File size: 6,834 Bytes
9cf73ac 1be043f f88b7c0 1be043f f88b7c0 1be043f f88b7c0 1be043f f88b7c0 1be043f 9cf73ac 1be043f 0e79d5f 1be043f a89ed98 1be043f a89ed98 1be043f e7e7666 1be043f fa092d5 1be043f 10f939d 1be043f 0bc19af aefc9ad 1be043f 498ded5 f7cd8f6 498ded5 5447702 f7cd8f6 5447702 1be043f 498ded5 4760398 f7cd8f6 498ded5 1be043f 8bb7ffd 1be043f 8bb7ffd 1be043f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
---
license: cc-by-4.0
language:
- en
- es
- fr
- it
tags:
- casimedicos
- explainability
- medical exams
- medical question answering
- multilinguality
- LLMs
- LLM
pretty_name: MedExpQA
configs:
- config_name: en
data_files:
- split: train
path:
- data/en/train.en.casimedicos.rag.jsonl
- split: validation
path:
- data/en/dev.en.casimedicos.rag.jsonl
- split: test
path:
- data/en/test.en.casimedicos.rag.jsonl
- config_name: es
data_files:
- split: train
path:
- data/es/train.es.casimedicos.rag.jsonl
- split: validation
path:
- data/es/dev.es.casimedicos.rag.jsonl
- split: test
path:
- data/es/test.es.casimedicos.rag.jsonl
- config_name: fr
data_files:
- split: train
path:
- data/fr/train.fr.casimedicos.rag.jsonl
- split: validation
path:
- data/fr/dev.fr.casimedicos.rag.jsonl
- split: test
path:
- data/fr/test.fr.casimedicos.rag.jsonl
- config_name: it
data_files:
- split: train
path:
- data/it/train.it.casimedicos.rag.jsonl
- split: validation
path:
- data/it/dev.it.casimedicos.rag.jsonl
- split: test
path:
- data/it/test.it.casimedicos.rag.jsonl
task_categories:
- text-generation
- question-answering
size_categories:
- 1K<n<10K
---
<p align="center">
<br>
<img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="height: 200px;">
<br>
# MexExpQA: Multilingual Benchmarking of Medical QA with reference gold explanations and Retrieval Augmented Generation (RAG)
We present a new multilingual parallel medical benchmark, MedExpQA, for the evaluation of LLMs on Medical Question Answering.
This benchmark can be used for various NLP tasks including: **Medical Question Answering** or **Explanation Generation**.
Although the design of MedExpQA is independent of any specific dataset, for the first version of the MedExpQA benchmark we leverage the commented MIR exams
from the [Antidote CasiMedicos dataset which includes gold reference explanations](https://huggingface.co/datasets/HiTZ/casimedicos-exp), which is currently
available for 4 languages: **English, French, Italian and Spanish**.
<table style="width:33%">
<tr>
<th>Antidote CasiMedicos splits</th>
<tr>
<td>train</td>
<td>434</td>
</tr>
<tr>
<td>validation</td>
<td>63</td>
</tr>
<tr>
<td>test</td>
<td>125</td>
</tr>
</table>
- 📖 Paper:[MedExpQA: Multilingual Benchmarking of Large Language Models for Medical Question Answering](https://doi.org/10.1016/j.artmed.2024.102938)
- 💻 Github Repo (Data and Code): [https://github.com/hitz-zentroa/MedExpQA](https://github.com/hitz-zentroa/MedExpQA)
- 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
- Funding: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
## Example of Document in Antidote CasiMedicos Dataset
<p align="center">
<img src="https://github.com/ixa-ehu/antidote-casimedicos/blob/main/casimedicos-exp.png?raw=true" style="height: 600px;">
</p>
In this repository you can find the following data:
- **casimedicos-raw**: The textual content including Clinical Case (C), Question (Q), Possible Answers (P), and Explanation (E) as shown in the example above.
- **casimedicos-exp**: The manual annotations linking the explanations of the correct and incorrect possible answers.
- **MedExpQA**: benchmark for Medical QA based on gold reference explanations from casimedicos-exp and knowledge automatically extracted using RAG methods.
## Data Explanation
The following attributes composed **casimedicos-raw**:
- **id**: unique doc identifier.
- **year**: year in which the exam was published by the Spanish Ministry of Health.
- **question_id_specific**: id given to the original exam published by the Spanish Ministry of Health.
- **full_question**: Clinical Case (C) and Question (Q) as illustrated in the example document above.
- **full answer**: Full commented explanation (E) as illustrated in the example document above.
- **type**: medical speciality.
- **options**: Possible Answers (P) as illustrated in the example document above.
- **correct option**: solution to the exam question.
Additionally, the following jsonl attribute was added to create **casimedicos-exp**:
- **explanations**: for each possible answer above, manual annotation states whether:
1. the explanation for each possible answer exists in the full comment (E) and
2. if present, then we provide character and token offsets plus the text corresponding to the explanation for each possible answer.
For **MedExpQA** benchmarking we have added the following elements in the data:
- **rag**
1. **clinical_case_options/MedCorp/RRF-2**: 32 snippets extracted from the MedCorp corpus using the combination of _clinical case_ and _options_ as a
query during the retrieval process. These 32 snippets are the resulting RRF combination of 32 separately retrieved snippets using BM25 and MedCPT.
## MedExpQA Benchmark Overview
<p align="left">
<img src="https://github.com/hitz-zentroa/MedExpQA/blob/main/out/experiments/figures/overall_system.png?raw=true" style="height: 300px;">
</p>
## Prompt Example for LLMs
<p align="left">
<img src="https://github.com/hitz-zentroa/MedExpQA/blob/main/out/experiments/figures/prompt_en.png?raw=true" style="height: 250px;">
</p>
## Benchmark Results (averaged per type of external knowledge for grounding)
LLMs evaluated: [LLaMA](https://huggingface.co/meta-llama/Llama-2-13b), [PMC-LLaMA](https://huggingface.co/axiong/PMC_LLaMA_13B),
[Mistral](https://huggingface.co/mistralai/Mistral-7B-v0.1) and [BioMistral](https://huggingface.co/BioMistral/BioMistral-7B-DARE).
<p align="left">
<img src="https://github.com/hitz-zentroa/MedExpQA/blob/main/out/experiments/figures/benchmark.png?raw=true" style="height: 300px;">
</p>
## Citation
If you use MedExpQA then please **cite the following paper**:
```bibtex
@article{ALONSO2024102938,
title = {MedExpQA: Multilingual benchmarking of Large Language Models for Medical Question Answering},
journal = {Artificial Intelligence in Medicine},
pages = {102938},
year = {2024},
issn = {0933-3657},
doi = {https://doi.org/10.1016/j.artmed.2024.102938},
url = {https://www.sciencedirect.com/science/article/pii/S0933365724001805},
author = {Iñigo Alonso and Maite Oronoz and Rodrigo Agerri},
keywords = {Large Language Models, Medical Question Answering, Multilinguality, Retrieval Augmented Generation, Natural Language Processing},
}
```
**Contact**: [Iñigo Alonso](https://hitz.ehu.eus/en/node/282) and [Rodrigo Agerri](https://ragerri.github.io/)
HiTZ Center - Ixa, University of the Basque Country UPV/EHU |