenge"):
|
970 |
+
exples = json.load(open(filepath, encoding="utf-8"))
|
971 |
+
if isinstance(exples, dict):
|
972 |
+
assert len(exples) == 1, "multiple entries found"
|
973 |
+
exples = list(exples.values())[0]
|
974 |
+
for id_, exple in enumerate(exples):
|
975 |
+
if len(exple) == 0:
|
976 |
+
continue
|
977 |
+
exple["gem_parent_id"] = exple["gem_id"]
|
978 |
+
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
979 |
+
yield id_, exple
|
980 |
+
else:
|
981 |
+
with open(filepath, encoding="utf8") as f:
|
982 |
+
data = json.load(f)
|
983 |
+
for id_, instance in enumerate(data):
|
984 |
yield id_, {
|
985 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
986 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
987 |
+
"dialog_act": instance["da"],
|
988 |
+
"dialog_act_delexicalized": instance["delex_da"],
|
989 |
+
"target": instance["text"],
|
990 |
+
"target_delexicalized": instance["delex_text"],
|
991 |
+
"references": [] if split == "train" else [instance["text"]],
|
992 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
993 |
elif self.config.name == "dart":
|
994 |
with open(filepath, encoding="utf-8") as f:
|
995 |
data = json.loads(f.read())
|
|
|
1002 |
id_ += 1
|
1003 |
yield id_, {
|
1004 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1005 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1006 |
"dart_id": i,
|
1007 |
"tripleset": example["tripleset"],
|
1008 |
"subtree_was_extended": example.get("subtree_was_extended", None), # some are missing
|
|
|
1014 |
id_ += 1
|
1015 |
yield id_, {
|
1016 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1017 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1018 |
"dart_id": id_,
|
1019 |
"tripleset": example["tripleset"],
|
1020 |
"subtree_was_extended": example.get("subtree_was_extended", None), # some are missing
|
|
|
1023 |
"references": [annotation["text"] for annotation in example["annotations"]],
|
1024 |
}
|
1025 |
elif self.config.name == "e2e_nlg":
|
1026 |
+
if split.startswith("challenge"):
|
1027 |
+
exples = json.load(open(filepath, encoding="utf-8"))
|
1028 |
+
if isinstance(exples, dict):
|
1029 |
+
assert len(exples) == 1, "multiple entries found"
|
1030 |
+
exples = list(exples.values())[0]
|
1031 |
+
for id_, exple in enumerate(exples):
|
1032 |
+
if len(exple) == 0:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1033 |
continue
|
1034 |
+
exple["gem_parent_id"] = exple["gem_id"]
|
1035 |
+
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
1036 |
+
yield id_, exple
|
1037 |
+
else:
|
1038 |
+
with open(filepath, encoding="utf-8") as f:
|
1039 |
+
reader = csv.DictReader(f)
|
1040 |
+
for id_, example in enumerate(reader):
|
1041 |
yield id_, {
|
1042 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1043 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1044 |
+
"meaning_representation": example["mr"],
|
1045 |
+
"target": example["ref"],
|
1046 |
+
"references": [] if split == "train" else [example["ref"]],
|
|
|
|
|
|
|
1047 |
}
|
1048 |
+
elif self.config.name.startswith("mlsum"):
|
1049 |
+
if split in ["train", "validation", "test", "challenge_test_covid"]:
|
1050 |
+
if split == "challenge_test_covid":
|
1051 |
+
bad_ids = {}
|
1052 |
+
else:
|
1053 |
+
bad_ids_dct = json.load(open(filepaths, encoding="utf-8"))
|
1054 |
+
bad_ids = dict((bad_url, True) for _, bad_url in bad_ids_dct[f"{lang}-{split}"])
|
1055 |
+
with open(filepath, encoding="utf-8") as f:
|
1056 |
+
id_ = -1
|
1057 |
+
for line in f:
|
1058 |
+
data = json.loads(line)
|
1059 |
+
if data["url"] in bad_ids:
|
1060 |
+
continue
|
1061 |
+
else:
|
1062 |
+
id_ += 1
|
1063 |
+
yield id_, {
|
1064 |
+
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1065 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1066 |
+
"text": data["text"],
|
1067 |
+
"target": data["summary"],
|
1068 |
+
"references": [] if split == "train" else [data["summary"]],
|
1069 |
+
"topic": data["topic"],
|
1070 |
+
"url": data["url"],
|
1071 |
+
"title": data["title"],
|
1072 |
+
"date": data["date"],
|
1073 |
+
}
|
1074 |
+
else:
|
1075 |
+
exples = json.load(open(filepath, encoding="utf-8"))
|
1076 |
+
if isinstance(exples, dict):
|
1077 |
+
assert len(exples) == 1, "multiple entries found"
|
1078 |
+
exples = list(exples.values())[0]
|
1079 |
+
for id_, exple in enumerate(exples):
|
1080 |
+
if len(exple) == 0:
|
1081 |
+
continue
|
1082 |
+
exple["gem_parent_id"] = exple["gem_id"]
|
1083 |
+
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
1084 |
+
yield id_, exple
|
1085 |
elif self.config.name == "schema_guided_dialog":
|
1086 |
+
if "challenge" in split:
|
1087 |
+
exples = json.load(open(filepath, encoding="utf-8"))
|
1088 |
+
if isinstance(exples, dict):
|
1089 |
+
assert len(exples) == 1, "multiple entries found"
|
1090 |
+
exples = list(exples.values())[0]
|
1091 |
+
for id_, exple in enumerate(exples):
|
1092 |
+
if len(exple) == 0:
|
1093 |
+
continue
|
1094 |
+
exple["gem_parent_id"] = exple["gem_id"]
|
1095 |
+
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
1096 |
+
yield id_, exple
|
1097 |
+
else:
|
1098 |
+
examples = json.load(open(filepath, encoding="utf-8"))[split]
|
1099 |
+
for id_, example in enumerate(examples):
|
1100 |
+
yield id_, {
|
1101 |
+
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1102 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1103 |
+
"dialog_acts": [
|
1104 |
+
{
|
1105 |
+
"act": act_id,
|
1106 |
+
"slot": slot,
|
1107 |
+
"values": values,
|
1108 |
+
}
|
1109 |
+
for act_id, slot, values in example["da"]
|
1110 |
+
],
|
1111 |
+
"context": example["context"],
|
1112 |
+
"dialog_id": example["dialog_id"],
|
1113 |
+
"service": example["service"],
|
1114 |
+
"turn_id": example["turn_ix"],
|
1115 |
+
"prompt": example["prompt"],
|
1116 |
+
"target": example["target"],
|
1117 |
+
"references": [] if split == "train" else [example["target"]],
|
1118 |
+
}
|
1119 |
elif self.config.name == "totto":
|
1120 |
+
if "challenge" in split:
|
1121 |
+
exples = json.load(open(filepath, encoding="utf-8"))
|
1122 |
+
if isinstance(exples, dict):
|
1123 |
+
assert len(exples) == 1, "multiple entries found"
|
1124 |
+
exples = list(exples.values())[0]
|
1125 |
+
for id_, exple in enumerate(exples):
|
1126 |
+
if len(exple) == 0:
|
1127 |
+
continue
|
1128 |
+
exple["gem_parent_id"] = exple["gem_id"]
|
1129 |
+
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
1130 |
+
yield id_, exple
|
1131 |
+
else:
|
1132 |
+
with open(filepath, "r", encoding="utf-8") as json_file:
|
1133 |
+
json_list = list(json_file)
|
1134 |
+
id_ = -1
|
1135 |
+
i = -1
|
1136 |
+
for json_str in json_list:
|
1137 |
+
result = json.loads(json_str)
|
1138 |
+
if split == "train":
|
1139 |
+
i += 1
|
1140 |
+
for sentence in result["sentence_annotations"]:
|
1141 |
+
id_ += 1
|
1142 |
+
response = {
|
1143 |
+
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1144 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1145 |
+
"totto_id": i,
|
1146 |
+
"table_page_title": result["table_page_title"],
|
1147 |
+
"table_webpage_url": result["table_webpage_url"],
|
1148 |
+
"table_section_title": result["table_section_title"],
|
1149 |
+
"table_section_text": result["table_section_text"],
|
1150 |
+
"table": result["table"],
|
1151 |
+
"highlighted_cells": result["highlighted_cells"],
|
1152 |
+
"example_id": str(result["example_id"]),
|
1153 |
+
"overlap_subset": "none",
|
1154 |
+
"sentence_annotations": [sentence],
|
1155 |
+
"references": [],
|
1156 |
+
"target": sentence["final_sentence"],
|
1157 |
+
}
|
1158 |
+
yield id_, response
|
1159 |
+
else:
|
1160 |
id_ += 1
|
1161 |
response = {
|
1162 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1163 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1164 |
+
"totto_id": id_,
|
1165 |
"table_page_title": result["table_page_title"],
|
1166 |
"table_webpage_url": result["table_webpage_url"],
|
1167 |
"table_section_title": result["table_section_title"],
|
|
|
1169 |
"table": result["table"],
|
1170 |
"highlighted_cells": result["highlighted_cells"],
|
1171 |
"example_id": str(result["example_id"]),
|
1172 |
+
"overlap_subset": str(result["overlap_subset"]),
|
|
|
|
|
|
|
1173 |
}
|
1174 |
+
response["sentence_annotations"] = [] if split == "test" else result["sentence_annotations"]
|
1175 |
+
response["references"] = [
|
1176 |
+
sentence["final_sentence"] for sentence in response["sentence_annotations"]
|
1177 |
+
]
|
1178 |
+
response["target"] = response["references"][0] if len(response["references"]) > 0 else ""
|
1179 |
yield id_, response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1180 |
elif self.config.name.startswith("web_nlg"):
|
1181 |
+
if "challenge" in split:
|
1182 |
+
exples = json.load(open(filepath, encoding="utf-8"))
|
1183 |
+
if isinstance(exples, dict):
|
1184 |
+
assert len(exples) == 1, "multiple entries found"
|
1185 |
+
exples = list(exples.values())[0]
|
1186 |
+
for id_, exple in enumerate(exples):
|
1187 |
+
if len(exple) == 0:
|
1188 |
+
continue
|
1189 |
+
exple["gem_parent_id"] = exple["gem_id"]
|
1190 |
+
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
1191 |
+
yield id_, exple
|
1192 |
+
else:
|
1193 |
+
with open(filepath, encoding="utf-8") as f:
|
1194 |
+
examples = json.load(f)
|
1195 |
+
id_ = -1
|
1196 |
+
for example in examples["values"]:
|
1197 |
+
if split == "train":
|
1198 |
+
for target in example["target"]:
|
1199 |
+
id_ += 1
|
1200 |
+
yield id_, {
|
1201 |
+
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1202 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1203 |
+
"input": example["input"],
|
1204 |
+
"target": target,
|
1205 |
+
"references": [] if split == "train" else example["target"],
|
1206 |
+
"category": example["category"],
|
1207 |
+
"webnlg_id": example["webnlg-id"],
|
1208 |
+
}
|
1209 |
+
else:
|
1210 |
id_ += 1
|
1211 |
yield id_, {
|
1212 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1213 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1214 |
"input": example["input"],
|
1215 |
+
"target": example["target"][0] if len(example["target"]) > 0 else "",
|
1216 |
+
"references": example["target"],
|
1217 |
"category": example["category"],
|
1218 |
"webnlg_id": example["webnlg-id"],
|
1219 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1220 |
elif self.config.name == "wiki_auto_asset_turk":
|
1221 |
if split in ["train", "validation"]:
|
1222 |
keys = [
|
|
|
|
|
|
|
1223 |
"source",
|
1224 |
+
"target",
|
1225 |
]
|
1226 |
with open(filepath, encoding="utf-8") as f:
|
1227 |
for id_, line in enumerate(f):
|
1228 |
values = line.strip().split("\t")
|
1229 |
+
assert len(values) == 2, f"Not enough fields in ---- {line} --- {values}"
|
1230 |
+
example = dict([(k, val) for k, val in zip(keys, values)])
|
1231 |
example["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
1232 |
+
example["gem_parent_id"] = example["gem_id"]
|
1233 |
example["references"] = [] if split == "train" else [example["target"]]
|
1234 |
yield id_, example
|
1235 |
+
elif split == "test_turk":
|
1236 |
+
examples = json.load(open(filepath, encoding="utf-8"))
|
1237 |
+
for id_, example in enumerate(examples):
|
1238 |
+
example["gem_parent_id"] = example["gem_id"]
|
1239 |
+
for k in ["source_id", "target_id"]:
|
1240 |
+
if k in example:
|
1241 |
+
del example[k]
|
1242 |
+
yield id_, example
|
1243 |
+
elif split == "test_asset":
|
1244 |
files = [open(f_name, encoding="utf-8") for f_name in filepaths]
|
1245 |
for id_, lines in enumerate(zip(*files)):
|
1246 |
yield id_, {
|
1247 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1248 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
|
|
1249 |
"target": lines[1].strip(),
|
1250 |
"source": lines[0].strip(),
|
1251 |
"references": [line.strip() for line in lines[1:]],
|
1252 |
}
|
1253 |
+
else:
|
1254 |
+
exples = json.load(open(filepath, encoding="utf-8"))
|
1255 |
+
if isinstance(exples, dict):
|
1256 |
+
assert len(exples) == 1, "multiple entries found"
|
1257 |
+
exples = list(exples.values())[0]
|
1258 |
+
for id_, exple in enumerate(exples):
|
1259 |
+
exple["gem_parent_id"] = exple["gem_id"]
|
1260 |
+
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
1261 |
+
for k in ["source_id", "target_id"]:
|
1262 |
+
if k in exple:
|
1263 |
+
del exple[k]
|
1264 |
+
yield id_, exple
|
1265 |
elif self.config.name.startswith("wiki_lingua"):
|
1266 |
+
if "v0" in self.config.name:
|
1267 |
+
with open(os.path.join(filepath, f"{split}.src"), encoding="utf-8") as f_in:
|
1268 |
+
with open(os.path.join(filepath, f"{split}.tgt"), encoding="utf-8") as f_out:
|
1269 |
+
for id_, (src, tgt) in enumerate(zip(f_in, f_out)):
|
1270 |
+
yield id_, {
|
1271 |
+
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1272 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1273 |
+
"source": src.strip(),
|
1274 |
+
"target": tgt.strip(),
|
1275 |
+
"references": [] if split == "train" else [tgt.strip()],
|
1276 |
+
}
|
1277 |
+
else:
|
1278 |
+
with open(os.path.join(filepath, f"{split}.src.{lang}"), encoding="utf-8") as f_in_ln:
|
1279 |
+
with open(os.path.join(filepath, f"{split}.src.en"), encoding="utf-8") as f_in_en:
|
1280 |
+
with open(os.path.join(filepath, f"{split}.tgt.{lang}"), encoding="utf-8") as f_out_ln:
|
1281 |
+
with open(os.path.join(filepath, f"{split}.tgt.en"), encoding="utf-8") as f_out_en:
|
1282 |
+
for id_, (src_ln, src_en, tgt_ln, tgt_en) in enumerate(
|
1283 |
+
zip(f_in_ln, f_in_en, f_out_ln, f_out_en)
|
1284 |
+
):
|
1285 |
+
yield id_, {
|
1286 |
+
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1287 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1288 |
+
"source_aligned": {lang: src_ln.strip(), "en": src_en.strip()},
|
1289 |
+
"target_aligned": {lang: tgt_ln.strip(), "en": tgt_en.strip()},
|
1290 |
+
"source": src_ln.strip(),
|
1291 |
+
"target": tgt_en.strip(),
|
1292 |
+
"references": [] if split == "train" else [tgt_en.strip()],
|
1293 |
+
}
|
1294 |
+
elif self.config.name == "xsum":
|
1295 |
+
if "challenge" in split:
|
1296 |
+
if "covid" in split:
|
1297 |
+
with open(filepath, encoding="utf-8") as f:
|
1298 |
+
id_ = -1
|
1299 |
+
for line in f:
|
1300 |
+
data = json.loads(line)
|
1301 |
+
id_ += 1
|
1302 |
+
yield id_, {
|
1303 |
+
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1304 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1305 |
+
"xsum_id": data["url"],
|
1306 |
+
"document": data["text"],
|
1307 |
+
"target": data["summary"],
|
1308 |
+
"references": [] if split == "train" else [data["summary"]],
|
1309 |
+
}
|
1310 |
+
else:
|
1311 |
+
exples = json.load(open(filepath, encoding="utf-8"))
|
1312 |
+
if isinstance(exples, dict):
|
1313 |
+
assert len(exples) == 1, "multiple entries found"
|
1314 |
+
exples = list(exples.values())[0]
|
1315 |
+
for id_, exple in enumerate(exples):
|
1316 |
+
exple["gem_parent_id"] = exple["gem_id"]
|
1317 |
+
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
1318 |
+
yield id_, exple
|
1319 |
+
else:
|
1320 |
+
with open(filepath, "r", encoding="utf-8") as f:
|
1321 |
+
split_ids = json.load(f)
|
1322 |
+
for id_, i in enumerate(split_ids[split]):
|
1323 |
+
with open(os.path.join(filepaths, i + ".summary"), "r", encoding="utf-8") as f:
|
1324 |
+
text = "".join(
|
1325 |
+
[line for line in f.readlines() if line not in _XSUM_REMOVE_LINES and line.strip()]
|
1326 |
+
)
|
1327 |
+
segs = text.split("[SN]")
|
1328 |
yield id_, {
|
1329 |
"gem_id": f"{self.config.name}-{split}-{id_}",
|
1330 |
+
"gem_parent_id": f"{self.config.name}-{split}-{id_}",
|
1331 |
+
"xsum_id": i,
|
1332 |
+
"document": segs[8].strip(),
|
1333 |
+
"target": segs[6].strip(),
|
1334 |
+
"references": [] if split == "train" else [segs[6].strip()],
|
1335 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|