Upload align_scannetpp.py
Browse files- align_scannetpp.py +227 -0
align_scannetpp.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import open3d as o3d
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
|
5 |
+
def align_scene_to_z_up(pcd, save_pcd_path=None, save_transform_path=None, visualize=False, fit_ground=True):
|
6 |
+
"""
|
7 |
+
将点云扫描转换为Z轴向上对齐,并尝试将墙壁对齐到X-Y平面
|
8 |
+
|
9 |
+
参数:
|
10 |
+
points (np.ndarray): (N, 3) 点云数据
|
11 |
+
visualize (bool): 是否可视化结果
|
12 |
+
|
13 |
+
返回:
|
14 |
+
aligned_points (np.ndarray): 对齐后的点云
|
15 |
+
transform_matrix (np.ndarray): 应用的4x4变换矩阵
|
16 |
+
"""
|
17 |
+
points = np.asarray(pcd.points)
|
18 |
+
centroid = np.mean(points, axis=0)
|
19 |
+
distance_threshold = 0.02 # 动态距离阈值
|
20 |
+
R_ground = np.eye(3) # Initialize ground rotation matrix
|
21 |
+
if fit_ground:
|
22 |
+
plane_model, ground_inliers = pcd.segment_plane(
|
23 |
+
distance_threshold=distance_threshold,
|
24 |
+
ransac_n=3,
|
25 |
+
num_iterations=1000
|
26 |
+
)
|
27 |
+
[a, b, c, d] = plane_model
|
28 |
+
ground_normal = np.array([a, b, c])
|
29 |
+
# print('ground_normal:', ground_normal)
|
30 |
+
# 可视化地面点云
|
31 |
+
ground_cloud = pcd.select_by_index(ground_inliers)
|
32 |
+
ground_cloud.paint_uniform_color([1, 0, 0]) # 红色表示地面
|
33 |
+
if visualize:
|
34 |
+
o3d.visualization.draw_geometries([ground_cloud])
|
35 |
+
|
36 |
+
# 3. 计算旋转矩阵使地面法向量对齐到Z轴
|
37 |
+
z_axis = np.array([0, 0, 1])
|
38 |
+
ground_normal = ground_normal / np.linalg.norm(ground_normal)
|
39 |
+
|
40 |
+
# 计算旋转轴和角度
|
41 |
+
rotation_axis = np.cross(ground_normal, z_axis)
|
42 |
+
if np.linalg.norm(rotation_axis) < 1e-6:
|
43 |
+
rotation_axis = np.array([0, 1, 0]) # 避免零向量
|
44 |
+
else:
|
45 |
+
rotation_axis = rotation_axis / np.linalg.norm(rotation_axis)
|
46 |
+
|
47 |
+
cos_theta = np.dot(ground_normal, z_axis)
|
48 |
+
angle = np.arccos(np.clip(cos_theta, -1.0, 1.0))
|
49 |
+
|
50 |
+
# 使用罗德里格斯公式计算旋转矩阵
|
51 |
+
K = np.array([
|
52 |
+
[0, -rotation_axis[2], rotation_axis[1]],
|
53 |
+
[rotation_axis[2], 0, -rotation_axis[0]],
|
54 |
+
[-rotation_axis[1], rotation_axis[0], 0]
|
55 |
+
])
|
56 |
+
R_ground = np.eye(3) + np.sin(angle) * K + (1 - np.cos(angle)) * (K @ K)
|
57 |
+
|
58 |
+
# [Alternate] concise method
|
59 |
+
# from scipy.spatial.transform import Rotation as R
|
60 |
+
# R_ground = R.from_rotvec(rotation_axis * angle).as_matrix()
|
61 |
+
|
62 |
+
# 4. 应用地面旋转
|
63 |
+
centered_points = points - centroid
|
64 |
+
ground_rotated = (R_ground @ centered_points.T).T
|
65 |
+
|
66 |
+
# 5. 检测墙壁平面(垂直平面)
|
67 |
+
all_indices = np.arange(len(points))
|
68 |
+
non_ground_indices = np.setdiff1d(all_indices, ground_inliers)
|
69 |
+
non_ground_points = ground_rotated[non_ground_indices]
|
70 |
+
|
71 |
+
# 创建临时点云用于墙壁检测
|
72 |
+
temp_pcd = o3d.geometry.PointCloud()
|
73 |
+
temp_pcd.points = o3d.utility.Vector3dVector(non_ground_points)
|
74 |
+
remaining_pcd = temp_pcd
|
75 |
+
else:
|
76 |
+
# already z up
|
77 |
+
remaining_pcd = pcd
|
78 |
+
|
79 |
+
wall_planes = []
|
80 |
+
wall_directions = []
|
81 |
+
max_points = 0
|
82 |
+
best_direction = None
|
83 |
+
R_walls = np.eye(3)
|
84 |
+
# 检测多个墙壁平面
|
85 |
+
for _ in range(6):
|
86 |
+
if len(remaining_pcd.points) < 100:
|
87 |
+
break
|
88 |
+
|
89 |
+
plane_model, inliers = remaining_pcd.segment_plane(
|
90 |
+
distance_threshold=distance_threshold,
|
91 |
+
ransac_n=3,
|
92 |
+
num_iterations=1000
|
93 |
+
)
|
94 |
+
|
95 |
+
wall_cloud = remaining_pcd.select_by_index(inliers)
|
96 |
+
wall_cloud.paint_uniform_color([1, 0, 0]) # 红色表示地面
|
97 |
+
if visualize:
|
98 |
+
o3d.visualization.draw_geometries([wall_cloud])
|
99 |
+
|
100 |
+
[a, b, c, d] = plane_model
|
101 |
+
normal = np.array([a, b, c])
|
102 |
+
|
103 |
+
# 检查是否为垂直平面(法向量的Z分量接近0)
|
104 |
+
if abs(normal[2]) < 0.1 and np.linalg.norm(normal[:2]) > 0.5:
|
105 |
+
# 提取水平方向
|
106 |
+
horizontal_dir = normal[:2] / np.linalg.norm(normal[:2])
|
107 |
+
wall_directions = horizontal_dir
|
108 |
+
# print('wall direction',normal)
|
109 |
+
if max_points < len(inliers):
|
110 |
+
max_points = len(inliers)
|
111 |
+
# print(max_points)
|
112 |
+
best_direction = wall_directions
|
113 |
+
# 计算最佳方向的旋转角度
|
114 |
+
angle = np.arctan2(best_direction[1], best_direction[0])
|
115 |
+
|
116 |
+
# 创建最终的旋转矩阵
|
117 |
+
R_walls = np.array([
|
118 |
+
[np.cos(-angle), -np.sin(-angle), 0],
|
119 |
+
[np.sin(-angle), np.cos(-angle), 0],
|
120 |
+
[0, 0, 1]
|
121 |
+
])
|
122 |
+
|
123 |
+
remaining_pcd = remaining_pcd.select_by_index(inliers, invert=True)
|
124 |
+
|
125 |
+
|
126 |
+
# 8. 创建变换矩阵(旋转 + 平移)
|
127 |
+
if fit_ground:
|
128 |
+
# Compose the transformations: first ground rotation, then wall rotation
|
129 |
+
combined_rotation = R_walls @ R_ground
|
130 |
+
transform_matrix = np.eye(4)
|
131 |
+
transform_matrix[:3, :3] = combined_rotation
|
132 |
+
transform_matrix[:3, 3] = -combined_rotation @ centroid
|
133 |
+
else:
|
134 |
+
# Only wall rotation
|
135 |
+
transform_matrix = np.eye(4)
|
136 |
+
transform_matrix[:3, :3] = R_walls
|
137 |
+
transform_matrix[:3, 3] = -R_walls @ centroid # 平移使中心到原点
|
138 |
+
|
139 |
+
# 9. 应用变换
|
140 |
+
aligned_points = (transform_matrix[:3, :3] @ points.T + transform_matrix[:3, 3:4]).T
|
141 |
+
|
142 |
+
# 10. 创建对齐后的点云
|
143 |
+
aligned_pcd = o3d.geometry.PointCloud()
|
144 |
+
aligned_pcd.points = o3d.utility.Vector3dVector(aligned_points)
|
145 |
+
|
146 |
+
if pcd.colors:
|
147 |
+
aligned_pcd.colors = pcd.colors
|
148 |
+
|
149 |
+
# 11. 保存结果
|
150 |
+
if save_pcd_path:
|
151 |
+
o3d.io.write_point_cloud(save_pcd_path, aligned_pcd)
|
152 |
+
|
153 |
+
if save_transform_path:
|
154 |
+
np.savetxt(save_transform_path, transform_matrix, fmt='%.8f')
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
return aligned_pcd, transform_matrix
|
159 |
+
|
160 |
+
"""创建4x4变换矩阵"""
|
161 |
+
transform = np.eye(4)
|
162 |
+
transform[:3, :3] = rotation_matrix
|
163 |
+
return transform
|
164 |
+
|
165 |
+
def visualize_alignment(pcd_orig, pcd_aligned):
|
166 |
+
"""可视化原始点云和对齐后的点云"""
|
167 |
+
pcd_orig.paint_uniform_color([1, 0, 0]) # 红色为原始点云
|
168 |
+
pcd_aligned.paint_uniform_color([0, 1, 0]) # 绿色为对齐后点云
|
169 |
+
|
170 |
+
# 创建坐标系
|
171 |
+
coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=1.0)
|
172 |
+
|
173 |
+
o3d.visualization.draw_geometries([pcd_orig, pcd_aligned, coord_frame])
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
npy_dir = '/media/vivo/vivo/Datasets/ScanNetpp/ScanNetpp_preprocessed/train/'
|
178 |
+
scene_names = os.listdir(npy_dir)
|
179 |
+
|
180 |
+
for scene_name in scene_names:
|
181 |
+
if scene_name.endswith('.zip'):
|
182 |
+
continue
|
183 |
+
|
184 |
+
print(scene_name)
|
185 |
+
|
186 |
+
scene_dir = os.path.join(npy_dir, scene_name)
|
187 |
+
|
188 |
+
npy_path = os.path.join(scene_dir, 'coord.npy')
|
189 |
+
points = np.load(npy_path) # (N, 3) 或 (N, 6)
|
190 |
+
|
191 |
+
# 创建点云对象
|
192 |
+
pcd = o3d.geometry.PointCloud()
|
193 |
+
pcd.points = o3d.utility.Vector3dVector(points[:, :3])
|
194 |
+
|
195 |
+
if points.shape[1] == 6:
|
196 |
+
pcd.colors = o3d.utility.Vector3dVector(points[:, 3:6]) # 如果包含 RGB
|
197 |
+
|
198 |
+
|
199 |
+
# 执行对齐
|
200 |
+
transformed_pcd, transform = align_scene_to_z_up(
|
201 |
+
pcd,
|
202 |
+
# save_transform_path=os.path.join(scene_dir, "transform.txt"),
|
203 |
+
visualize=False,
|
204 |
+
fit_ground=False
|
205 |
+
)
|
206 |
+
|
207 |
+
aligned_points = np.asarray(transformed_pcd.points)
|
208 |
+
|
209 |
+
# scale point cloud
|
210 |
+
# min_z = np.min(aligned_points[:, 2])
|
211 |
+
# max_z = np.max(aligned_points[:, 2])
|
212 |
+
# height = max_z - min_z
|
213 |
+
# print(f"Original height: {height}")
|
214 |
+
# estimated_height = 2.5
|
215 |
+
# scale = estimated_height / height
|
216 |
+
# print(f"Scale factor: {scale}")
|
217 |
+
|
218 |
+
# aligned_points_scaled = aligned_points * scale
|
219 |
+
|
220 |
+
transformed_pcd.points = o3d.utility.Vector3dVector(aligned_points)
|
221 |
+
|
222 |
+
# 保存为对齐后的 PLY 文件
|
223 |
+
# aligned_ply_path = os.path.join(scene_dir, scene_name + ".ply")
|
224 |
+
# o3d.io.write_point_cloud(aligned_ply_path, transformed_pcd)
|
225 |
+
|
226 |
+
# 也可以保存为对齐后的 npy
|
227 |
+
np.save(os.path.join(scene_dir, "coord_align.npy"), aligned_points)
|