File size: 12,552 Bytes
8b6b3f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""TODO: Add a description here."""

from __future__ import absolute_import, division, print_function

import json
import os
import datetime
import pandas as pd
import numpy as np
from pathlib import Path
# from sklearn.utils import shuffle

import datasets


# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
authors={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
_DESCRIPTION = """TODO: Add description"""

# URLs for production
_METADATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/metadata-2021-02-10.feather"
# _METADATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/metadata-2021-01-21.feather"
_DATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/distilled-2021-01-07.tar"
_DATA_SUBFOLDER_NAME = 'distilled'

# # URLs for debugging
# _METADATA_URL = _DEBUG_METADATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/metadata_debug-2021-02-10.feather"
# _DATA_URL = _DEBUG_DATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/distilled_debug-2021-01-07.tar"
# _DATA_SUBFOLDER_NAME = _DATA_SUBFOLDER_NAME = 'debug_distilled'

RANDOM_STATE = 1729


# Names of features
_FEATURES = [
    "patent_number",
    "decision",
    "title",
    "abstract",
    "claims",
    "background",
    "summary",
    "description",
    "cpc_label",
    "ipc_label",
    "filing_date",
    "patent_issue_date",
    "date_published",
    "examiner_id"
]


def str_to_date(s):
    """A helper function to convert strings to dates"""
    return datetime.datetime.strptime(s, '%Y-%m-%d')


class PatentsConfig(datasets.BuilderConfig):
    """BuilderConfig for Patents"""

    def __init__(
        self,
        ipcr_label: str = None,  # 'G06F',
        cpc_label: str = None,  # 'G06F',
        train_filing_start_date: str = None,
        train_filing_end_date: str = None,
        val_filing_start_date: str = None,
        val_filing_end_date: str = None,
        query_string: str = None,
        val_set_balancer=False,
        uniform_split=False,
        train_only=False,
        **kwargs
    ):
        """
        If train_filing_end_date is None, then a random train-val split will be used. If it is 
        specified, then the specified date range will be used for the split. If train_filing_end_date 
        if specified and val_filing_start_date is not specifed, then val_filing_start_date defaults to 
        train_filing_end_date. 

        Args:
            ipcr_label: International Patent Classification code
            cpc_label: Cooperative Patent Classification code
            train_filing_start_date: Start date for patents in train set (and val set if random split is used)
            train_filing_end_date: End date for patents in train set
            val_filing_start_date: Start date for patents in val set
            val_filing_end_date: End date for patents in val set (and train set if random split is used)
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(**kwargs)
        self.ipcr_label = ipcr_label
        self.cpc_label = cpc_label
        self.train_filing_start_date = train_filing_start_date
        self.train_filing_end_date = train_filing_end_date
        self.val_filing_start_date = val_filing_start_date
        self.val_filing_end_date = val_filing_end_date
        self.query_string = query_string
        self.val_set_balancer = val_set_balancer
        self.uniform_split = uniform_split
        self.train_only = train_only


class Patents(datasets.GeneratorBasedBuilder):
    """TODO: Add description"""

    VERSION = datasets.Version("1.0.1")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
    BUILDER_CONFIG_CLASS = PatentsConfig
    # BUILDER_CONFIGS = [
    #     PatentsConfig(name="my_dataset_" + size, description="A small dataset", data_size=size)
    #     for size in ["small", "medium", "large"]
    # ]

    def _info(self):
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=datasets.Features(
                {k: datasets.Value("string") for k in _FEATURES}
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=("claims", "decision"),
            # TODO: Homepage of the dataset for documentation
            homepage="https://huggingface.co/great-new-dataset",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        """Returns SplitGenerators."""
        print(f'Loading dataset with config: {self.config}')

        # Download metadata
        # NOTE: data_files is a path to a pickled pandas DataFrame
        if self.config.data_files is None:
            print(f'Loading / downloading metadata file: {_METADATA_URL}')
            metadata_file = dl_manager.download_and_extract(_METADATA_URL)
        else:
            print(f'Using metadata file: {self.config.data_files}')
            metadata_file = Path(self.config.data_files)

        # Download data
        # NOTE: data_dir is a path to a directory of json files, with one
        # json file per patent application
        if self.config.data_dir is None:
            print('Loading / downloading data. This is a big file (360GB)!')
            json_dir = Path(dl_manager.download_and_extract(_DATA_URL))
            # NOTE: The extracted path contains a subfolder
            json_dir = json_dir / _DATA_SUBFOLDER_NAME
        else:
            json_dir = Path(self.config.data_dir)

        # Load metadata file
        print(f'Reading metadata file: {metadata_file}')
        df = pd.read_feather(metadata_file)  # pd.read_pickle(metadata_file) #

        # Filter based on ICPR / CPC label
        if self.config.ipcr_label:
            print(f'Filtering by IPCR label: {self.config.ipcr_label}')
            df = df[df['main_ipcr_label'].str.startswith(self.config.ipcr_label)]
        elif self.config.cpc_label:
            print(f'Filtering by CPC label: {self.config.cpc_label}')
            df = df[df['main_cpc_label'].str.startswith(self.config.cpc_label)]

        # Filter metadata based on arbitrary query string
        # TODO(suproteem): remove for production
        if self.config.query_string:
            df = df.query(self.config.query_string)

        # Return only one dataset
        if self.config.train_only:
            if self.config.train_filing_start_date:
                print(f'Filtering by train filing start date: {self.config.train_filing_start_date}')
                df = df[df['filing_date'] >= self.config.train_filing_start_date]
            if self.config.train_filing_end_date:
                print(f'Filtering by train filing end date: {self.config.train_filing_end_date}')
                df = df[df['filing_date'] <= self.config.train_filing_end_date]

            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs=dict(  # kwargs passed to _generate_examples
                        df=df,
                        json_dir=json_dir,
                        split='train',
                    ),
                )
            ]

        # Train-validation split (either uniform or by date)
        if self.config.uniform_split:

            # Assumes that training_start_data < val_end_date
            if self.config.train_filing_start_date:
                df = df[df['filing_date'] >= self.config.train_filing_start_date]
            if self.config.val_filing_end_date:
                df = df[df['filing_date'] <= self.config.val_filing_end_date]
            df = df.sample(frac=1.0, random_state=RANDOM_STATE)
            num_train_samples = int(len(df) * 0.85)
            train_df = df.iloc[0:num_train_samples]
            val_df = df.iloc[num_train_samples:-1]

        else:

            # Does not assume that training_start_data < val_end_date
            if self.config.train_filing_start_date:
                print(f'Filtering by train filing start date: {self.config.train_filing_start_date}')
                tdf = df[df['filing_date'] >= self.config.train_filing_start_date]
                if self.config.train_filing_end_date:
                    print(f'Filtering by train filing end date: {self.config.train_filing_end_date}')
                    train_df = tdf[tdf['filing_date'] <= self.config.train_filing_end_date]

            if self.config.val_filing_start_date:
                print(f'Filtering by val filing start date: {self.config.val_filing_start_date}')
                vdf = df[df['filing_date'] >= self.config.val_filing_start_date]
                if self.config.val_filing_end_date:
                    print(f'Filtering by val filing end date: {self.config.val_filing_end_date}')
                    val_df = vdf[vdf['filing_date'] <= self.config.val_filing_end_date]

        # TODO: Can make this step faster
        if self.config.val_set_balancer:
            rejected_df = val_df[val_df.status == 'REJECTED']
            num_rejected = len(rejected_df)
            accepted_df = val_df[val_df.status == 'ACCEPTED']
            num_accepted = len(accepted_df)
            if num_rejected < num_accepted:
                accepted_df = accepted_df.sample(frac=1.0, random_state=RANDOM_STATE)  # shuffle(accepted_df)
                accepted_df = accepted_df[:num_rejected]
            else:
                rejected_df = rejected_df.sample(frac=1.0, random_state=RANDOM_STATE)  # shuffle(rejected_df)
                rejected_df = rejected_df[:num_accepted]
            val_df = pd.concat([rejected_df, accepted_df])

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs=dict(  # kwargs passed to _generate_examples
                    df=train_df,
                    json_dir=json_dir,
                    split='train',
                ),
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs=dict(
                    df=val_df,
                    json_dir=json_dir,
                    split='val',
                ),
            ),
        ]

    def _generate_examples(self, df, json_dir, split):
        """ Yields examples by loading JSON files containing patent applications. """

        # NOTE: df.itertuples() is way faster than df.iterrows()
        for id_, x in enumerate(df.itertuples()):

            # JSON files are named by application number (unique)
            application_number = x.application_number
            filepath = json_dir / (application_number + '.json')
            try:
                with open(filepath, 'r') as f:
                    patent = json.load(f)
            except Exception as e:
                print('------------')
                print(f'ERROR WITH {filepath}\n')
                print(repr(e))
                print()
                yield id_, {k: "error" for k in _FEATURES}

            # Most up-to-date-decision in meta dataframe
            decision = x.decision
            yield id_, {
                "patent_number": application_number,
                "decision": decision,
                "title": patent["title"],
                "abstract": patent["abstract"],
                "claims": patent["claims"],
                "description": patent["full_description"],
                "background": patent["background"],
                "summary": patent["summary"],
                "cpc_label": patent["main_cpc_label"],
                'filing_date': patent['filing_date'],
                'patent_issue_date': patent['patent_issue_date'],
                'date_published': patent['date_published'],
                'examiner_id': patent['examiner_id'],
                "ipc_label": patent["main_ipcr_label"],
                # "all_cpc_labels": patent["cpc_labels"],  # these are lists, ignoring for now
                # 'inventor_list': patent['inventor_list'],  # these are lists, ignoring for now
            }