Upload So2Sat.py with huggingface_hub
Browse files
So2Sat.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import shutil
|
4 |
+
import datasets
|
5 |
+
import tifffile
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
S2_MEAN = [0.12375696117681, 0.10927746363683, 0.10108552032678, 0.11423986161140, 0.15926566920230, 0.18147236008771,
|
11 |
+
0.17457403122913, 0.19501607349635, 0.15428468872076, 0.10905050699570]
|
12 |
+
S2_STD = [0.03958795, 0.04777826, 0.06636616, 0.06358874, 0.07744387, 0.09101635, 0.09218466, 0.10164581, 0.09991773, 0.08780632]
|
13 |
+
|
14 |
+
class EuroSATDataset(datasets.GeneratorBasedBuilder):
|
15 |
+
VERSION = datasets.Version("1.0.0")
|
16 |
+
|
17 |
+
DATA_URL = "https://huggingface.co/datasets/GFM-Bench/So2Sat/resolve/main/So2Sat.zip"
|
18 |
+
|
19 |
+
metadata = {
|
20 |
+
"s2c": {
|
21 |
+
"bands": ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B11', 'B12'],
|
22 |
+
"channel_wv": [492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 1613.7, 2202.4],
|
23 |
+
"mean": S2_MEAN,
|
24 |
+
"std": S2_STD,
|
25 |
+
},
|
26 |
+
"s1": {
|
27 |
+
"bands": None,
|
28 |
+
"channel_wv": None,
|
29 |
+
"mean": None,
|
30 |
+
"std": None
|
31 |
+
}
|
32 |
+
}
|
33 |
+
|
34 |
+
SIZE = HEIGHT = WIDTH = 32
|
35 |
+
|
36 |
+
NUM_CLASSES = 17
|
37 |
+
|
38 |
+
spatial_resolution = 10
|
39 |
+
|
40 |
+
def __init__(self, *args, **kwargs):
|
41 |
+
super().__init__(*args, **kwargs)
|
42 |
+
|
43 |
+
def _info(self):
|
44 |
+
metadata = self.metadata
|
45 |
+
metadata['size'] = self.SIZE
|
46 |
+
metadata['num_classes'] = self.NUM_CLASSES
|
47 |
+
metadata['spatial_resolution'] = self.spatial_resolution
|
48 |
+
return datasets.DatasetInfo(
|
49 |
+
description=json.dumps(metadata),
|
50 |
+
features=datasets.Features({
|
51 |
+
"optical": datasets.Array3D(shape=(10, self.HEIGHT, self.WIDTH), dtype="float32"),
|
52 |
+
"label": datasets.Value("int32"),
|
53 |
+
"optical_channel_wv": datasets.Sequence(datasets.Value("float32")),
|
54 |
+
"spatial_resolution": datasets.Value("float32"),
|
55 |
+
}),
|
56 |
+
)
|
57 |
+
|
58 |
+
def _split_generators(self, dl_manager):
|
59 |
+
if isinstance(self.DATA_URL, list):
|
60 |
+
downloaded_files = dl_manager.download(self.DATA_URL)
|
61 |
+
combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz")
|
62 |
+
with open(combined_file, 'wb') as outfile:
|
63 |
+
for part_file in downloaded_files:
|
64 |
+
with open(part_file, 'rb') as infile:
|
65 |
+
shutil.copyfileobj(infile, outfile)
|
66 |
+
data_dir = dl_manager.extract(combined_file)
|
67 |
+
os.remove(combined_file)
|
68 |
+
else:
|
69 |
+
data_dir = dl_manager.download_and_extract(self.DATA_URL)
|
70 |
+
|
71 |
+
return [
|
72 |
+
datasets.SplitGenerator(
|
73 |
+
name="train",
|
74 |
+
gen_kwargs={
|
75 |
+
"split": 'train',
|
76 |
+
"data_dir": data_dir,
|
77 |
+
},
|
78 |
+
),
|
79 |
+
datasets.SplitGenerator(
|
80 |
+
name="val",
|
81 |
+
gen_kwargs={
|
82 |
+
"split": 'val',
|
83 |
+
"data_dir": data_dir,
|
84 |
+
},
|
85 |
+
),
|
86 |
+
datasets.SplitGenerator(
|
87 |
+
name="test",
|
88 |
+
gen_kwargs={
|
89 |
+
"split": 'test',
|
90 |
+
"data_dir": data_dir,
|
91 |
+
},
|
92 |
+
)
|
93 |
+
]
|
94 |
+
|
95 |
+
def _generate_examples(self, split, data_dir):
|
96 |
+
optical_channel_wv = np.array(self.metadata["s2c"]["channel_wv"])
|
97 |
+
spatial_resolution = self.spatial_resolution
|
98 |
+
|
99 |
+
data_dir = os.path.join(data_dir, "So2Sat")
|
100 |
+
metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv"))
|
101 |
+
metadata = metadata[metadata["split"] == split].reset_index(drop=True)
|
102 |
+
|
103 |
+
for index, row in metadata.iterrows():
|
104 |
+
optical_path = os.path.join(data_dir, row.optical_path)
|
105 |
+
optical = self._read_image(optical_path).astype(np.float32) # CxHxW
|
106 |
+
|
107 |
+
label = int(row.label)
|
108 |
+
|
109 |
+
sample = {
|
110 |
+
"optical": optical,
|
111 |
+
"label": label,
|
112 |
+
"optical_channel_wv": optical_channel_wv,
|
113 |
+
"spatial_resolution": spatial_resolution,
|
114 |
+
}
|
115 |
+
|
116 |
+
yield f"{index}", sample
|
117 |
+
|
118 |
+
def _read_image(self, image_path):
|
119 |
+
"""Read tiff image from image_path
|
120 |
+
Args:
|
121 |
+
image_path:
|
122 |
+
Image path to read from
|
123 |
+
|
124 |
+
Return:
|
125 |
+
image:
|
126 |
+
C, H, W numpy array image
|
127 |
+
"""
|
128 |
+
image = tifffile.imread(image_path)
|
129 |
+
if len(image.shape) == 3:
|
130 |
+
image = np.transpose(image, (2, 0, 1))
|
131 |
+
|
132 |
+
return image
|