"""TODO: Add a description here.""" from __future__ import absolute_import, division, print_function import json import os import datetime import pandas as pd import numpy as np from pathlib import Path # from sklearn.utils import shuffle import datasets # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:dataset, title = {A great new dataset}, authors={huggingface, Inc. }, year={2020} } """ # TODO: Add description of the dataset here _DESCRIPTION = """TODO: Add description""" # URLs for production _METADATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/metadata-2021-02-10.feather" # _METADATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/metadata-2021-01-21.feather" _DATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/distilled-2021-01-07.tar" _DATA_SUBFOLDER_NAME = 'distilled' # # URLs for debugging # _METADATA_URL = _DEBUG_METADATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/metadata_debug-2021-02-10.feather" # _DATA_URL = _DEBUG_DATA_URL = "https://patentdiag.blob.core.windows.net/patent-data/distilled_debug-2021-01-07.tar" # _DATA_SUBFOLDER_NAME = _DATA_SUBFOLDER_NAME = 'debug_distilled' RANDOM_STATE = 1729 # Names of features _FEATURES = [ "patent_number", "decision", "title", "abstract", "claims", "background", "summary", "description", "cpc_label", "ipc_label", "filing_date", "patent_issue_date", "date_published", "examiner_id" ] def str_to_date(s): """A helper function to convert strings to dates""" return datetime.datetime.strptime(s, '%Y-%m-%d') class PatentsConfig(datasets.BuilderConfig): """BuilderConfig for Patents""" def __init__( self, ipcr_label: str = None, # 'G06F', cpc_label: str = None, # 'G06F', train_filing_start_date: str = None, train_filing_end_date: str = None, val_filing_start_date: str = None, val_filing_end_date: str = None, query_string: str = None, val_set_balancer=False, uniform_split=False, train_only=False, **kwargs ): """ If train_filing_end_date is None, then a random train-val split will be used. If it is specified, then the specified date range will be used for the split. If train_filing_end_date if specified and val_filing_start_date is not specifed, then val_filing_start_date defaults to train_filing_end_date. Args: ipcr_label: International Patent Classification code cpc_label: Cooperative Patent Classification code train_filing_start_date: Start date for patents in train set (and val set if random split is used) train_filing_end_date: End date for patents in train set val_filing_start_date: Start date for patents in val set val_filing_end_date: End date for patents in val set (and train set if random split is used) **kwargs: keyword arguments forwarded to super. """ super().__init__(**kwargs) self.ipcr_label = ipcr_label self.cpc_label = cpc_label self.train_filing_start_date = train_filing_start_date self.train_filing_end_date = train_filing_end_date self.val_filing_start_date = val_filing_start_date self.val_filing_end_date = val_filing_end_date self.query_string = query_string self.val_set_balancer = val_set_balancer self.uniform_split = uniform_split self.train_only = train_only class Patents(datasets.GeneratorBasedBuilder): """TODO: Add description""" VERSION = datasets.Version("1.0.1") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. BUILDER_CONFIG_CLASS = PatentsConfig # BUILDER_CONFIGS = [ # PatentsConfig(name="my_dataset_" + size, description="A small dataset", data_size=size) # for size in ["small", "medium", "large"] # ] def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=datasets.Features( {k: datasets.Value("string") for k in _FEATURES} ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=("claims", "decision"), # TODO: Homepage of the dataset for documentation homepage="https://huggingface.co/great-new-dataset", citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager): """Returns SplitGenerators.""" print(f'Loading dataset with config: {self.config}') # Download metadata # NOTE: data_files is a path to a pickled pandas DataFrame if self.config.data_files is None: print(f'Loading / downloading metadata file: {_METADATA_URL}') metadata_file = dl_manager.download_and_extract(_METADATA_URL) else: print(f'Using metadata file: {self.config.data_files}') metadata_file = Path(self.config.data_files) # Download data # NOTE: data_dir is a path to a directory of json files, with one # json file per patent application if self.config.data_dir is None: print('Loading / downloading data. This is a big file (360GB)!') json_dir = Path(dl_manager.download_and_extract(_DATA_URL)) # NOTE: The extracted path contains a subfolder json_dir = json_dir / _DATA_SUBFOLDER_NAME else: json_dir = Path(self.config.data_dir) # Load metadata file print(f'Reading metadata file: {metadata_file}') df = pd.read_feather(metadata_file) # pd.read_pickle(metadata_file) # # Filter based on ICPR / CPC label if self.config.ipcr_label: print(f'Filtering by IPCR label: {self.config.ipcr_label}') df = df[df['main_ipcr_label'].str.startswith(self.config.ipcr_label)] elif self.config.cpc_label: print(f'Filtering by CPC label: {self.config.cpc_label}') df = df[df['main_cpc_label'].str.startswith(self.config.cpc_label)] # Filter metadata based on arbitrary query string # TODO(suproteem): remove for production if self.config.query_string: df = df.query(self.config.query_string) # Return only one dataset if self.config.train_only: if self.config.train_filing_start_date: print(f'Filtering by train filing start date: {self.config.train_filing_start_date}') df = df[df['filing_date'] >= self.config.train_filing_start_date] if self.config.train_filing_end_date: print(f'Filtering by train filing end date: {self.config.train_filing_end_date}') df = df[df['filing_date'] <= self.config.train_filing_end_date] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs=dict( # kwargs passed to _generate_examples df=df, json_dir=json_dir, split='train', ), ) ] # Train-validation split (either uniform or by date) if self.config.uniform_split: # Assumes that training_start_data < val_end_date if self.config.train_filing_start_date: df = df[df['filing_date'] >= self.config.train_filing_start_date] if self.config.val_filing_end_date: df = df[df['filing_date'] <= self.config.val_filing_end_date] df = df.sample(frac=1.0, random_state=RANDOM_STATE) num_train_samples = int(len(df) * 0.85) train_df = df.iloc[0:num_train_samples] val_df = df.iloc[num_train_samples:-1] else: # Does not assume that training_start_data < val_end_date if self.config.train_filing_start_date: print(f'Filtering by train filing start date: {self.config.train_filing_start_date}') tdf = df[df['filing_date'] >= self.config.train_filing_start_date] if self.config.train_filing_end_date: print(f'Filtering by train filing end date: {self.config.train_filing_end_date}') train_df = tdf[tdf['filing_date'] <= self.config.train_filing_end_date] if self.config.val_filing_start_date: print(f'Filtering by val filing start date: {self.config.val_filing_start_date}') vdf = df[df['filing_date'] >= self.config.val_filing_start_date] if self.config.val_filing_end_date: print(f'Filtering by val filing end date: {self.config.val_filing_end_date}') val_df = vdf[vdf['filing_date'] <= self.config.val_filing_end_date] # TODO: Can make this step faster if self.config.val_set_balancer: rejected_df = val_df[val_df.status == 'REJECTED'] num_rejected = len(rejected_df) accepted_df = val_df[val_df.status == 'ACCEPTED'] num_accepted = len(accepted_df) if num_rejected < num_accepted: accepted_df = accepted_df.sample(frac=1.0, random_state=RANDOM_STATE) # shuffle(accepted_df) accepted_df = accepted_df[:num_rejected] else: rejected_df = rejected_df.sample(frac=1.0, random_state=RANDOM_STATE) # shuffle(rejected_df) rejected_df = rejected_df[:num_accepted] val_df = pd.concat([rejected_df, accepted_df]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs=dict( # kwargs passed to _generate_examples df=train_df, json_dir=json_dir, split='train', ), ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs=dict( df=val_df, json_dir=json_dir, split='val', ), ), ] def _generate_examples(self, df, json_dir, split): """ Yields examples by loading JSON files containing patent applications. """ # NOTE: df.itertuples() is way faster than df.iterrows() for id_, x in enumerate(df.itertuples()): # JSON files are named by application number (unique) application_number = x.application_number filepath = json_dir / (application_number + '.json') try: with open(filepath, 'r') as f: patent = json.load(f) except Exception as e: print('------------') print(f'ERROR WITH {filepath}\n') print(repr(e)) print() yield id_, {k: "error" for k in _FEATURES} # Most up-to-date-decision in meta dataframe decision = x.decision yield id_, { "patent_number": application_number, "decision": decision, "title": patent["title"], "abstract": patent["abstract"], "claims": patent["claims"], "description": patent["full_description"], "background": patent["background"], "summary": patent["summary"], "cpc_label": patent["main_cpc_label"], 'filing_date': patent['filing_date'], 'patent_issue_date': patent['patent_issue_date'], 'date_published': patent['date_published'], 'examiner_id': patent['examiner_id'], "ipc_label": patent["main_ipcr_label"], # "all_cpc_labels": patent["cpc_labels"], # these are lists, ignoring for now # 'inventor_list': patent['inventor_list'], # these are lists, ignoring for now }