File size: 5,359 Bytes
72a83b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5058f
 
72a83b4
 
 
 
 
 
 
 
 
 
f20448e
72a83b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41044e4
 
 
38eadb6
 
 
72a83b4
 
 
 
 
 
 
 
 
 
 
 
 
f20448e
72a83b4
 
f20448e
72a83b4
 
f20448e
2a3b85f
f20448e
d610bb0
7eed013
 
f20448e
 
 
72a83b4
 
 
c279d96
38eadb6
 
 
f20448e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" Dungeons and Data: A Large-Scale NetHack Dataset. """

import h5py
import json
import os
import datasets


_CITATION = """\
@article{hambro2022dungeons,
  title={Dungeons and Data: A Large-Scale NetHack Dataset},
  author={Hambro, Eric and Raileanu, Roberta and Rothermel, Danielle and Mella, Vegard and Rockt{\"a}schel, Tim and K{\"u}ttler, Heinrich and Murray, Naila},
  journal={arXiv preprint arXiv:2211.00539},
  year={2022}
}
"""

_DESCRIPTION = """\
3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021.
"""

_HOMEPAGE = ""

_LICENSE = ""

_URLS = {
    "data": [f"data/{i}.hdf5" for i in range(1, 6)],
    "metadata": [f"metadata/{i}.json" for i in range(1, 6)],
}

class NleHfDataset(datasets.GeneratorBasedBuilder):
    """Dungeons and Data: A Large-Scale NetHack Dataset."""
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="data", version=VERSION, description="Data for all episodes"),
        datasets.BuilderConfig(name="metadata", version=VERSION, description="Metadata for all episodes"),
    ]
    DEFAULT_CONFIG_NAME = "metadata"

    def _info(self):
        if self.config.name == "metadata":
            features = datasets.Features(
                {
                    "gameid": datasets.Value("int32"), 
                    "version": datasets.Value("string"), 
                    "points": datasets.Value("int32"), 
                    "deathdnum": datasets.Value("int32"), 
                    "deathlev": datasets.Value("int32"), 
                    "maxlvl": datasets.Value("int32"), 
                    "hp": datasets.Value("int32"), 
                    "maxhp": datasets.Value("int32"), 
                    "deaths": datasets.Value("int32"), 
                    "deathdate": datasets.Value("int32"), 
                    "birthdate": datasets.Value("int32"), 
                    "uid": datasets.Value("int32"), 
                    "role": datasets.Value("string"), 
                    "race": datasets.Value("string"), 
                    "gender": datasets.Value("string"), 
                    "align": datasets.Value("string"), 
                    "name": datasets.Value("string"), 
                    "death": datasets.Value("string"), 
                    "conduct": datasets.Value("string"), 
                    "turns": datasets.Value("int32"), 
                    "achieve": datasets.Value("string"), 
                    "realtime": datasets.Value("int64"), 
                    "starttime": datasets.Value("int64"), 
                    "endtime": datasets.Value("int64"), 
                    "gender0": datasets.Value("string"), 
                    "align0": datasets.Value("string"), 
                    "flags": datasets.Value("string")
                }
            )
        else:
            features = datasets.Features(
                {
                    "tty_chars": datasets.Array3D(shape=(None, 24, 80), dtype="uint8"),
                    "tty_colors": datasets.Array3D(shape=(None, 24, 80), dtype="int8"),
                    "tty_cursor": datasets.Array2D(shape=(None, 2), dtype="int16"),
                    "actions": datasets.Sequence(datasets.Value("int16")),
                    "rewards": datasets.Sequence(datasets.Value("int32")),
                    "dones": datasets.Sequence(datasets.Value("bool")),
                }
            )
        
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[self.config.name]
        filepaths = [dl_manager.download(url) for url in urls]
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepaths": filepaths})
        ]

    def _generate_examples(self, filepaths):
        for i, filepath in enumerate(filepaths):
            if self.config.name == "metadata":
                with open(filepath, "r") as f:
                    print(filepath)
                    data = json.load(f)
                    yield i, data
            else:
                with h5py.File(filepath, "r") as f:
                    yield i, {
                        "tty_chars": f["tty_chars"][()],
                        "tty_colors": f["tty_colors"][()],
                        "tty_cursor": f["tty_cursor"][()],
                        "actions": f["actions"][()],
                        "rewards": f["rewards"][()],
                        "dones": f["dones"][()]
                    }