Datasets:
File size: 3,630 Bytes
d1ea340 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import os
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@dataset{gotthatdata_stargate_2024,
title = {STARGATE: CIA Remote Viewing Archive},
author = {GotThatData},
year = {2024},
url = {https://huggingface.co/datasets/GotThatData/STARGATE}
}
"""
_DESCRIPTION = """\
STARGATE is a dataset of 12,000+ declassified CIA PDFs related to remote viewing (RV), extrasensory perception (ESP), and anomalous cognition.
This loader includes structured metadata and binary access to the original scanned PDFs.
"""
_HOMEPAGE = "https://huggingface.co/datasets/GotThatData/STARGATE"
_LICENSE = "CC-BY-4.0"
class StargatePDFConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(StargatePDFConfig, self).__init__(**kwargs)
class StargatePDFDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
StargatePDFConfig(name="default", version=VERSION, description="STARGATE raw PDFs with metadata")
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"filename": datasets.Value("string"),
"document_id": datasets.Value("string"),
"page_count": datasets.Value("int32"),
"image_count": datasets.Value("int32"),
"processed_at": datasets.Value("string"),
"ocr_status": datasets.Value("string"),
"text_extracted": datasets.Value("bool"),
"source": datasets.Value("string"),
"tags": datasets.Sequence(datasets.Value("string")),
"pdf": datasets.Value("binary"),
}),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# Path to local or downloaded files
archive_path = dl_manager.download_and_extract("./") # Change if remote
metadata_path = os.path.join(archive_path, "metadata.json")
data_dir = os.path.join(archive_path, "data")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"metadata_path": metadata_path, "data_dir": data_dir}
)
]
def _generate_examples(self, metadata_path, data_dir):
logger.info(f"⏳ Loading metadata from {metadata_path}")
with open(metadata_path, "r", encoding="utf-8") as f:
records = json.load(f)
for idx, record in enumerate(records):
pdf_path = os.path.join(data_dir, record["filename"])
if not os.path.isfile(pdf_path):
logger.warning(f"🚫 Missing PDF: {pdf_path}")
continue
with open(pdf_path, "rb") as pdf_file:
yield idx, {
"filename": record.get("filename"),
"document_id": record.get("document_id", record["filename"].replace(".pdf", "")),
"page_count": record.get("page_count", 0),
"image_count": record.get("image_count", 0),
"processed_at": record.get("processed_at", ""),
"ocr_status": record.get("ocr_status", "pending"),
"text_extracted": record.get("text_extracted", False),
"source": record.get("source", "CIA Stargate Archive"),
"tags": record.get("tags", []),
"pdf": pdf_file.read(),
}
|