Datasets:

Modalities:
Image
Size:
< 1K
Libraries:
Datasets
License:
File size: 16,426 Bytes
eece704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
# 像Transformer一样思考
- [论文](https://arxiv.org/pdf/2106.06981.pdf)来自Gail Weiss, Yoav Goldberg,Eran Yahav.
- 博客参考[ Sasha Rush ](https://rush-nlp.com/)和[ Gail Weiss ](https://sgailw.cswp.cs.technion.ac.il/)
- 库和交互Notebook:[ srush/raspy ](https://github.com/srush/RASPy)


Transformer 模型是AI系统的基础。已经有了数不清的关于" Transformer  如何工作"的核心结构图表。

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(1).svg)

</center>

但是这些图表没有提供任何直观的计算该模型的框架表示。当研究者对于 Transformer 如何工作抱有兴趣时,直观的获取他运行的机制变得十分有用。

[像Transformers一样思考](https://arxiv.org/pdf/2106.06981.pdf)提出 transformer 类计算框架。这个框架直接计算和模仿 Transformer 计算。使用[ RASP ](https://github.com/tech-srl/RASP)编程语言,使每个程序编译成一个特殊的 Transformer 。

在这篇博客中,我用 python 复现了 RASP 的变体( RASPy )。该语言大致与原始版本相当,但是多了一些我认为很有趣的变化。通过这些语言,作者 Gail Weiss 的工作,提供了一套具有挑战性的有趣且正确的方式可以帮助了解其工作原理。

```bash
!pip install git+https://github.com/srush/RASPy
```

在说起语言本身前,让我们先看一个例子,看看用 Transformers 编码是什么样的。这是一些计算翻转的代码,即反向输入序列。代码本身用两个 Transformer 层应用 attention 和数学计算到达这个结果。

```python
def flip():
    length = (key(1) == query(1)).value(1)
    flip = (key(length - indices - 1) == query(indices)).value(tokens)
    return flip
flip()
```
<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(2).svg)

</center>
## 表格目录

- 部分一: Transformers 作为代码
- 部分二: 用 Transformers 编写程序

## Transformers 作为代码

我们的目标是定义一套计算形式来最小化 Transformers 的表达。我们将通过类比进行此过程,描述其 Transformers 方面的每个语言构造。(正式语言规范请看[全文](https://arxiv.org/pdf/2106.06981.pdf))

这个语言的核心单元是将一个序列转换成相同长度的另一个序列的序列操作。我后面将其称之为 transforms 

### 输入

在一个 Transformer 中,基本曾是一个模型的前馈输入。这个输入通常包含原始的token和位置信息。

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(3).svg)

</center>

在代码中, tokens 的特征表示最简单的 transform 。他返回经过模型的 tokens 。默认输入序列是" hello "

```python
tokens
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(4).svg)

</center>

如果我们想要改变 transform 里的输入,我们使用输入方法进行传值。

```python
tokens.input([5, 2, 4, 5, 2, 2])
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(5).svg)

</center>


作为 Transformers ,我们不能直接接受这些序列的位置。但是为了模拟位置嵌入,我们可以获取位置的索引

```python
indices
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(6).svg)

</center>

```python
sop = indices
sop.input("goodbye")
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(7).svg)

</center>


### 前馈网络

经过输入层后,我们到达了前馈网络层。在 Transformer 中,这一步可以对于序列的每一个元素独立的应用数学运算。

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(8).svg)

</center>

在代码中,我们通过在 transforms 上计算表示这一步。在每一个序列的元素中都会进行独立的数学运算。

```python
tokens == "l"
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(9).svg)

</center>

结果是一个新的 transform 。一旦重构新的输入就会按照重构方式计算

```python
model = tokens * 2 - 1
model.input([1, 2, 3, 5, 2])
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(10).svg)

</center>

该运算可以组合多个 Transforms .举个例子,以上述的 token 和 indices 为例,这里可以类别 Transformer 可以跟踪多个片段信息

```python
model = tokens - 5 + indices
model.input([1, 2, 3, 5, 2])
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(11).svg)

</center>


```python
(tokens == "l") | (indices == 1)
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(12).svg)

</center>


我们提供了一些辅助函数让写 transforms 变得更简单,举例来说,where 提供了一个类似 if 功能的结构。

```python
where((tokens == "h") | (tokens == "l"), tokens, "q")
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(13).svg)

</center>

`map`使我们可以定义自己的操作,例如一个字符串以 int 转换。(用户应谨慎使用可以使用的简单神经网络计算的操作)

```python
atoi = tokens.map(lambda x: ord(x) - ord('0'))
atoi.input("31234")
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(14).svg)

</center>



当连接了这些 transforms ,可以更容易的编写功能。举例来说,下面是应用了 where 和 atoi 和加2的操作

```python
def atoi(seq=tokens):
    return seq.map(lambda x: ord(x) - ord('0')) 

op = (atoi(where(tokens == "-", "0", tokens)) + 2)
op.input("02-13")
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(15).svg)

</center>

### 注意力筛选器
到开始应用注意力机制事情就变得开始有趣起来了。这将允许序列间的不同元素进行信息交换。

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(16).svg)

</center>

我们开始定义 Key 和 query 的标记。key 和 Query 可以直接从上面的 transforms 创建。举个例子,如果我们想要定义一个key我们称作key。

```python
key(tokens)
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(17).svg)

</center>


对于 query 也一样

```python
query(tokens)
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(18).svg)

</center>


标量可以作为 key 或 query 使用。他们会广播到基础序列的长度。

```python
query(1)
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(19).svg)

</center>


我们创建了筛选器来应用 key 和 query 之间的操作。这对应于一个二进制矩阵,指示每个 query 要关注哪个 key。与 Transformers 不用,这个注意力矩阵未加入权重。

```python
eq = (key(tokens) == query(tokens))
eq
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(20).svg)

</center>


一些例子:
- 选择器的匹配位置偏移1。

```python
offset = (key(indices) == query(indices - 1))
offset
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(21).svg)

</center>


- key 早于 query 的选择器。

```python
before = key(indices) < query(indices)
before
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(22).svg)

</center>


- key 晚于 query 的选择器。

```python
after = key(indices) > query(indices)
after
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(23).svg)

</center>

选择器可以通过布尔操作合并。比如,这个选择器befoe和eq做合并,我们通过在矩阵中包含一对键和值来显示这一点。

```python
before & eq
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(24).svg)

</center>


## 使用注意力机制
给一个注意力选择器,我们可以提供一个序列值做聚合操作。我们通过累加那些选择器选过的真值做聚合。

(笔记:在原始论文中,他们使用一个平均聚合操作并且展示了一个巧妙的结构,其中平均聚合能够代表总和计算。RASPy 默认情况下使用累加来使其简单化并避免碎片化。实际上,这意味着 raspy 可能低估了将基于平均模型转换为2倍的层数)

注意聚合操作使我们能够计算直方图之类的功能。

```python
(key(tokens) == query(tokens)).value(1)
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(25).svg)

</center>

视觉上我们遵循图表结构, Query 在左边, Key 在上边, Value 在下面,输出在右边

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(27).svg)

</center>


一些注意力机制操作甚至不需要用到输入 token 。举例来说,去计算序列长度,我们创建一个" select all "的注意力筛选器并且给他赋值。

```python
length = (key(1) == query(1)).value(1)
length = length.name("length")
length
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(28).svg)

</center>


这里有更多复杂的例子,下面将一步一步展示。(这有点像做采访一样)

我们想要计算一个序列的相邻值的和。首先我们向前截断。

```python
WINDOW=3
s1 = (key(indices) >= query(indices - WINDOW + 1))  
s1
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(29).svg)

</center>

然后我们向后截断。

```python
s2 = (key(indices) <= query(indices))
s2
```
<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(30).svg)

</center>

两者相交

```python
sel = s1 & s2
sel
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(31).svg)

</center>

最终聚合

```python
sum2 = sel.value(tokens) 
sum2.input([1,3,2,2,2])
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(32).svg)

</center>

这里有个可以计算累计求和的例子,我们这里介绍 transform 的能力来帮助你调试。

```python
def cumsum(seq=tokens):
    x = (before | (key(indices) == query(indices))).value(seq)
    return x.name("cumsum")
cumsum().input([3, 1, -2, 3, 1])
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(33).svg)

</center>


### 层
这个语言支持编译更加复杂的 transforms 。他同时通过跟踪每一个运算操作计算层。

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(34).svg)

</center>


这里有个2层 transform 的例子,第一个对应于计算长度,第二个对应于累积总和。

```python
x = cumsum(length - indices)
x.input([3, 2, 3, 5])
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(35).svg)

</center>


## 用transformers进行编程

使用这个函数库,我们可以编写完成一个复杂任务

Gail Weiss,给我一个极其挑战的问题来打破这个步骤

我们可以加载一个添加任意长度数字的 Transformer 吗?

例: 给一个字符串 "19492+23919",我们可以加载正确的输出吗?

如果你想自己尝试,我们提供了一个[版本](https://colab.research.google.com/github/srush/raspy/blob/main/Blog.ipynb)你可以自己试试。

### 挑战一 :选择一个给定的索引

加载一个在索引i处全元素都有值的序列

```python 
def index(i, seq=tokens):
    x = (key(indices) == query(i)).value(seq)
    return x.name("index")
index(1)
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(36).svg)

</center>


### 挑战二 :转换

通过i位置将所有 token 移动到右侧。

```python
def shift(i=1, default="_", seq=tokens):
    x = (key(indices) == query(indices-i)).value(seq, default)
    return x.name("shift")
shift(2)
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(37).svg)

</center>

### 挑战三 :最小化

计算序列的最小值。(这一步开始变得困难,我们版本用了2层注意力机制)

```python
def minimum(seq=tokens):
    sel1 = before & (key(seq) == query(seq))
    sel2 = key(seq) < query(seq)
    less = (sel1 | sel2).value(1)
    x = (key(less) == query(0)).value(seq)
    return x.name("min")
minimum()([5,3,2,5,2])
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(38).svg)

</center>

### 挑战四:第一索引

计算有 token q 的第一索引(2层)

```python
def first(q, seq=tokens):
    return minimum(where(seq == q, indices, 99))
first("l")
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(39).svg)

</center>

### 挑战五 :右对齐

右对齐一个填充序列。例: " ralign().inputs(’xyz___‘) =’—xyz’ "(2层)

```python
def ralign(default="-", sop=tokens):
    c = (key(sop) == query("_")).value(1)
    x = (key(indices + c) == query(indices)).value(sop, default)
    return x.name("ralign")
ralign()("xyz__")
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(40).svg)

</center>

### 挑战六:分离

把一个序列在 token "v" 处分离成两部分然后右对齐(2层)

```python
def split(v, i, sop=tokens):

    mid = (key(sop) == query(v)).value(indices)
    if i == 0:
        x = ralign("0", where(indices < mid, sop, "_"))
        return x
    else:
        x = where(indices > mid, sop, "0")
        return x
split("+", 1)("xyz+zyr")
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(41).svg)

</center>

```python
split("+", 0)("xyz+zyr")
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(42).svg)

</center>

### 挑战七:滑动

将特殊 token “ <”替换为最接近的“ <”value.(2层)

```python
def slide(match, seq=tokens):
    x = cumsum(match) 
    y = ((key(x) == query(x + 1)) & (key(match) == query(True))).value(seq)
    seq =  where(match, seq, y)
    return seq.name("slide")
slide(tokens != "<").input("xxxh<<<l")
```

<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download%20(43).svg)

</center>

## 挑战八:增加

您要执行两个数字的添加。这是步骤。

```python
add().input("683+345")
```

0.分成两部分。转制成整形。加入

>“683+345” => [0, 0, 0, 9, 12, 8]

1. 计算携带条款。三种可能性:1个携带,0不携带,<也许有携带。

>[0, 0, 0, 9, 12, 8] => “00<100”

2. 滑动进位系数

> “00<100” => 001100"

3. 完成加法

这些都是1行代码。完整的系统是6个注意力机制。(尽管 Gail 说,如果您足够细心则可以在5个中完成!)。

```python
def add(sop=tokens):
    # 0) Parse and add
    x = atoi(split("+", 0, sop)) + atoi(split("+", 1, sop))
    # 1) Check for carries 
    carry = shift(-1, "0", where(x > 9, "1", where(x == 9, "<", "0")))
    # 2) In parallel, slide carries to their column                                         
    carries = atoi(slide(carry != "<", carry))
    # 3) Add in carries.                                                                                  
    return (x + carries) % 10
add()("683+345")
```
<center>

![](https://raw.githubusercontent.com/innovation64/Picimg/main/download.svg)

</center>

```python
683 + 345
```

```python
1028
```
非常整洁的东西。如果您对此主题更感兴趣,请务必查看论文:

像 Transformer 和 RASP 语言一样思考。

如果您通常对形式语言和神经网络 ( FLaNN ) 的联系感兴趣,或者认识感兴趣的人,那么这里有一个在线社区,到目前为止非常友好且相当活跃!

在 https://flann.super.site/ 上查看。

这篇博文,包括库、可视化和博文,可在 https://github.com/srush/raspy 获取。

<hr>

>>>> 英文原文:[Thinking Like Transformers](https://srush.github.io/raspy/)
>>>> 译者:innovation64 (李洋)