Add files using upload-large-folder tool
Browse files- all_configs.yaml +111 -0
- best/best_loss.pth +3 -0
- best/best_loss.txt +194 -0
- checkpoints/00570.model.pth +3 -0
- checkpoints/00570.solver.tar +3 -0
- events.out.tfevents.1750714448.dgx4.plus.discoverer.bg.3074541.0 +3 -0
- events.out.tfevents.1750770533.dgx4.plus.discoverer.bg.3629272.0 +3 -0
- spatialLM_scannetpp.yaml +52 -0
all_configs.yaml
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BASE:
|
2 |
+
- ''
|
3 |
+
DATA:
|
4 |
+
test:
|
5 |
+
angle: &id001
|
6 |
+
- 180
|
7 |
+
- 180
|
8 |
+
- 180
|
9 |
+
batch_size: 1
|
10 |
+
codetemplate: utils/code_template.txt
|
11 |
+
depth: 5
|
12 |
+
disable: false
|
13 |
+
distort: false
|
14 |
+
filelist: data/ScanNetpp.txt
|
15 |
+
flip: &id002
|
16 |
+
- 0.0
|
17 |
+
- 0.0
|
18 |
+
- 0.0
|
19 |
+
full_depth: 2
|
20 |
+
interval: &id003
|
21 |
+
- 1
|
22 |
+
- 1
|
23 |
+
- 1
|
24 |
+
jitter: 0.0
|
25 |
+
location: /home/runyi_yang/Gen3D/dataset/ScanNetpp-SpatialLM/
|
26 |
+
name: SpatialLM
|
27 |
+
num_workers: 0
|
28 |
+
orient_normal: ''
|
29 |
+
pin_memory: true
|
30 |
+
scale: 0.0
|
31 |
+
shuffle: false
|
32 |
+
take: -1
|
33 |
+
tokenizer_name: manycore-research/SpatialLM-Llama-1B
|
34 |
+
uniform: false
|
35 |
+
train:
|
36 |
+
angle: *id001
|
37 |
+
batch_size: 2
|
38 |
+
codetemplate: utils/code_template.txt
|
39 |
+
config_path: checkpoints/SpatialLM-Llama-1B
|
40 |
+
depth: 5
|
41 |
+
disable: false
|
42 |
+
distort: false
|
43 |
+
filelist: data/ScanNetpp.txt
|
44 |
+
flip: *id002
|
45 |
+
full_depth: 2
|
46 |
+
interval: *id003
|
47 |
+
jitter: 0.0
|
48 |
+
location: /home/runyi_yang/Gen3D/dataset/ScanNetpp-SpatialLM/
|
49 |
+
name: SpatialLM
|
50 |
+
num_workers: 16
|
51 |
+
orient_normal: ''
|
52 |
+
pin_memory: true
|
53 |
+
scale: 0.0
|
54 |
+
shuffle: true
|
55 |
+
take: -1
|
56 |
+
tokenizer_name: manycore-research/SpatialLM-Llama-1B
|
57 |
+
uniform: false
|
58 |
+
LOSS:
|
59 |
+
name: ''
|
60 |
+
MODEL:
|
61 |
+
channel: 3
|
62 |
+
config_path: checkpoints/SpatialLM-Llama-1B
|
63 |
+
feature: ND
|
64 |
+
find_unused_parameters: true
|
65 |
+
model_name: SpatialLMLlama
|
66 |
+
name: ''
|
67 |
+
nempty: false
|
68 |
+
sync_bn: false
|
69 |
+
tokenizer_name: manycore-research/SpatialLM-Llama-1B
|
70 |
+
use_checkpoint: false
|
71 |
+
SOLVER:
|
72 |
+
alias: ''
|
73 |
+
best_val: min:loss
|
74 |
+
ckpt: ''
|
75 |
+
ckpt_num: 5
|
76 |
+
clip_grad: -1.0
|
77 |
+
empty_cache: 50
|
78 |
+
eval_epoch: 1
|
79 |
+
eval_step: -1
|
80 |
+
expand_ckpt: false
|
81 |
+
gamma: 0.1
|
82 |
+
gpu:
|
83 |
+
- 0
|
84 |
+
- 1
|
85 |
+
- 2
|
86 |
+
log_per_iter: 5
|
87 |
+
logdir: logs/spatialLM_scannetpp
|
88 |
+
lr: 0.0001
|
89 |
+
lr_min: 0.0001
|
90 |
+
lr_power: 0.9
|
91 |
+
lr_type: cos
|
92 |
+
max_epoch: 1500
|
93 |
+
milestones:
|
94 |
+
- 120
|
95 |
+
- 180
|
96 |
+
port: 10001
|
97 |
+
progress_bar: true
|
98 |
+
rand_seed: 0
|
99 |
+
run: train
|
100 |
+
step_size:
|
101 |
+
- 160
|
102 |
+
- 240
|
103 |
+
test_every_epoch: 1
|
104 |
+
type: adamw
|
105 |
+
use_amp: true
|
106 |
+
warmup_epoch: 20
|
107 |
+
warmup_init: 0.001
|
108 |
+
weight_decay: 0.01
|
109 |
+
zero_grad_to_none: false
|
110 |
+
SYS:
|
111 |
+
cmds: python main_spatiallm.py --config configs/runyi/spatialLM_scannetpp.yaml
|
best/best_loss.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:546b922e29f9ca163b01823fae8e899d3b5f1747d0d89dd4a9449371d3af6bc0
|
3 |
+
size 4989519750
|
best/best_loss.txt
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
New best loss: 8.768831
|
2 |
+
New best loss: 7.910408
|
3 |
+
New best loss: 6.804373
|
4 |
+
New best loss: 6.068866
|
5 |
+
New best loss: 5.416229
|
6 |
+
New best loss: 5.053037
|
7 |
+
New best loss: 4.527080
|
8 |
+
Epoch 1 - New best epoch loss: 6.403154
|
9 |
+
Epoch 2 - New best epoch loss: 4.722594
|
10 |
+
Epoch 3 - New best epoch loss: 4.392240
|
11 |
+
Epoch 4 - New best epoch loss: 4.206342
|
12 |
+
Epoch 5 - New best epoch loss: 4.060041
|
13 |
+
Epoch 6 - New best epoch loss: 3.556629
|
14 |
+
Epoch 7 - New best epoch loss: 3.335292
|
15 |
+
Epoch 8 - New best epoch loss: 3.186932
|
16 |
+
Epoch 9 - New best epoch loss: 3.054582
|
17 |
+
Epoch 10 - New best epoch loss: 2.961526
|
18 |
+
Epoch 11 - New best epoch loss: 2.919272
|
19 |
+
Epoch 12 - New best epoch loss: 2.905780
|
20 |
+
Epoch 13 - New best epoch loss: 2.839159
|
21 |
+
Epoch 14 - New best epoch loss: 2.815196
|
22 |
+
Epoch 15 - New best epoch loss: 2.647150
|
23 |
+
Epoch 16 - New best epoch loss: 2.584679
|
24 |
+
Epoch 17 - New best epoch loss: 2.577846
|
25 |
+
Epoch 18 - New best epoch loss: 2.442734
|
26 |
+
Epoch 19 - New best epoch loss: 2.338746
|
27 |
+
Epoch 20 - New best epoch loss: 2.212231
|
28 |
+
Epoch 21 - New best epoch loss: 2.032574
|
29 |
+
Epoch 22 - New best epoch loss: 1.976113
|
30 |
+
Epoch 23 - New best epoch loss: 1.874807
|
31 |
+
Epoch 24 - New best epoch loss: 1.858073
|
32 |
+
Epoch 25 - New best epoch loss: 1.847367
|
33 |
+
Epoch 26 - New best epoch loss: 1.795330
|
34 |
+
Epoch 27 - New best epoch loss: 1.739876
|
35 |
+
Epoch 28 - New best epoch loss: 1.710324
|
36 |
+
Epoch 29 - New best epoch loss: 1.679662
|
37 |
+
Epoch 31 - New best epoch loss: 1.639029
|
38 |
+
Epoch 36 - New best epoch loss: 1.627906
|
39 |
+
Epoch 37 - New best epoch loss: 1.569179
|
40 |
+
Epoch 38 - New best epoch loss: 1.524848
|
41 |
+
Epoch 40 - New best epoch loss: 1.507860
|
42 |
+
Epoch 43 - New best epoch loss: 1.488921
|
43 |
+
Epoch 44 - New best epoch loss: 1.481632
|
44 |
+
Epoch 45 - New best epoch loss: 1.472959
|
45 |
+
Epoch 46 - New best epoch loss: 1.445820
|
46 |
+
Epoch 49 - New best epoch loss: 1.424756
|
47 |
+
Epoch 50 - New best epoch loss: 1.411044
|
48 |
+
Epoch 51 - New best epoch loss: 1.395253
|
49 |
+
Epoch 53 - New best epoch loss: 1.375894
|
50 |
+
Epoch 58 - New best epoch loss: 1.356351
|
51 |
+
Epoch 63 - New best epoch loss: 1.343870
|
52 |
+
Epoch 66 - New best epoch loss: 1.341170
|
53 |
+
Epoch 67 - New best epoch loss: 1.336127
|
54 |
+
Epoch 68 - New best epoch loss: 1.324269
|
55 |
+
Epoch 69 - New best epoch loss: 1.306407
|
56 |
+
Epoch 70 - New best epoch loss: 1.304688
|
57 |
+
Epoch 71 - New best epoch loss: 1.303475
|
58 |
+
Epoch 72 - New best epoch loss: 1.297826
|
59 |
+
Epoch 75 - New best epoch loss: 1.286101
|
60 |
+
Epoch 78 - New best epoch loss: 1.278212
|
61 |
+
Epoch 79 - New best epoch loss: 1.268077
|
62 |
+
Epoch 81 - New best epoch loss: 1.257994
|
63 |
+
Epoch 86 - New best epoch loss: 1.247838
|
64 |
+
Epoch 87 - New best epoch loss: 1.241101
|
65 |
+
Epoch 91 - New best epoch loss: 1.238606
|
66 |
+
Epoch 92 - New best epoch loss: 1.238250
|
67 |
+
Epoch 95 - New best epoch loss: 1.225926
|
68 |
+
Epoch 97 - New best epoch loss: 1.222177
|
69 |
+
Epoch 98 - New best epoch loss: 1.215219
|
70 |
+
Epoch 104 - New best epoch loss: 1.212296
|
71 |
+
Epoch 105 - New best epoch loss: 1.205576
|
72 |
+
Epoch 106 - New best epoch loss: 1.197628
|
73 |
+
Epoch 107 - New best epoch loss: 1.192027
|
74 |
+
Epoch 111 - New best epoch loss: 1.191832
|
75 |
+
Epoch 112 - New best epoch loss: 1.186528
|
76 |
+
Epoch 115 - New best epoch loss: 1.176364
|
77 |
+
Epoch 117 - New best epoch loss: 1.168163
|
78 |
+
Epoch 119 - New best epoch loss: 1.165005
|
79 |
+
Epoch 128 - New best epoch loss: 1.152950
|
80 |
+
Epoch 129 - New best epoch loss: 1.142698
|
81 |
+
Epoch 136 - New best epoch loss: 1.136441
|
82 |
+
Epoch 140 - New best epoch loss: 1.132770
|
83 |
+
Epoch 141 - New best epoch loss: 1.125236
|
84 |
+
Epoch 147 - New best epoch loss: 1.121195
|
85 |
+
Epoch 150 - New best epoch loss: 1.109871
|
86 |
+
Epoch 152 - New best epoch loss: 1.099315
|
87 |
+
Epoch 155 - New best epoch loss: 1.098736
|
88 |
+
Epoch 158 - New best epoch loss: 1.089501
|
89 |
+
Epoch 159 - New best epoch loss: 1.089129
|
90 |
+
Epoch 160 - New best epoch loss: 1.076973
|
91 |
+
Epoch 161 - New best epoch loss: 1.071318
|
92 |
+
Epoch 167 - New best epoch loss: 1.069940
|
93 |
+
Epoch 168 - New best epoch loss: 1.063515
|
94 |
+
Epoch 171 - New best epoch loss: 1.059205
|
95 |
+
Epoch 173 - New best epoch loss: 1.055928
|
96 |
+
Epoch 176 - New best epoch loss: 1.037312
|
97 |
+
Epoch 183 - New best epoch loss: 1.036732
|
98 |
+
Epoch 184 - New best epoch loss: 1.029775
|
99 |
+
Epoch 185 - New best epoch loss: 1.025906
|
100 |
+
Epoch 187 - New best epoch loss: 1.022229
|
101 |
+
Epoch 189 - New best epoch loss: 1.014456
|
102 |
+
Epoch 190 - New best epoch loss: 1.011433
|
103 |
+
Epoch 191 - New best epoch loss: 1.008803
|
104 |
+
Epoch 192 - New best epoch loss: 1.008417
|
105 |
+
Epoch 195 - New best epoch loss: 0.998204
|
106 |
+
Epoch 199 - New best epoch loss: 0.996210
|
107 |
+
Epoch 200 - New best epoch loss: 0.987192
|
108 |
+
Epoch 201 - New best epoch loss: 0.984024
|
109 |
+
Epoch 203 - New best epoch loss: 0.973925
|
110 |
+
Epoch 208 - New best epoch loss: 0.973756
|
111 |
+
Epoch 209 - New best epoch loss: 0.973136
|
112 |
+
Epoch 210 - New best epoch loss: 0.945097
|
113 |
+
Epoch 217 - New best epoch loss: 0.936184
|
114 |
+
Epoch 220 - New best epoch loss: 0.933823
|
115 |
+
Epoch 223 - New best epoch loss: 0.919811
|
116 |
+
Epoch 228 - New best epoch loss: 0.905661
|
117 |
+
Epoch 229 - New best epoch loss: 0.905203
|
118 |
+
Epoch 230 - New best epoch loss: 0.901975
|
119 |
+
Epoch 232 - New best epoch loss: 0.901890
|
120 |
+
Epoch 236 - New best epoch loss: 0.898593
|
121 |
+
Epoch 237 - New best epoch loss: 0.891758
|
122 |
+
Epoch 238 - New best epoch loss: 0.886407
|
123 |
+
Epoch 242 - New best epoch loss: 0.885633
|
124 |
+
Epoch 244 - New best epoch loss: 0.873728
|
125 |
+
Epoch 246 - New best epoch loss: 0.864800
|
126 |
+
Epoch 247 - New best epoch loss: 0.855866
|
127 |
+
Epoch 248 - New best epoch loss: 0.844989
|
128 |
+
Epoch 254 - New best epoch loss: 0.834004
|
129 |
+
Epoch 263 - New best epoch loss: 0.823090
|
130 |
+
Epoch 265 - New best epoch loss: 0.817603
|
131 |
+
Epoch 266 - New best epoch loss: 0.814879
|
132 |
+
Epoch 269 - New best epoch loss: 0.803147
|
133 |
+
Epoch 271 - New best epoch loss: 0.791444
|
134 |
+
Epoch 279 - New best epoch loss: 0.783689
|
135 |
+
Epoch 280 - New best epoch loss: 0.783106
|
136 |
+
Epoch 282 - New best epoch loss: 0.764783
|
137 |
+
Epoch 286 - New best epoch loss: 0.764176
|
138 |
+
Epoch 288 - New best epoch loss: 0.762750
|
139 |
+
Epoch 289 - New best epoch loss: 0.740439
|
140 |
+
Epoch 299 - New best epoch loss: 0.738873
|
141 |
+
Epoch 301 - New best epoch loss: 0.729100
|
142 |
+
Epoch 303 - New best epoch loss: 0.719293
|
143 |
+
Epoch 304 - New best epoch loss: 0.713386
|
144 |
+
Epoch 305 - New best epoch loss: 0.708755
|
145 |
+
Epoch 310 - New best epoch loss: 0.687669
|
146 |
+
Epoch 321 - New best epoch loss: 0.684264
|
147 |
+
Epoch 324 - New best epoch loss: 0.679451
|
148 |
+
Epoch 326 - New best epoch loss: 0.672125
|
149 |
+
Epoch 327 - New best epoch loss: 0.644865
|
150 |
+
Epoch 339 - New best epoch loss: 0.644511
|
151 |
+
Epoch 340 - New best epoch loss: 0.641004
|
152 |
+
Epoch 347 - New best epoch loss: 0.626519
|
153 |
+
Epoch 349 - New best epoch loss: 0.618889
|
154 |
+
Epoch 355 - New best epoch loss: 0.596862
|
155 |
+
Epoch 359 - New best epoch loss: 0.591170
|
156 |
+
Epoch 370 - New best epoch loss: 0.584298
|
157 |
+
Epoch 371 - New best epoch loss: 0.573251
|
158 |
+
Epoch 375 - New best epoch loss: 0.549142
|
159 |
+
Epoch 386 - New best epoch loss: 0.546385
|
160 |
+
Epoch 390 - New best epoch loss: 0.524576
|
161 |
+
Epoch 400 - New best epoch loss: 0.519864
|
162 |
+
Epoch 404 - New best epoch loss: 0.516361
|
163 |
+
Epoch 407 - New best epoch loss: 0.508423
|
164 |
+
Epoch 410 - New best epoch loss: 0.503608
|
165 |
+
Epoch 415 - New best epoch loss: 0.483310
|
166 |
+
Epoch 432 - New best epoch loss: 0.474851
|
167 |
+
Epoch 435 - New best epoch loss: 0.470614
|
168 |
+
Epoch 437 - New best epoch loss: 0.464458
|
169 |
+
Epoch 438 - New best epoch loss: 0.471630
|
170 |
+
Epoch 440 - New best epoch loss: 0.457099
|
171 |
+
Epoch 444 - New best epoch loss: 0.451216
|
172 |
+
Epoch 451 - New best epoch loss: 0.448762
|
173 |
+
Epoch 455 - New best epoch loss: 0.428194
|
174 |
+
Epoch 468 - New best epoch loss: 0.426060
|
175 |
+
Epoch 471 - New best epoch loss: 0.424199
|
176 |
+
Epoch 472 - New best epoch loss: 0.423968
|
177 |
+
Epoch 473 - New best epoch loss: 0.414455
|
178 |
+
Epoch 474 - New best epoch loss: 0.410689
|
179 |
+
Epoch 486 - New best epoch loss: 0.399772
|
180 |
+
Epoch 490 - New best epoch loss: 0.397970
|
181 |
+
Epoch 500 - New best epoch loss: 0.377831
|
182 |
+
Epoch 505 - New best epoch loss: 0.365189
|
183 |
+
Epoch 506 - New best epoch loss: 0.364544
|
184 |
+
Epoch 509 - New best epoch loss: 0.362200
|
185 |
+
Epoch 519 - New best epoch loss: 0.362183
|
186 |
+
Epoch 520 - New best epoch loss: 0.360367
|
187 |
+
Epoch 527 - New best epoch loss: 0.355875
|
188 |
+
Epoch 529 - New best epoch loss: 0.347712
|
189 |
+
Epoch 536 - New best epoch loss: 0.336020
|
190 |
+
Epoch 543 - New best epoch loss: 0.335477
|
191 |
+
Epoch 551 - New best epoch loss: 0.323956
|
192 |
+
Epoch 558 - New best epoch loss: 0.312646
|
193 |
+
Epoch 559 - New best epoch loss: 0.307570
|
194 |
+
Epoch 568 - New best epoch loss: 0.302366
|
checkpoints/00570.model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97c3daacb75baffa8ba3c1adca696ffa023dba0bc02ced8c398f303168c678d2
|
3 |
+
size 4989520210
|
checkpoints/00570.solver.tar
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9b7e5eae941eca20e159a113ac9c852320cece4040790498d29a4a94a6c818e
|
3 |
+
size 5081922384
|
events.out.tfevents.1750714448.dgx4.plus.discoverer.bg.3074541.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6b638201527f2273a6a3eda565a5c0f10c15092f12e73086aa0af3073036ea8
|
3 |
+
size 62635
|
events.out.tfevents.1750770533.dgx4.plus.discoverer.bg.3629272.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f85ee7392e9086b63a2716527d92af0a3b40b7b89f363cb4b48b332a2fc52e90
|
3 |
+
size 19240
|
spatialLM_scannetpp.yaml
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SOLVER:
|
2 |
+
gpu: 0,1,2,
|
3 |
+
run: train
|
4 |
+
logdir: logs/spatialLM_scannetpp
|
5 |
+
max_epoch: 1500
|
6 |
+
test_every_epoch: 1
|
7 |
+
log_per_iter: 5
|
8 |
+
ckpt_num: 5
|
9 |
+
expand_ckpt: False
|
10 |
+
port: 10001
|
11 |
+
|
12 |
+
# optimizer
|
13 |
+
type: adamw
|
14 |
+
weight_decay: 0.01 # default value of adamw
|
15 |
+
lr: 0.0001 # default value of adamw
|
16 |
+
rand_seed: 0
|
17 |
+
use_amp: True
|
18 |
+
|
19 |
+
# learning rate
|
20 |
+
lr_type: cos
|
21 |
+
step_size: (160,240)
|
22 |
+
|
23 |
+
DATA:
|
24 |
+
train:
|
25 |
+
name: &name SpatialLM
|
26 |
+
# data loading
|
27 |
+
location: &location /home/runyi_yang/Gen3D/dataset/ScanNetpp-SpatialLM/
|
28 |
+
filelist: &filelist data/ScanNetpp.txt
|
29 |
+
codetemplate: &codetemplate utils/code_template.txt
|
30 |
+
tokenizer_name: &tokenizer_name manycore-research/SpatialLM-Llama-1B # meta-llama/Llama-3.2-1B-Instruct
|
31 |
+
config_path: &config_path checkpoints/SpatialLM-Llama-1B
|
32 |
+
batch_size: 2
|
33 |
+
shuffle: True
|
34 |
+
num_workers: 16
|
35 |
+
|
36 |
+
test:
|
37 |
+
name: *name
|
38 |
+
# data loading
|
39 |
+
location: *location
|
40 |
+
filelist: data/ScanNetpp.txt
|
41 |
+
codetemplate: *codetemplate
|
42 |
+
tokenizer_name: *tokenizer_name
|
43 |
+
batch_size: 1
|
44 |
+
shuffle: False
|
45 |
+
num_workers: 0
|
46 |
+
|
47 |
+
|
48 |
+
MODEL:
|
49 |
+
find_unused_parameters: True
|
50 |
+
model_name: SpatialLMLlama
|
51 |
+
tokenizer_name: *tokenizer_name
|
52 |
+
config_path: *config_path
|