Datasets:
Tasks:
Image Segmentation
ArXiv:
Delete DFC2020.py
Browse files- DFC2020.py +0 -163
DFC2020.py
DELETED
@@ -1,163 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import shutil
|
4 |
-
import tifffile
|
5 |
-
import datasets
|
6 |
-
|
7 |
-
import pandas as pd
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
S2_MEAN = [1370.19151926, 1184.3824625, 1120.77120066, 1136.26026392, 1263.73947144, 1645.40315151, 1846.87040806, 1762.59530783, 1972.62420416, 582.72633433, 14.77112979, 1732.16362238, 1247.91870117]
|
11 |
-
|
12 |
-
S2_STD = [633.15169573, 650.2842772, 712.12507725, 965.23119807, 948.9819932, 1108.06650639, 1258.36394548, 1233.1492281, 1364.38688993, 472.37967789, 14.3114637, 1310.36996126, 1087.6020813]
|
13 |
-
|
14 |
-
S1_MEAN = [-12.54847273, -20.19237134]
|
15 |
-
|
16 |
-
S1_STD = [5.25697717, 5.91150917]
|
17 |
-
|
18 |
-
class DFC2020Dataset(datasets.GeneratorBasedBuilder):
|
19 |
-
VERSION = datasets.Version("1.0.0")
|
20 |
-
|
21 |
-
DATA_URL = "https://huggingface.co/datasets/GFM-Bench/DFC2020/resolve/main/data/DFC2020.zip"
|
22 |
-
|
23 |
-
metadata = {
|
24 |
-
"s2c": {
|
25 |
-
"bands": ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B10", "B11", "B12"],
|
26 |
-
"channel_wv": [442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 945.1, 1373.5, 1613.7, 2202.4],
|
27 |
-
"mean": S2_MEAN,
|
28 |
-
"std": S2_STD,
|
29 |
-
},
|
30 |
-
"s1": {
|
31 |
-
"bands": ["VV", "VH"],
|
32 |
-
"channel_wv": [5500, 5700],
|
33 |
-
"mean": S1_MEAN,
|
34 |
-
"std": S1_STD
|
35 |
-
}
|
36 |
-
}
|
37 |
-
|
38 |
-
SIZE = HEIGHT = WIDTH = 96
|
39 |
-
|
40 |
-
spatial_resolution = 10
|
41 |
-
|
42 |
-
DFC2020_CLASSES = [
|
43 |
-
255, # class 0 unused in both schemes
|
44 |
-
0, 0, 0, 0, 0,
|
45 |
-
1, 1,
|
46 |
-
255, # --> will be masked if no_savanna == True
|
47 |
-
255, # --> will be masked if no_savanna == True
|
48 |
-
2,
|
49 |
-
3,
|
50 |
-
4, # 12 --> 6
|
51 |
-
5, # 13 --> 7
|
52 |
-
4, # 14 --> 6
|
53 |
-
255,
|
54 |
-
6,
|
55 |
-
7
|
56 |
-
]
|
57 |
-
|
58 |
-
NUM_CLASSES = 8
|
59 |
-
|
60 |
-
def __init__(self, *args, **kwargs):
|
61 |
-
super().__init__(*args, **kwargs)
|
62 |
-
|
63 |
-
|
64 |
-
def _info(self):
|
65 |
-
metadata = self.metadata
|
66 |
-
metadata['size'] = self.SIZE
|
67 |
-
metadata['num_classes'] = self.NUM_CLASSES
|
68 |
-
metadata['spatial_resolution'] = self.spatial_resolution
|
69 |
-
return datasets.DatasetInfo(
|
70 |
-
description=json.dumps(metadata),
|
71 |
-
features=datasets.Features({
|
72 |
-
"optical": datasets.Array3D(shape=(13, self.HEIGHT, self.WIDTH), dtype="float32"),
|
73 |
-
"radar": datasets.Array3D(shape=(2, self.HEIGHT, self.WIDTH), dtype="float32"),
|
74 |
-
"label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"),
|
75 |
-
"optical_channel_wv": datasets.Sequence(datasets.Value("float32")),
|
76 |
-
"radar_channel_wv": datasets.Sequence(datasets.Value("float32")),
|
77 |
-
"spatial_resolution": datasets.Value("int32"),
|
78 |
-
}),
|
79 |
-
)
|
80 |
-
|
81 |
-
def _split_generators(self, dl_manager):
|
82 |
-
if isinstance(self.DATA_URL, list):
|
83 |
-
downloaded_files = dl_manager.download(self.DATA_URL)
|
84 |
-
combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz")
|
85 |
-
with open(combined_file, 'wb') as outfile:
|
86 |
-
for part_file in downloaded_files:
|
87 |
-
with open(part_file, 'rb') as infile:
|
88 |
-
shutil.copyfileobj(infile, outfile)
|
89 |
-
data_dir = dl_manager.extract(combined_file)
|
90 |
-
os.remove(combined_file)
|
91 |
-
else:
|
92 |
-
data_dir = dl_manager.download_and_extract(self.DATA_URL)
|
93 |
-
|
94 |
-
return [
|
95 |
-
datasets.SplitGenerator(
|
96 |
-
name="train",
|
97 |
-
gen_kwargs={
|
98 |
-
"split": 'train',
|
99 |
-
"data_dir": data_dir,
|
100 |
-
},
|
101 |
-
),
|
102 |
-
datasets.SplitGenerator(
|
103 |
-
name="val",
|
104 |
-
gen_kwargs={
|
105 |
-
"split": 'val',
|
106 |
-
"data_dir": data_dir,
|
107 |
-
},
|
108 |
-
),
|
109 |
-
datasets.SplitGenerator(
|
110 |
-
name="test",
|
111 |
-
gen_kwargs={
|
112 |
-
"split": 'test',
|
113 |
-
"data_dir": data_dir,
|
114 |
-
},
|
115 |
-
)
|
116 |
-
]
|
117 |
-
|
118 |
-
def _generate_examples(self, split, data_dir):
|
119 |
-
optical_channel_wv = self.metadata["s2c"]["channel_wv"]
|
120 |
-
radar_channel_wv = self.metadata["s1"]["channel_wv"]
|
121 |
-
spatial_resolution = self.spatial_resolution
|
122 |
-
|
123 |
-
data_dir = os.path.join(data_dir, "DFC2020")
|
124 |
-
metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv"))
|
125 |
-
metadata = metadata[metadata["split"] == split].reset_index(drop=True)
|
126 |
-
|
127 |
-
for index, row in metadata.iterrows():
|
128 |
-
optical_path = os.path.join(data_dir, row.optical_path)
|
129 |
-
optical = self._read_image(optical_path).astype(np.float32) # CxHxW
|
130 |
-
|
131 |
-
radar_path = os.path.join(data_dir, row.radar_path)
|
132 |
-
radar = self._read_image(radar_path).astype(np.float32)
|
133 |
-
|
134 |
-
label_path = os.path.join(data_dir, row.label_path)
|
135 |
-
label = self._read_image(label_path)[0, :, :]
|
136 |
-
label = np.take(self.DFC2020_CLASSES, label.astype(np.int64))
|
137 |
-
label = label.astype(np.int32)
|
138 |
-
|
139 |
-
sample = {
|
140 |
-
"optical": optical,
|
141 |
-
"radar": radar,
|
142 |
-
"optical_channel_wv": optical_channel_wv,
|
143 |
-
"radar_channel_wv": radar_channel_wv,
|
144 |
-
"label": label,
|
145 |
-
"spatial_resolution": spatial_resolution,
|
146 |
-
}
|
147 |
-
|
148 |
-
yield f"{index}", sample
|
149 |
-
|
150 |
-
def _read_image(self, image_path):
|
151 |
-
"""Read tiff image from image_path
|
152 |
-
Args:
|
153 |
-
image_path:
|
154 |
-
Image path to read from
|
155 |
-
|
156 |
-
Return:
|
157 |
-
image:
|
158 |
-
C, H, W numpy array image
|
159 |
-
"""
|
160 |
-
image = tifffile.imread(image_path)
|
161 |
-
image = np.transpose(image, (2, 0, 1))
|
162 |
-
|
163 |
-
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|