Datasets:
File size: 3,245 Bytes
77bca15 183ff85 8ed0e83 99694b9 8ed0e83 77bca15 8ed0e83 edf8ace 8ed0e83 3ee82c9 8ed0e83 3ee82c9 dbce638 3ee82c9 99694b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
dataset_info:
features:
- name: pattern_id
dtype: int64
- name: pattern
dtype: string
- name: test_id
dtype: int64
- name: negation_type
dtype: string
- name: semantic_type
dtype: string
- name: syntactic_scope
dtype: string
- name: isDistractor
dtype: bool
- name: label
dtype: bool
- name: sentence
dtype: string
splits:
- name: train
num_bytes: 41264658
num_examples: 268505
- name: validation
num_bytes: 3056321
num_examples: 22514
- name: test
num_bytes: 12684749
num_examples: 90281
download_size: 6311034
dataset_size: 57005728
task_categories:
- text-classification
language:
- en
tags:
- commonsense
- negation
- LLMs
- LLM
pretty_name: This is NOT a Dataset
size_categories:
- 100K<n<1M
---
<p align="center">
<img src="https://github.com/hitz-zentroa/This-is-not-a-Dataset/raw/main/assets/tittle.png" style="height: 250px;">
</p>
<h3 align="center">"A Large Negation Benchmark to Challenge Large Language Models"</h3>
<p align="justify">
We introduce a large semi-automatically generated dataset of ~400,000 descriptive sentences about commonsense knowledge that can be true or false in which negation is present in about 2/3 of the corpus in different forms that we use to evaluate LLMs.
</p>
- 📖 Paper: [This is not a Dataset: A Large Negation Benchmark to Challenge Large Language Models (EMNLP'23)]()
- 💻 Baseline Code and the Official Scorer: [https://github.com/hitz-zentroa/This-is-not-a-Dataset](https://github.com/hitz-zentroa/This-is-not-a-Dataset)
# Data explanation
- **pattern_id** (int): The ID of the pattern,in range [1,11]
- **pattern** (str): The name of the pattern
- **test_id** (int): For each pattern we use a set of templates to instanciate the triples. Examples are grouped in triples by test id
- **negation_type** (str): Affirmation, verbal, non-verbal
- **semantic_type** (str): None (for affirmative sentences), analytic, synthetic
- **syntactic_scope** (str): None (for affirmative sentences), clausal, subclausal
- **isDistractor** (bool): We use distractors (randonly selectec synsets) to generate false kwoledge.
- **<span style="color:green">sentence</span>** (str): The sentence. <ins>This is the input of the model</ins>
- **<span style="color:green">label</span>** (bool): The label of the example, True if the statement is true, False otherwise. <ins>This is the target of the model</ins>
If you want to run experiments with this dataset, please, use the [Official Scorer](https://github.com/hitz-zentroa/This-is-not-a-Dataset#scorer) to ensure reproducibility and fairness.
# Citation
The paper will be presented at EMNLP 2023, the citation will be available soon. For now, you can use the following bibtex:
```bibtex
@inproceedings{this-is-not-a-dataset,
title = "This is not a Dataset: A Large Negation Benchmark to Challenge Large Language Models",
author = "Iker García-Ferrero, Begoña Altuna, Javier Alvez, Itziar Gonzalez-Dios, German Rigau",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
year = "2023",
publisher = "Association for Computational Linguistics",
}
``` |