File size: 5,359 Bytes
72a83b4 fe5058f 72a83b4 f20448e 72a83b4 41044e4 38eadb6 72a83b4 f20448e 72a83b4 f20448e 72a83b4 f20448e 2a3b85f f20448e d610bb0 7eed013 f20448e 72a83b4 c279d96 38eadb6 f20448e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Dungeons and Data: A Large-Scale NetHack Dataset. """
import h5py
import json
import os
import datasets
_CITATION = """\
@article{hambro2022dungeons,
title={Dungeons and Data: A Large-Scale NetHack Dataset},
author={Hambro, Eric and Raileanu, Roberta and Rothermel, Danielle and Mella, Vegard and Rockt{\"a}schel, Tim and K{\"u}ttler, Heinrich and Murray, Naila},
journal={arXiv preprint arXiv:2211.00539},
year={2022}
}
"""
_DESCRIPTION = """\
3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021.
"""
_HOMEPAGE = ""
_LICENSE = ""
_URLS = {
"data": [f"data/{i}.hdf5" for i in range(1, 6)],
"metadata": [f"metadata/{i}.json" for i in range(1, 6)],
}
class NleHfDataset(datasets.GeneratorBasedBuilder):
"""Dungeons and Data: A Large-Scale NetHack Dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="data", version=VERSION, description="Data for all episodes"),
datasets.BuilderConfig(name="metadata", version=VERSION, description="Metadata for all episodes"),
]
DEFAULT_CONFIG_NAME = "metadata"
def _info(self):
if self.config.name == "metadata":
features = datasets.Features(
{
"gameid": datasets.Value("int32"),
"version": datasets.Value("string"),
"points": datasets.Value("int32"),
"deathdnum": datasets.Value("int32"),
"deathlev": datasets.Value("int32"),
"maxlvl": datasets.Value("int32"),
"hp": datasets.Value("int32"),
"maxhp": datasets.Value("int32"),
"deaths": datasets.Value("int32"),
"deathdate": datasets.Value("int32"),
"birthdate": datasets.Value("int32"),
"uid": datasets.Value("int32"),
"role": datasets.Value("string"),
"race": datasets.Value("string"),
"gender": datasets.Value("string"),
"align": datasets.Value("string"),
"name": datasets.Value("string"),
"death": datasets.Value("string"),
"conduct": datasets.Value("string"),
"turns": datasets.Value("int32"),
"achieve": datasets.Value("string"),
"realtime": datasets.Value("int64"),
"starttime": datasets.Value("int64"),
"endtime": datasets.Value("int64"),
"gender0": datasets.Value("string"),
"align0": datasets.Value("string"),
"flags": datasets.Value("string")
}
)
else:
features = datasets.Features(
{
"tty_chars": datasets.Array3D(shape=(None, 24, 80), dtype="uint8"),
"tty_colors": datasets.Array3D(shape=(None, 24, 80), dtype="int8"),
"tty_cursor": datasets.Array2D(shape=(None, 2), dtype="int16"),
"actions": datasets.Sequence(datasets.Value("int16")),
"rewards": datasets.Sequence(datasets.Value("int32")),
"dones": datasets.Sequence(datasets.Value("bool")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[self.config.name]
filepaths = [dl_manager.download(url) for url in urls]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepaths": filepaths})
]
def _generate_examples(self, filepaths):
for i, filepath in enumerate(filepaths):
if self.config.name == "metadata":
with open(filepath, "r") as f:
print(filepath)
data = json.load(f)
yield i, data
else:
with h5py.File(filepath, "r") as f:
yield i, {
"tty_chars": f["tty_chars"][()],
"tty_colors": f["tty_colors"][()],
"tty_cursor": f["tty_cursor"][()],
"actions": f["actions"][()],
"rewards": f["rewards"][()],
"dones": f["dones"][()]
} |