MrPotato commited on
Commit
76eb282
·
1 Parent(s): 5935617

changed to input ids

Browse files
Files changed (1) hide show
  1. ref_seg_ger.py +12 -2
ref_seg_ger.py CHANGED
@@ -72,6 +72,9 @@ _FEATURES = datasets.Features(
72
  #"original_image": datasets.features.Image(),
73
  "labels": datasets.Sequence(datasets.features.ClassLabel(
74
  names=list(chain.from_iterable([['B-' + x, 'I-' + x] for x in _LABELS])) + ['O']
 
 
 
75
  ))
76
  # These are the features of your dataset like images, labels ...
77
  }
@@ -212,6 +215,7 @@ class RefSeg(datasets.GeneratorBasedBuilder):
212
  df = pd.read_csv(f, keep_default_na=False)
213
  input_ids = []
214
  labels = []
 
215
  for i, row in df.iterrows():
216
 
217
  #tokenized_input = row['token'].split(' ')
@@ -220,6 +224,8 @@ class RefSeg(datasets.GeneratorBasedBuilder):
220
  continue
221
  tokenized_input, offsets = zip(*tkn)
222
  tokenized_input = list(tokenized_input)
 
 
223
  if len(tokenized_input) > 1:
224
  if row['tag'] == 'B':
225
  if tokenized_input[0] == '':
@@ -254,15 +260,18 @@ class RefSeg(datasets.GeneratorBasedBuilder):
254
 
255
  clean_input_ids = []
256
  clean_labels = []
 
257
  for i, input in enumerate(input_ids):
258
  if input != '':
259
  clean_input_ids.append(input)
260
  clean_labels.append(labels[i])
 
261
  n_chunks = int(len(clean_input_ids)/self.CHUNK_SIZE) if len(clean_input_ids)%self.CHUNK_SIZE == 0 \
262
  else int(len(clean_input_ids)/self.CHUNK_SIZE) + 1
263
  split_ids = np.array_split(clean_input_ids, n_chunks)
264
  split_labels = np.array_split(clean_labels, n_chunks)
265
- for chunk_ids, chunk_labels in zip(split_ids, split_labels):
 
266
 
267
  #for chunk_id, index in enumerate(range(0, len(clean_input_ids), self.CHUNK_SIZE)):
268
  #split_ids = clean_input_ids[index:max(len(clean_input_ids), index + self.CHUNK_SIZE)]
@@ -294,6 +303,7 @@ class RefSeg(datasets.GeneratorBasedBuilder):
294
  # "fonts": split_fonts,
295
  #"image": image,
296
  #"original_image": original_image,
297
- "labels": chunk_labels
 
298
  }
299
  key += 1
 
72
  #"original_image": datasets.features.Image(),
73
  "labels": datasets.Sequence(datasets.features.ClassLabel(
74
  names=list(chain.from_iterable([['B-' + x, 'I-' + x] for x in _LABELS])) + ['O']
75
+ )),
76
+ "labels_ref": datasets.Sequence(datasets.features.ClassLabel(
77
+ names=['B-ref', 'I-ref', 'O-ref']
78
  ))
79
  # These are the features of your dataset like images, labels ...
80
  }
 
215
  df = pd.read_csv(f, keep_default_na=False)
216
  input_ids = []
217
  labels = []
218
+ refs = []
219
  for i, row in df.iterrows():
220
 
221
  #tokenized_input = row['token'].split(' ')
 
224
  continue
225
  tokenized_input, offsets = zip(*tkn)
226
  tokenized_input = list(tokenized_input)
227
+ for t in range(len(tokenized_input)):
228
+ refs.append(row['ref'] + '-ref')
229
  if len(tokenized_input) > 1:
230
  if row['tag'] == 'B':
231
  if tokenized_input[0] == '':
 
260
 
261
  clean_input_ids = []
262
  clean_labels = []
263
+ clean_refs = []
264
  for i, input in enumerate(input_ids):
265
  if input != '':
266
  clean_input_ids.append(input)
267
  clean_labels.append(labels[i])
268
+ clean_refs.append(refs[i])
269
  n_chunks = int(len(clean_input_ids)/self.CHUNK_SIZE) if len(clean_input_ids)%self.CHUNK_SIZE == 0 \
270
  else int(len(clean_input_ids)/self.CHUNK_SIZE) + 1
271
  split_ids = np.array_split(clean_input_ids, n_chunks)
272
  split_labels = np.array_split(clean_labels, n_chunks)
273
+ split_refs = np.array_split(clean_refs, n_chunks)
274
+ for chunk_ids, chunk_labels, chunk_refs in zip(split_ids, split_labels, split_refs):
275
 
276
  #for chunk_id, index in enumerate(range(0, len(clean_input_ids), self.CHUNK_SIZE)):
277
  #split_ids = clean_input_ids[index:max(len(clean_input_ids), index + self.CHUNK_SIZE)]
 
303
  # "fonts": split_fonts,
304
  #"image": image,
305
  #"original_image": original_image,
306
+ "labels": chunk_labels,
307
+ "labels_ref": chunk_refs
308
  }
309
  key += 1