Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
File size: 3,952 Bytes
ce7b18a
64ddd10
ce7b18a
 
047a764
 
ce7b18a
 
 
 
047a764
6f6c221
 
 
ce7b18a
 
 
 
047a764
ce7b18a
c219644
 
 
 
6aaccf0
 
ce7b18a
 
26a3c3d
 
ce7b18a
26a3c3d
 
 
 
ce7b18a
 
 
 
 
 
 
 
a0c69cd
 
 
 
 
fe3bda7
 
a0c69cd
 
 
 
 
fe3bda7
 
 
 
 
 
 
 
a0c69cd
 
 
 
 
 
 
fe3bda7
a0c69cd
 
fe3bda7
 
 
a0c69cd
 
fe3bda7
 
 
 
 
a0c69cd
 
51d3725
fe3bda7
a0c69cd
fe3bda7
 
 
a0c69cd
 
 
fe3bda7
 
51d3725
fe3bda7
 
a0c69cd
 
 
 
 
 
 
 
 
 
 
 
dbb163b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
license: apache-2.0
dataset_info:
  features:
  - name: id
    dtype: string
  - name: hypothesis
    sequence: string
  - name: transcription
    dtype: string
  - name: am_score
    sequence: float64
  - name: source
    dtype: string
  - name: input1
    dtype: string
  - name: hypothesis_concatenated
    dtype: string
  - name: score
    sequence: float64
  - name: dummy_str
    dtype: string
  - name: dummy_list
    sequence: 'null'
  - name: prompt
    dtype: string
  splits:
  - name: train
    num_bytes: 467702189
    num_examples: 281082
  - name: test
    num_bytes: 22010520
    num_examples: 16108
  download_size: 125505146
  dataset_size: 489712709
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
---

# Dataset Name: Pilot dataset for Multi-domain ASR corrections

## Description

This dataset is a pilot version of a larger dataset for automatic speech recognition (ASR) corrections across multiple domains. 
It contains paired hypotheses and corrected transcriptions for various ASR tasks consolidated from [PeacefulData/HyPoradise-v0](https://huggingface.co/datasets/PeacefulData/HyPoradise-v0)

## Structure

### Data Split

The dataset is divided into training and test splits:

- Training Data: 281,082 entries
  - Approximately 6,255,198 tokens for transcriptions
  - Approximately 31,211,083 tokens for concatenated hypotheses
- Test Data: 16,108 entries
  - Approximately 327,750 tokens for transcriptions
  - Approximately 1,629,093 tokens for concatenated hypotheses

### Columns

- `hypothesis`: N-best hypothesis from beam search.
- `transcription`: Corrected asr transcription.
- `hypothesis_concatenated`: An alternative version of the text output.
- `source`: The source of the text entry, indicating the origin dataset.
- `prompt`: Instructional prompt for correction task
- `score`: An acoustic model score (not all entries have this).

### Source Datasets

The dataset combines entries from various sources:

- **Training Sources**:
  - `train_td3`: 50,000 entries
  - `train_other_500`: 50,000 entries
  - `train_cv`: 47,293 entries 
  - `train_lrs2`: 42,940 entries
  - `train_wsj_score`: 37,514 entries
  - `train_swbd`: 36,539 entries
  - `train_chime4`: 9,600 entries
  - `train_atis`: 3,964 entries
  - `train_coraal`: 3,232 entries
- **Test Sources**:
  - `test_ls_other`: 2,939 entries
  - `test_ls_clean`: 2,620 entries
  - `test_lrs2`: 2,259 entries
  - `test_swbd`: 2,000 entries
  - `test_cv`: 2,000 entries
  - `test_chime4`: 1,320 entries
  - `test_td3`: 1,155 entries  
  - `test_wsj_score`: 836 entries
  - `test_atis`: 809 entries
  - `test_coraal`: 170 entries


## Access

The dataset can be accessed and downloaded through the HuggingFace Datasets library. Use the following command to load the dataset:

```python
from datasets import load_dataset
dataset = load_dataset("PeacefulData/HyPoradise-pilot")
```

## Acknowledgments

This dataset is consolidated from the PeacefulData/HyPoradise-v0 dataset. Thanks to the original creators for making this data available.

### References

```bib
@inproceedings{yang2023generative,
  title={Generative speech recognition error correction with large language models and task-activating prompting},
  author={Yang, Chao-Han Huck and Gu, Yile and Liu, Yi-Chieh and Ghosh, Shalini and Bulyko, Ivan and Stolcke, Andreas},
  booktitle={2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)},
  pages={1--8},
  year={2023},
  organization={IEEE}
}
```

```bib
@inproceedings{chen2023hyporadise,
  title={HyPoradise: An Open Baseline for Generative Speech Recognition with Large Language Models},
  author={CHEN, CHEN and Hu, Yuchen and Yang, Chao-Han Huck and Siniscalchi, Sabato Marco and Chen, Pin-Yu and Chng, Ensiong},
  booktitle={Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year={2023}
}
```