Datasets:
HiTZ
/

Languages:
Spanish
ArXiv:
License:
ragerri commited on
Commit
657ccfe
1 Parent(s): 99bee48

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md CHANGED
@@ -1,3 +1,72 @@
1
  ---
2
  license: cc-by-nc-sa-4.0
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-sa-4.0
3
+ language:
4
+ - es
5
+ pretty_name: AbstRCT-ES
6
  ---
7
+ ---
8
+ dataset_info:
9
+ - config_name: es
10
+ data_files:
11
+ - split: neoplasm_train
12
+ path: es/neoplasm_train-*
13
+ - split: neoplasm_dev
14
+ path: es/neoplasm_dev-*
15
+ - split: neoplasm_test
16
+ path: es/neoplasm_test-*
17
+ - split: glaucoma_test
18
+ path: es/glaucoma_test-*
19
+ - split: mixed_test
20
+ path: es/mixed_test-*
21
+ license: apache-2.0
22
+ task_categories:
23
+ - token-classification
24
+ language:
25
+ - es
26
+ tags:
27
+ - biology
28
+ - medical
29
+ pretty_name: AbstRCT-ES
30
+ ---
31
+
32
+ <p align="center">
33
+ <br>
34
+ <img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="width: 30%;">
35
+ <h2 align="center">AbstRCT-ES</h2>
36
+ <be>
37
+
38
+
39
+ We translate the [AbstRCT English Argument Mining Dataset](https://gitlab.com/tomaye/abstrct) to generate a parallel Spanish version
40
+ using DeepL; labels are projected using [Easy Label Projection](https://github.com/ikergarcia1996/Easy-Label-Projection) and manually corrected.
41
+
42
+ - 📖 Paper: [Crosslingual Argument Mining in the Medical Domain](https://arxiv.org/abs/2301.10527)
43
+ - 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
44
+ - Code: [https://github.com/ragerri/abstrct-projections/tree/final](https://github.com/ragerri/abstrct-projections/tree/final)
45
+ - Funding: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
46
+
47
+ ## Labels
48
+ ```python
49
+ {
50
+ "O": 0,
51
+ "B-Claim": 1,
52
+ "I-Claim": 2,
53
+ "B-Premise": 3,
54
+ "I-Premise": 4,
55
+ }
56
+ ```
57
+ A `claim` is a concluding statement made by the author about the outcome of the study. In the medical domain it may be an assertion of a diagnosis or a treatment.
58
+ A `premise` corresponds to an observation or measurement in the study (ground truth), which supports or attacks another argument component, usually a claim.
59
+ It is important that they are observed facts, therefore, credible without further evidence.
60
+
61
+ ## Citation
62
+
63
+ ````bibtex
64
+ @misc{yeginbergen2024crosslingual,
65
+ title={Cross-lingual Argument Mining in the Medical Domain},
66
+ author={Anar Yeginbergen and Rodrigo Agerri},
67
+ year={2024},
68
+ eprint={2301.10527},
69
+ archivePrefix={arXiv},
70
+ primaryClass={cs.CL}
71
+ }
72
+ ```