Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,72 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
+
language:
|
4 |
+
- es
|
5 |
+
pretty_name: AbstRCT-ES
|
6 |
---
|
7 |
+
---
|
8 |
+
dataset_info:
|
9 |
+
- config_name: es
|
10 |
+
data_files:
|
11 |
+
- split: neoplasm_train
|
12 |
+
path: es/neoplasm_train-*
|
13 |
+
- split: neoplasm_dev
|
14 |
+
path: es/neoplasm_dev-*
|
15 |
+
- split: neoplasm_test
|
16 |
+
path: es/neoplasm_test-*
|
17 |
+
- split: glaucoma_test
|
18 |
+
path: es/glaucoma_test-*
|
19 |
+
- split: mixed_test
|
20 |
+
path: es/mixed_test-*
|
21 |
+
license: apache-2.0
|
22 |
+
task_categories:
|
23 |
+
- token-classification
|
24 |
+
language:
|
25 |
+
- es
|
26 |
+
tags:
|
27 |
+
- biology
|
28 |
+
- medical
|
29 |
+
pretty_name: AbstRCT-ES
|
30 |
+
---
|
31 |
+
|
32 |
+
<p align="center">
|
33 |
+
<br>
|
34 |
+
<img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="width: 30%;">
|
35 |
+
<h2 align="center">AbstRCT-ES</h2>
|
36 |
+
<be>
|
37 |
+
|
38 |
+
|
39 |
+
We translate the [AbstRCT English Argument Mining Dataset](https://gitlab.com/tomaye/abstrct) to generate a parallel Spanish version
|
40 |
+
using DeepL; labels are projected using [Easy Label Projection](https://github.com/ikergarcia1996/Easy-Label-Projection) and manually corrected.
|
41 |
+
|
42 |
+
- 📖 Paper: [Crosslingual Argument Mining in the Medical Domain](https://arxiv.org/abs/2301.10527)
|
43 |
+
- 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
|
44 |
+
- Code: [https://github.com/ragerri/abstrct-projections/tree/final](https://github.com/ragerri/abstrct-projections/tree/final)
|
45 |
+
- Funding: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
|
46 |
+
|
47 |
+
## Labels
|
48 |
+
```python
|
49 |
+
{
|
50 |
+
"O": 0,
|
51 |
+
"B-Claim": 1,
|
52 |
+
"I-Claim": 2,
|
53 |
+
"B-Premise": 3,
|
54 |
+
"I-Premise": 4,
|
55 |
+
}
|
56 |
+
```
|
57 |
+
A `claim` is a concluding statement made by the author about the outcome of the study. In the medical domain it may be an assertion of a diagnosis or a treatment.
|
58 |
+
A `premise` corresponds to an observation or measurement in the study (ground truth), which supports or attacks another argument component, usually a claim.
|
59 |
+
It is important that they are observed facts, therefore, credible without further evidence.
|
60 |
+
|
61 |
+
## Citation
|
62 |
+
|
63 |
+
````bibtex
|
64 |
+
@misc{yeginbergen2024crosslingual,
|
65 |
+
title={Cross-lingual Argument Mining in the Medical Domain},
|
66 |
+
author={Anar Yeginbergen and Rodrigo Agerri},
|
67 |
+
year={2024},
|
68 |
+
eprint={2301.10527},
|
69 |
+
archivePrefix={arXiv},
|
70 |
+
primaryClass={cs.CL}
|
71 |
+
}
|
72 |
+
```
|