yuxuanw8 commited on
Commit
e75bac3
·
verified ·
1 Parent(s): d172637

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -36
README.md CHANGED
@@ -2,57 +2,42 @@
2
  task_categories:
3
  - image-classification
4
  ---
5
- # EuroSAT Dataset
6
-
7
- The **EuroSAT** dataset consists of satellite imagery for land use and land cover classification. It contains labeled images of 10 different land cover classes.
8
-
9
- Please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) for more information about how to use the dataset! 🙂
10
-
11
- ## Metadata
12
-
13
- The following metadata provides details about the Sentinel-2 imagery used in the dataset:
14
 
 
15
  ```python
16
- S2_MEAN = [1354.40546513, 1118.24399958, 1042.92983953, 947.62620298, 1199.47283961, 1999.79090914, 2369.22292565, 2296.82608323, 732.08340178, 12.11327804, 1819.01027855, 1118.92391149, 2594.14080798]
17
- S2_STD = [245.71762908, 333.00778264, 395.09249139, 593.75055589, 566.4170017, 861.18399006, 1086.63139075, 1117.98170791, 404.91978886, 4.77584468, 1002.58768311, 761.30323499, 1231.58581042]
18
 
19
- metadata = {
20
- "s2c": {
21
- "bands": ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B9", "B10", "B11", "B12"],
22
- "channel_wv": [442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 945.1, 1373.5, 1613.7, 2202.4],
23
- "mean": S2_MEAN,
24
- "std": S2_STD,
25
- },
26
- "s1": {
27
- "bands": None,
28
- "channel_wv": None,
29
- "mean": None,
30
- "std": None
31
- }
32
- }
33
 
34
- SIZE = HEIGHT = WIDTH = 64
35
 
36
- NUM_CLASSES = 10
37
 
38
- spatial_resolution = 10
39
- ```
40
-
41
- ## Split
42
- The **EuroSAT** dataset consists splits of:
 
 
 
 
 
43
  - **train**: 16200 samples
44
  - **val**: 5400 samples
45
  - **test**: 5400 samples
46
 
47
- ## Features:
48
  The **EuroSAT** dataset consists of following features:
49
  - **optical**: the Sentinel-2 image.
50
  - **label**: the classification label.
51
- - **optical_channel_wv**: the wavelength of each optical channel.
52
  - **spatial_resolution**: the spatial resolution of images.
53
-
54
  ## Citation
55
- If you use the EuroSAT dataset in your work, please cite the original paper:
56
  ```
57
  @article{helber2019eurosat,
58
  title={Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification},
@@ -64,4 +49,15 @@ If you use the EuroSAT dataset in your work, please cite the original paper:
64
  year={2019},
65
  publisher={IEEE}
66
  }
 
 
 
 
 
 
 
 
 
 
 
67
  ```
 
2
  task_categories:
3
  - image-classification
4
  ---
5
+ # EuroSAT
6
+ **EuroSAT** is a benchmark dataset for land use and land cover classification based on Sentinel-2 satellite imagery. It contains 27,000 labeled images covering 10 classes (e.g., agricultural, residential, industrial, and forest areas). The dataset features multi-spectral bands with a spatial resolution of 10 meters per pixel and an image resolution of 64 × 64 pixels.
 
 
 
 
 
 
 
7
 
8
+ ## How to Use This Dataset
9
  ```python
10
+ from datasets import load_dataset
 
11
 
12
+ dataset = load_dataset("GFM-Bench/EuroSAT")
13
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ Also, please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) repository for more information about how to use the dataset! 🤗
16
 
17
+ ## Dataset Metadata
18
 
19
+ The following metadata provides details about the Sentinel-2 imagery used in the dataset:
20
+ - **Number of Sentinel-2 Bands**: 13
21
+ - **Sentinel-2 Bands**: B01 (**Coastal aerosol**), B02 (**Blue**), B03 (**Green**), B04 (**Red**), B05 (**Vegetation red edge**), B06 (**Vegetation red edge**), B07 (**Vegetation red edge**), B08 (**NIR**), B8A (**Narrow NIR**), B09 (**Water vapour**), B10 (**SWIR – Cirrus**), B11 (**SWIR**), B12 (**SWIR**)
22
+ - **Image Resolution**: 64 x 64 pixels
23
+ - **Spatial Resolution**: 10 meters
24
+ - **Number of Classes**: 10
25
+ - **Class Labels**: Annual Crop, Forest, Herbaceous Vegetation, Highway, Industrial Buildings, Pasture, Permanent Crop, Residential Buildings, River, SeaLake
26
+
27
+ ## Dataset Splits
28
+ The **EuroSAT** dataset consists following splits:
29
  - **train**: 16200 samples
30
  - **val**: 5400 samples
31
  - **test**: 5400 samples
32
 
33
+ ## Dataset Features:
34
  The **EuroSAT** dataset consists of following features:
35
  - **optical**: the Sentinel-2 image.
36
  - **label**: the classification label.
37
+ - **optical_channel_wv**: the central wavelength of each optical channel.
38
  - **spatial_resolution**: the spatial resolution of images.
 
39
  ## Citation
40
+ If you use the EuroSAT dataset in your work, please cite original papers:
41
  ```
42
  @article{helber2019eurosat,
43
  title={Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification},
 
49
  year={2019},
50
  publisher={IEEE}
51
  }
52
+ ```
53
+ and
54
+ ```
55
+ @inproceedings{helber2018introducing,
56
+ title={Introducing EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification},
57
+ author={Helber, Patrick and Bischke, Benjamin and Dengel, Andreas and Borth, Damian},
58
+ booktitle={IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium},
59
+ pages={204--207},
60
+ year={2018},
61
+ organization={IEEE}
62
+ }
63
  ```