changed to input ids
Browse files- ref_seg_ger.py +27 -25
ref_seg_ger.py
CHANGED
@@ -62,14 +62,14 @@ _LABELS = [
|
|
62 |
|
63 |
_FEATURES = datasets.Features(
|
64 |
{
|
65 |
-
#"id": datasets.Value("string"),
|
66 |
"input_ids": datasets.Sequence(datasets.Value("string")),
|
67 |
"attention_mask": datasets.Sequence(datasets.Value("int64")),
|
68 |
-
#"bbox": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
|
69 |
# "RGBs": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
|
70 |
# "fonts": datasets.Sequence(datasets.Value("string")),
|
71 |
-
#"image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
|
72 |
-
#"original_image": datasets.features.Image(),
|
73 |
"labels": datasets.Sequence(datasets.features.ClassLabel(
|
74 |
names=list(chain.from_iterable([['B-' + x, 'I-' + x] for x in _LABELS])) + ['O']
|
75 |
)),
|
@@ -80,6 +80,7 @@ _FEATURES = datasets.Features(
|
|
80 |
}
|
81 |
)
|
82 |
|
|
|
83 |
def load_image(image_path, size=None):
|
84 |
image = Image.open(image_path).convert("RGB")
|
85 |
w, h = image.size
|
@@ -170,7 +171,7 @@ class RefSeg(datasets.GeneratorBasedBuilder):
|
|
170 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
171 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
172 |
data_dir = dl_manager.download_and_extract(_URLS)
|
173 |
-
#print(data_dir)
|
174 |
# with open(os.path.join(data_dir, "train.csv")) as f:
|
175 |
# files_train = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
|
176 |
# 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
|
@@ -207,8 +208,8 @@ class RefSeg(datasets.GeneratorBasedBuilder):
|
|
207 |
def _generate_examples(self, filepath, split):
|
208 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
209 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
210 |
-
#print(filepath)
|
211 |
-
#print(split)
|
212 |
paths = glob(filepath + '/' + split + '/*.csv')
|
213 |
key = 0
|
214 |
for f in paths:
|
@@ -218,14 +219,17 @@ class RefSeg(datasets.GeneratorBasedBuilder):
|
|
218 |
refs = []
|
219 |
for i, row in df.iterrows():
|
220 |
|
221 |
-
#tokenized_input = row['token'].split(' ')
|
222 |
tkn = self.TOKENIZER.pre_tokenize_str(row['token'])
|
223 |
if not tkn:
|
224 |
continue
|
225 |
tokenized_input, offsets = zip(*tkn)
|
226 |
tokenized_input = list(tokenized_input)
|
227 |
for t in range(len(tokenized_input)):
|
228 |
-
|
|
|
|
|
|
|
229 |
if len(tokenized_input) > 1:
|
230 |
if row['tag'] == 'B':
|
231 |
if tokenized_input[0] == '':
|
@@ -266,20 +270,19 @@ class RefSeg(datasets.GeneratorBasedBuilder):
|
|
266 |
clean_input_ids.append(input)
|
267 |
clean_labels.append(labels[i])
|
268 |
clean_refs.append(refs[i])
|
269 |
-
n_chunks = int(len(clean_input_ids)/self.CHUNK_SIZE) if len(clean_input_ids)%self.CHUNK_SIZE == 0 \
|
270 |
-
else int(len(clean_input_ids)/self.CHUNK_SIZE) + 1
|
271 |
split_ids = np.array_split(clean_input_ids, n_chunks)
|
272 |
split_labels = np.array_split(clean_labels, n_chunks)
|
273 |
split_refs = np.array_split(clean_refs, n_chunks)
|
274 |
for chunk_ids, chunk_labels, chunk_refs in zip(split_ids, split_labels, split_refs):
|
275 |
-
|
276 |
-
|
277 |
-
#
|
278 |
-
#split_bboxes = bboxes[index:index + self.CHUNK_SIZE]
|
279 |
# split_rgbs = rgbs[index:index + self.CHUNK_SIZE]
|
280 |
# split_fonts = fonts[index:index + self.CHUNK_SIZE]
|
281 |
-
#split_labels = clean_labels[index:max(len(clean_input_ids), index + self.CHUNK_SIZE)]
|
282 |
-
#split_labels_post = [item for sublist in split_labels for item in sublist]
|
283 |
# if(len(split_ids) != len(split_labels)):
|
284 |
# print(f)
|
285 |
# print(len(input_ids), input_ids)
|
@@ -289,20 +292,19 @@ class RefSeg(datasets.GeneratorBasedBuilder):
|
|
289 |
# print(f)
|
290 |
# print(len(input_ids), input_ids)
|
291 |
# print(len(split_labels), split_labels)
|
292 |
-
|
293 |
-
#print(split_labels, len(split_labels))
|
294 |
-
#print(split_ids, len(split_ids))
|
295 |
-
|
296 |
|
297 |
yield key, {
|
298 |
-
#"id": f"{os.path.basename(f)}_{chunk_id}",
|
299 |
'input_ids': chunk_ids,
|
300 |
'attention_mask': [1] * len(chunk_ids),
|
301 |
-
#"bbox": split_bboxes,
|
302 |
# "RGBs": split_rgbs,
|
303 |
# "fonts": split_fonts,
|
304 |
-
#"image": image,
|
305 |
-
#"original_image": original_image,
|
306 |
"labels": chunk_labels,
|
307 |
"labels_ref": chunk_refs
|
308 |
}
|
|
|
62 |
|
63 |
_FEATURES = datasets.Features(
|
64 |
{
|
65 |
+
# "id": datasets.Value("string"),
|
66 |
"input_ids": datasets.Sequence(datasets.Value("string")),
|
67 |
"attention_mask": datasets.Sequence(datasets.Value("int64")),
|
68 |
+
# "bbox": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
|
69 |
# "RGBs": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
|
70 |
# "fonts": datasets.Sequence(datasets.Value("string")),
|
71 |
+
# "image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
|
72 |
+
# "original_image": datasets.features.Image(),
|
73 |
"labels": datasets.Sequence(datasets.features.ClassLabel(
|
74 |
names=list(chain.from_iterable([['B-' + x, 'I-' + x] for x in _LABELS])) + ['O']
|
75 |
)),
|
|
|
80 |
}
|
81 |
)
|
82 |
|
83 |
+
|
84 |
def load_image(image_path, size=None):
|
85 |
image = Image.open(image_path).convert("RGB")
|
86 |
w, h = image.size
|
|
|
171 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
172 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
173 |
data_dir = dl_manager.download_and_extract(_URLS)
|
174 |
+
# print(data_dir)
|
175 |
# with open(os.path.join(data_dir, "train.csv")) as f:
|
176 |
# files_train = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
|
177 |
# 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
|
|
|
208 |
def _generate_examples(self, filepath, split):
|
209 |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
210 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
211 |
+
# print(filepath)
|
212 |
+
# print(split)
|
213 |
paths = glob(filepath + '/' + split + '/*.csv')
|
214 |
key = 0
|
215 |
for f in paths:
|
|
|
219 |
refs = []
|
220 |
for i, row in df.iterrows():
|
221 |
|
222 |
+
# tokenized_input = row['token'].split(' ')
|
223 |
tkn = self.TOKENIZER.pre_tokenize_str(row['token'])
|
224 |
if not tkn:
|
225 |
continue
|
226 |
tokenized_input, offsets = zip(*tkn)
|
227 |
tokenized_input = list(tokenized_input)
|
228 |
for t in range(len(tokenized_input)):
|
229 |
+
if t == 0:
|
230 |
+
refs.append(row['ref'] + '-ref')
|
231 |
+
else:
|
232 |
+
refs.append('I-ref')
|
233 |
if len(tokenized_input) > 1:
|
234 |
if row['tag'] == 'B':
|
235 |
if tokenized_input[0] == '':
|
|
|
270 |
clean_input_ids.append(input)
|
271 |
clean_labels.append(labels[i])
|
272 |
clean_refs.append(refs[i])
|
273 |
+
n_chunks = int(len(clean_input_ids) / self.CHUNK_SIZE) if len(clean_input_ids) % self.CHUNK_SIZE == 0 \
|
274 |
+
else int(len(clean_input_ids) / self.CHUNK_SIZE) + 1
|
275 |
split_ids = np.array_split(clean_input_ids, n_chunks)
|
276 |
split_labels = np.array_split(clean_labels, n_chunks)
|
277 |
split_refs = np.array_split(clean_refs, n_chunks)
|
278 |
for chunk_ids, chunk_labels, chunk_refs in zip(split_ids, split_labels, split_refs):
|
279 |
+
# for chunk_id, index in enumerate(range(0, len(clean_input_ids), self.CHUNK_SIZE)):
|
280 |
+
# split_ids = clean_input_ids[index:max(len(clean_input_ids), index + self.CHUNK_SIZE)]
|
281 |
+
# split_bboxes = bboxes[index:index + self.CHUNK_SIZE]
|
|
|
282 |
# split_rgbs = rgbs[index:index + self.CHUNK_SIZE]
|
283 |
# split_fonts = fonts[index:index + self.CHUNK_SIZE]
|
284 |
+
# split_labels = clean_labels[index:max(len(clean_input_ids), index + self.CHUNK_SIZE)]
|
285 |
+
# split_labels_post = [item for sublist in split_labels for item in sublist]
|
286 |
# if(len(split_ids) != len(split_labels)):
|
287 |
# print(f)
|
288 |
# print(len(input_ids), input_ids)
|
|
|
292 |
# print(f)
|
293 |
# print(len(input_ids), input_ids)
|
294 |
# print(len(split_labels), split_labels)
|
295 |
+
# print(len(split_labels_post), split_labels_post)
|
296 |
+
# print(split_labels, len(split_labels))
|
297 |
+
# print(split_ids, len(split_ids))
|
|
|
298 |
|
299 |
yield key, {
|
300 |
+
# "id": f"{os.path.basename(f)}_{chunk_id}",
|
301 |
'input_ids': chunk_ids,
|
302 |
'attention_mask': [1] * len(chunk_ids),
|
303 |
+
# "bbox": split_bboxes,
|
304 |
# "RGBs": split_rgbs,
|
305 |
# "fonts": split_fonts,
|
306 |
+
# "image": image,
|
307 |
+
# "original_image": original_image,
|
308 |
"labels": chunk_labels,
|
309 |
"labels_ref": chunk_refs
|
310 |
}
|