Datasets:

ArXiv:
File size: 8,059 Bytes
7efdb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
786d264
7efdb70
786d264
7efdb70
786d264
 
7efdb70
786d264
 
7efdb70
786d264
7efdb70
 
786d264
7efdb70
786d264
7efdb70
786d264
7efdb70
 
786d264
7efdb70
 
 
 
 
 
 
 
 
786d264
7efdb70
786d264
7efdb70
decd0b4
786d264
 
 
5617e75
 
decd0b4
 
 
 
 
 
 
7efdb70
 
786d264
decd0b4
 
 
 
7efdb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
decd0b4
7efdb70
decd0b4
7efdb70
 
 
 
 
 
786d264
decd0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
786d264
 
 
 
 
 
 
 
decd0b4
 
 
 
786d264
 
 
 
 
 
 
 
 
 
 
 
 
decd0b4
 
 
 
 
5617e75
786d264
 
 
 
 
 
5617e75
 
decd0b4
 
5617e75
786d264
 
 
 
 
 
 
5617e75
 
 
 
 
 
 
decd0b4
786d264
5617e75
786d264
 
 
 
 
 
 
 
decd0b4
 
 
 
5617e75
786d264
 
 
 
 
 
 
 
decd0b4
 
 
 
5617e75
786d264
 
 
 
 
 
 
 
 
 
 
 
 
7efdb70
decd0b4
7efdb70
 
 
 
 
 
 
 
 
 
b4d2c5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

<div align="center">
<img src='https://cdn-uploads.huggingface.co/production/uploads/647773a1168cb428e00e9a8f/N8lP93rB6lL3iqzML4SKZ.png'  width=100px>

<h1 align="center"><b>On Path to Multimodal Generalist: Levels and Benchmarks</b></h1>
<p align="center">
<a href="https://generalist.top/">[πŸ“– Project]</a>
<a href="https://level.generalist.top">[πŸ† Leaderboard]</a>
<a href="https://xxxxx">[πŸ“„ Paper]</a>
<a href="https://huggingface.co/General-Level">[πŸ€— Dataset-HF]</a>
<a href="https://github.com/path2generalist/GeneralBench">[πŸ“ Dataset-Github]</a>
</p>


</div>


---
We divide our benchmark into two settings: **`open`** and **`closed`**.

<!-- This is the **`open benchmark`** of Generalist-Bench, where we release the full ground-truth annotations for all datasets.
It allows researchers to train and evaluate their models with access to the answers.

If you wish to thoroughly evaluate your model's performance, please use the
[πŸ‘‰ closed benchmark](https://huggingface.co/datasets/General-Level/General-Bench-Closeset), which comes with detailed usage instructions.

Final results will be updated on the [πŸ† Leaderboard](https://level.generalist.top). -->


This is the **`Closed benchmark`** of Generalist-Bench, where we release only the question annotationsβ€”**without ground-truth answers**β€”for all datasets.

You can follow the detailed [usage](#-usage) instructions to submit the resuls generate by your own model.

Final results will be updated on the [πŸ† Leaderboard](https://level.generalist.top).


If you’d like to train or evaluate your model with access to the full answers, please check out the [πŸ‘‰ open benchmark](https://huggingface.co/datasets/General-Level/General-Bench-Openset), where all ground-truth annotations are provided.









---

##  πŸ“• Table of Contents

- [✨ File Origanization Structure](#filestructure)
- [🍟 Usage](#usage)
- [🌐 General-Bench](#bench)
  - [πŸ• Capabilities and Domians Distribution](#distribution)
- [πŸ–ΌοΈ Image Task Taxonomy](#imagetaxonomy)
- [πŸ“½οΈ Video Task Taxonomy](#videotaxonomy)
- [πŸ“ž Audio Task Taxonomy](#audiotaxonomy)
- [πŸ’Ž 3D Task Taxonomy](#3dtaxonomy)
- [πŸ“š Language Task Taxonomy](#languagetaxonomy)





---
 
<span id='filestructure'/>

# ✨✨✨ **File Origanization Structure**

Here is the organization structure of the file system:

```

General-Bench

β”œβ”€β”€ Image

β”‚   β”œβ”€β”€ comprehension

β”‚   β”‚   β”œβ”€β”€ Bird-Detection

β”‚   β”‚   β”‚   β”œβ”€β”€ annotation.json

β”‚   β”‚   β”‚   └── images

β”‚   β”‚   β”‚       └── Acadian_Flycatcher_0070_29150.jpg

β”‚   β”‚   β”œβ”€β”€ Bottle-Anomaly-Detection

β”‚   β”‚   β”‚   β”œβ”€β”€ annotation.json

β”‚   β”‚   β”‚   └── images

β”‚   β”‚   └── ...

β”‚   └── generation

β”‚       └── Layout-to-Face-Image-Generation

β”‚           β”œβ”€β”€ annotation.json

β”‚           └── images

β”‚           └── ...

β”œβ”€β”€ Video

β”‚   β”œβ”€β”€ comprehension

β”‚   β”‚   └── Human-Object-Interaction-Video-Captioning

β”‚   β”‚       β”œβ”€β”€ annotation.json

β”‚   β”‚       └── videos

β”‚   β”‚       └── ...

β”‚   └── generation

β”‚       └── Scene-Image-to-Video-Generation

β”‚           β”œβ”€β”€ annotation.json

β”‚           └── videos

β”‚           └── ...

β”œβ”€β”€ 3d

β”‚   β”œβ”€β”€ comprehension

β”‚   β”‚   └── 3D-Furniture-Classification

β”‚   β”‚       β”œβ”€β”€ annotation.json

β”‚   β”‚       └── pointclouds

β”‚   β”‚       └── ...

β”‚   └── generation

β”‚       └── Text-to-3D-Living-and-Arts-Point-Cloud-Generation

β”‚           β”œβ”€β”€ annotation.json

β”‚           └── pointclouds

β”‚           └── ...

β”œβ”€β”€ Audio

β”‚   β”œβ”€β”€ comprehension

β”‚   β”‚   └── Accent-Classification

β”‚   β”‚       β”œβ”€β”€ annotation.json

β”‚   β”‚       └── audios

β”‚   β”‚       └── ...

β”‚   └── generation

β”‚       └── Video-To-Audio

β”‚           β”œβ”€β”€ annotation.json

β”‚           └── audios

β”‚           └── ...

β”œβ”€β”€ NLP

β”‚   β”œβ”€β”€ History-Question-Answering

β”‚   β”‚   └── annotation.json

β”‚   β”œβ”€β”€ Abstractive-Summarization

β”‚   β”‚   └── annotation.json

β”‚   └── ...



```


An illustrative example of file formats:


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c139d867eff857ea51caa8/RD3b7Jwu0dftVq-4KbpFr.png)


<span id='usage'/>

## 🍟🍟🍟 Usage 

Please download all the files in this repository. We also provide overview.json, which is an example of the format of our dataset.

xxxx


---





<span id='bench'/>



# 🌐🌐🌐 **General-Bench** 




A companion  massive multimodal benchmark dataset, encompasses a broader spectrum of skills, modalities, formats, and capabilities, including over **`700`** tasks and **`325K`** instances. 

<div align="center">
<img src='https://cdn-uploads.huggingface.co/production/uploads/647773a1168cb428e00e9a8f/d4TIWw3rlWuxpBCEpHYJB.jpeg'>
<p> Overview of General-Bench, which covers 145 skills for more than 700 tasks with over 325,800 samples under
comprehension and generation categories in various modalities</p>
</div>


<span id='distribution'/>

## πŸ•πŸ•πŸ• Capabilities and Domians Distribution

<div align="center">
<img src='https://cdn-uploads.huggingface.co/production/uploads/64c139d867eff857ea51caa8/fF3iH95B3QEBvJYwqzZVG.png'>
<p> Distribution of various capabilities evaluated in General-Bench.</p>
</div>


<div align="center">
<img src='https://cdn-uploads.huggingface.co/production/uploads/64c139d867eff857ea51caa8/wQvllVeK-KC3Edp8Zjh-V.png'>
<p>Distribution of various domains and disciplines covered by General-Bench.</p>
</div>





<span id='imagetaxonomy'/>

# πŸ–ΌοΈ Image Task Taxonomy
<div align="center">
<img src='https://cdn-uploads.huggingface.co/production/uploads/64c139d867eff857ea51caa8/2QYihQRhZ5C9K5IbukY7R.png'>
<p>Taxonomy and hierarchy of data in terms of Image modality.</p>
</div>




<span id='videotaxonomy'/>

# πŸ“½οΈ Video Task Taxonomy

<div align="center">
<img src='https://cdn-uploads.huggingface.co/production/uploads/64c139d867eff857ea51caa8/A7PwfW5gXzstkDH49yIG5.png'>
<p>Taxonomy and hierarchy of data in terms of Video modality.</p>
</div>









<span id='audiotaxonomy'/>

# πŸ“ž Audio Task Taxonomy



<div align="center">
<img src='https://cdn-uploads.huggingface.co/production/uploads/64c139d867eff857ea51caa8/e-QBvBjeZy8vmcBjAB0PE.png'>
<p>Taxonomy and hierarchy of data in terms of Audio modality.</p>
</div>



<span id='3dtaxonomy'/>

# πŸ’Ž 3D Task Taxonomy


<div align="center">
<img src='https://cdn-uploads.huggingface.co/production/uploads/64c139d867eff857ea51caa8/EBXb-wyve14ExoLCgrpDK.png'>
<p>Taxonomy and hierarchy of data in terms of 3D modality.</p>
</div>




<span id='languagetaxonomy'/>

# πŸ“š Language Task Taxonomy

<div align="center">
<img src='https://cdn-uploads.huggingface.co/production/uploads/64c139d867eff857ea51caa8/FLfk3QGdYb2sgorKTj_LT.png'>
<p>Taxonomy and hierarchy of data in terms of Language modality.</p>
</div>




---




# 🚩 **Citation**

If you find our benchmark useful in your research, please kindly consider citing us:

```

@article{generalist2025,

  title={On Path to Multimodal Generalist: Levels and Benchmarks},

  author={Hao Fei, Yuan Zhou, Juncheng Li, Xiangtai Li, Qingshan Xu, Bobo Li, Shengqiong Wu, Yaoting Wang, Junbao Zhou, Jiahao Meng, Qingyu Shi, Zhiyuan Zhou, Liangtao Shi, Minghe Gao, Daoan Zhang, Zhiqi Ge, Siliang Tang, Kaihang Pan, Yaobo Ye, Haobo Yuan, Tao Zhang, Weiming Wu, Tianjie Ju, Zixiang Meng, Shilin Xu, Liyu Jia, Wentao Hu, Meng Luo, Jiebo Luo, Tat-Seng Chua, Hanwang Zhang, Shuicheng YAN},

  journal={arXiv},

  year={2025}

}

```