import os import json import shutil import datasets import tifffile import numpy as np import pandas as pd S2_MEAN = [0.12375696117681, 0.10927746363683, 0.10108552032678, 0.11423986161140, 0.15926566920230, 0.18147236008771, 0.17457403122913, 0.19501607349635, 0.15428468872076, 0.10905050699570] S2_STD = [0.03958795, 0.04777826, 0.06636616, 0.06358874, 0.07744387, 0.09101635, 0.09218466, 0.10164581, 0.09991773, 0.08780632] class So2SatDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") DATA_URL = "https://huggingface.co/datasets/GFM-Bench/So2Sat/resolve/main/So2Sat.zip" metadata = { "s2c": { "bands": ['B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B11', 'B12'], "channel_wv": [492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 1613.7, 2202.4], "mean": S2_MEAN, "std": S2_STD, }, "s1": { "bands": None, "channel_wv": None, "mean": None, "std": None } } SIZE = HEIGHT = WIDTH = 32 NUM_CLASSES = 17 spatial_resolution = 10 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _info(self): metadata = self.metadata metadata['size'] = self.SIZE metadata['num_classes'] = self.NUM_CLASSES metadata['spatial_resolution'] = self.spatial_resolution return datasets.DatasetInfo( description=json.dumps(metadata), features=datasets.Features({ "optical": datasets.Array3D(shape=(10, self.HEIGHT, self.WIDTH), dtype="float32"), "label": datasets.Value("int32"), "optical_channel_wv": datasets.Sequence(datasets.Value("float32")), "spatial_resolution": datasets.Value("float32"), }), ) def _split_generators(self, dl_manager): if isinstance(self.DATA_URL, list): downloaded_files = dl_manager.download(self.DATA_URL) combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz") with open(combined_file, 'wb') as outfile: for part_file in downloaded_files: with open(part_file, 'rb') as infile: shutil.copyfileobj(infile, outfile) data_dir = dl_manager.extract(combined_file) os.remove(combined_file) else: data_dir = dl_manager.download_and_extract(self.DATA_URL) return [ datasets.SplitGenerator( name="train", gen_kwargs={ "split": 'train', "data_dir": data_dir, }, ), datasets.SplitGenerator( name="val", gen_kwargs={ "split": 'val', "data_dir": data_dir, }, ), datasets.SplitGenerator( name="test", gen_kwargs={ "split": 'test', "data_dir": data_dir, }, ) ] def _generate_examples(self, split, data_dir): optical_channel_wv = np.array(self.metadata["s2c"]["channel_wv"]) spatial_resolution = self.spatial_resolution data_dir = os.path.join(data_dir, "So2Sat") metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv")) metadata = metadata[metadata["split"] == split].reset_index(drop=True) for index, row in metadata.iterrows(): optical_path = os.path.join(data_dir, row.optical_path) optical = self._read_image(optical_path).astype(np.float32) # CxHxW label = int(row.label) sample = { "optical": optical, "label": label, "optical_channel_wv": optical_channel_wv, "spatial_resolution": spatial_resolution, } yield f"{index}", sample def _read_image(self, image_path): """Read tiff image from image_path Args: image_path: Image path to read from Return: image: C, H, W numpy array image """ image = tifffile.imread(image_path) if len(image.shape) == 3: image = np.transpose(image, (2, 0, 1)) return image