yuxuanw8 commited on
Commit
c488943
·
verified ·
1 Parent(s): d30083a

Delete DFC2020.py

Browse files
Files changed (1) hide show
  1. DFC2020.py +0 -163
DFC2020.py DELETED
@@ -1,163 +0,0 @@
1
- import os
2
- import json
3
- import shutil
4
- import tifffile
5
- import datasets
6
-
7
- import pandas as pd
8
- import numpy as np
9
-
10
- S2_MEAN = [1370.19151926, 1184.3824625, 1120.77120066, 1136.26026392, 1263.73947144, 1645.40315151, 1846.87040806, 1762.59530783, 1972.62420416, 582.72633433, 14.77112979, 1732.16362238, 1247.91870117]
11
-
12
- S2_STD = [633.15169573, 650.2842772, 712.12507725, 965.23119807, 948.9819932, 1108.06650639, 1258.36394548, 1233.1492281, 1364.38688993, 472.37967789, 14.3114637, 1310.36996126, 1087.6020813]
13
-
14
- S1_MEAN = [-12.54847273, -20.19237134]
15
-
16
- S1_STD = [5.25697717, 5.91150917]
17
-
18
- class DFC2020Dataset(datasets.GeneratorBasedBuilder):
19
- VERSION = datasets.Version("1.0.0")
20
-
21
- DATA_URL = "https://huggingface.co/datasets/GFM-Bench/DFC2020/resolve/main/data/DFC2020.zip"
22
-
23
- metadata = {
24
- "s2c": {
25
- "bands": ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B10", "B11", "B12"],
26
- "channel_wv": [442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 945.1, 1373.5, 1613.7, 2202.4],
27
- "mean": S2_MEAN,
28
- "std": S2_STD,
29
- },
30
- "s1": {
31
- "bands": ["VV", "VH"],
32
- "channel_wv": [5500, 5700],
33
- "mean": S1_MEAN,
34
- "std": S1_STD
35
- }
36
- }
37
-
38
- SIZE = HEIGHT = WIDTH = 96
39
-
40
- spatial_resolution = 10
41
-
42
- DFC2020_CLASSES = [
43
- 255, # class 0 unused in both schemes
44
- 0, 0, 0, 0, 0,
45
- 1, 1,
46
- 255, # --> will be masked if no_savanna == True
47
- 255, # --> will be masked if no_savanna == True
48
- 2,
49
- 3,
50
- 4, # 12 --> 6
51
- 5, # 13 --> 7
52
- 4, # 14 --> 6
53
- 255,
54
- 6,
55
- 7
56
- ]
57
-
58
- NUM_CLASSES = 8
59
-
60
- def __init__(self, *args, **kwargs):
61
- super().__init__(*args, **kwargs)
62
-
63
-
64
- def _info(self):
65
- metadata = self.metadata
66
- metadata['size'] = self.SIZE
67
- metadata['num_classes'] = self.NUM_CLASSES
68
- metadata['spatial_resolution'] = self.spatial_resolution
69
- return datasets.DatasetInfo(
70
- description=json.dumps(metadata),
71
- features=datasets.Features({
72
- "optical": datasets.Array3D(shape=(13, self.HEIGHT, self.WIDTH), dtype="float32"),
73
- "radar": datasets.Array3D(shape=(2, self.HEIGHT, self.WIDTH), dtype="float32"),
74
- "label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"),
75
- "optical_channel_wv": datasets.Sequence(datasets.Value("float32")),
76
- "radar_channel_wv": datasets.Sequence(datasets.Value("float32")),
77
- "spatial_resolution": datasets.Value("int32"),
78
- }),
79
- )
80
-
81
- def _split_generators(self, dl_manager):
82
- if isinstance(self.DATA_URL, list):
83
- downloaded_files = dl_manager.download(self.DATA_URL)
84
- combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz")
85
- with open(combined_file, 'wb') as outfile:
86
- for part_file in downloaded_files:
87
- with open(part_file, 'rb') as infile:
88
- shutil.copyfileobj(infile, outfile)
89
- data_dir = dl_manager.extract(combined_file)
90
- os.remove(combined_file)
91
- else:
92
- data_dir = dl_manager.download_and_extract(self.DATA_URL)
93
-
94
- return [
95
- datasets.SplitGenerator(
96
- name="train",
97
- gen_kwargs={
98
- "split": 'train',
99
- "data_dir": data_dir,
100
- },
101
- ),
102
- datasets.SplitGenerator(
103
- name="val",
104
- gen_kwargs={
105
- "split": 'val',
106
- "data_dir": data_dir,
107
- },
108
- ),
109
- datasets.SplitGenerator(
110
- name="test",
111
- gen_kwargs={
112
- "split": 'test',
113
- "data_dir": data_dir,
114
- },
115
- )
116
- ]
117
-
118
- def _generate_examples(self, split, data_dir):
119
- optical_channel_wv = self.metadata["s2c"]["channel_wv"]
120
- radar_channel_wv = self.metadata["s1"]["channel_wv"]
121
- spatial_resolution = self.spatial_resolution
122
-
123
- data_dir = os.path.join(data_dir, "DFC2020")
124
- metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv"))
125
- metadata = metadata[metadata["split"] == split].reset_index(drop=True)
126
-
127
- for index, row in metadata.iterrows():
128
- optical_path = os.path.join(data_dir, row.optical_path)
129
- optical = self._read_image(optical_path).astype(np.float32) # CxHxW
130
-
131
- radar_path = os.path.join(data_dir, row.radar_path)
132
- radar = self._read_image(radar_path).astype(np.float32)
133
-
134
- label_path = os.path.join(data_dir, row.label_path)
135
- label = self._read_image(label_path)[0, :, :]
136
- label = np.take(self.DFC2020_CLASSES, label.astype(np.int64))
137
- label = label.astype(np.int32)
138
-
139
- sample = {
140
- "optical": optical,
141
- "radar": radar,
142
- "optical_channel_wv": optical_channel_wv,
143
- "radar_channel_wv": radar_channel_wv,
144
- "label": label,
145
- "spatial_resolution": spatial_resolution,
146
- }
147
-
148
- yield f"{index}", sample
149
-
150
- def _read_image(self, image_path):
151
- """Read tiff image from image_path
152
- Args:
153
- image_path:
154
- Image path to read from
155
-
156
- Return:
157
- image:
158
- C, H, W numpy array image
159
- """
160
- image = tifffile.imread(image_path)
161
- image = np.transpose(image, (2, 0, 1))
162
-
163
- return image