--- license: cc-by-4.0 language: - en - es - fr - it tags: - casimedicos - explainability - medical exams - medical question answering - multilinguality - argument mining - argument generation - LLMs - LLM pretty_name: CasiMedicos-Arg configs: - config_name: en data_files: - split: train path: - en/train_en_ordered.json - split: validation path: - en/validation_en_ordered.json - split: test path: - en/test_en_ordered.csv - config_name: es data_files: - split: train path: - es/train_es_ordered.jsonl - split: validation path: - es/validation_es_ordered.jsonl - split: test path: - es/test_es_ordered.jsonl - config_name: fr data_files: - split: train path: - fr/train_fr_ordered.jsonl - split: validation path: - fr/validation_fr_ordered.jsonl - split: test path: - fr/test_fr_ordered.jsonl - config_name: it data_files: - split: train path: - it/train_it_ordered.jsonl - split: validation path: - it/validation_it_ordered.jsonl - split: test path: - it/test_it_ordered.jsonl task_categories: - text-generation - question-answering - token-classification size_categories: - 1K

# CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures [CasiMedicos-Arg](https://huggingface.co/datasets/HiTZ/casimedicos-arg) is, to the best of our knowledge, the first multilingual dataset for Medical Question Answering where correct and incorrect diagnoses for a clinical case are enriched with a natural language explanation written by doctors. The [casimedicos-exp](https://huggingface.co/datasets/HiTZ/casimedicos-exp) have been manually annotated with argument components (i.e., premise, claim) and argument relations (i.e., attack, support). Thus, Multilingual CasiMedicos-arg dataset consists of 558 clinical cases (English, Spanish, French, Italian) with explanations, where we annotated 5021 claims, 2313 premises, 2431 support relations, and 1106 attack relations.
Antidote CasiMedicos-Arg splits
train 434
validation 63
test 125
- 📖 Paper:[CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures](https://aclanthology.org/2024.emnlp-main.1026/) - 💻 Github Repo (Data and Code): [https://github.com/ixa-ehu/antidote-casimedicos](https://github.com/ixa-ehu/antidote-casimedicos) - 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote) - Funding: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR ## Example of Document in Antidote CasiMedicos Dataset

## Results of Argument Component Detection using LLMs

## Citation If you use CasiMedicos-Arg then please **cite the following paper**: ```bibtex @inproceedings{sviridova-etal-2024-casimedicos, title = {{CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures}}, author = "Sviridova, Ekaterina and Yeginbergen, Anar and Estarrona, Ainara and Cabrio, Elena and Villata, Serena and Agerri, Rodrigo", booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing", year = "2024", url = "https://aclanthology.org/2024.emnlp-main.1026", pages = "18463--18475" } ``` **Contact**: [Rodrigo Agerri](https://ragerri.github.io/) HiTZ Center - Ixa, University of the Basque Country UPV/EHU