Datasets:

Modalities:
Image
Size:
< 1K
Libraries:
Datasets
License:
File size: 20,972 Bytes
a8b1663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

# 30分钟吃掉accelerate模型训练加速工具


accelerate 是huggingface开源的一个方便将pytorch模型迁移到 GPU/multi-GPUs/TPU/fp16/bf16 模式下训练的小巧工具。

和标准的 pytorch 方法相比,使用accelerate 进行多GPU DDP模式/TPU/fp16/bf16 训练你的模型变得非常简单,而且训练速度非常快。

官方范例:https://github.com/huggingface/accelerate/tree/main/examples

本文将以一个图片分类模型为例,演示在accelerate的帮助下使用pytorch编写一套可以在 cpu/单GPU/多GPU(DDP)模式/TPU 下通用的训练代码。

在我们的演示范例中,在kaggle的双GPU环境下,双GPU(DDP)模式是单GPU训练速度的1.6倍,加速效果非常明显。




DP和DDP的区别

* DP(DataParallel):实现简单但更慢。只能单机多卡使用。GPU分成server节点和worker节点,有负载不均衡。
     
* DDP(DistributedDataParallel):更快但实现麻烦。可单机多卡也可多机多卡。各个GPU是平等的,无负载不均衡。

参考文章:《pytorch中的分布式训练之DP VS DDP》https://zhuanlan.zhihu.com/p/356967195 


```python
#从git安装最新的accelerate仓库
!pip install git+https://github.com/huggingface/accelerate
```



kaggle 源码:https://www.kaggle.com/code/lyhue1991/kaggle-ddp-tpu-examples



## 一,使用 CPU/单GPU 训练你的pytorch模型


当系统存在GPU时,accelerate 会自动使用GPU训练你的pytorch模型,否则会使用CPU训练模型。

```python
import os,PIL 
import numpy as np
from torch.utils.data import DataLoader, Dataset
import torch 
from torch import nn 

import torchvision 
from torchvision import transforms
import datetime

#======================================================================
# import accelerate
from accelerate import Accelerator
from accelerate.utils import set_seed
#======================================================================


def create_dataloaders(batch_size=64):
    transform = transforms.Compose([transforms.ToTensor()])

    ds_train = torchvision.datasets.MNIST(root="./mnist/",train=True,download=True,transform=transform)
    ds_val = torchvision.datasets.MNIST(root="./mnist/",train=False,download=True,transform=transform)

    dl_train =  torch.utils.data.DataLoader(ds_train, batch_size=batch_size, shuffle=True,
                                            num_workers=2,drop_last=True)
    dl_val =  torch.utils.data.DataLoader(ds_val, batch_size=batch_size, shuffle=False, 
                                          num_workers=2,drop_last=True)
    return dl_train,dl_val


def create_net():
    net = nn.Sequential()
    net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=512,kernel_size = 3))
    net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)) 
    net.add_module("conv2",nn.Conv2d(in_channels=512,out_channels=256,kernel_size = 5))
    net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
    net.add_module("dropout",nn.Dropout2d(p = 0.1))
    net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
    net.add_module("flatten",nn.Flatten())
    net.add_module("linear1",nn.Linear(256,128))
    net.add_module("relu",nn.ReLU())
    net.add_module("linear2",nn.Linear(128,10))
    return net 



def training_loop(epochs = 5,
                  lr = 1e-3,
                  batch_size= 1024,
                  ckpt_path = "checkpoint.pt",
                  mixed_precision="no", #'fp16' or 'bf16'
                 ):
    
    train_dataloader, eval_dataloader = create_dataloaders(batch_size)
    model = create_net()
    

    optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
    lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=25*lr, 
                              epochs=epochs, steps_per_epoch=len(train_dataloader))
    
    #======================================================================
    # initialize accelerator and auto move data/model to accelerator.device
    set_seed(42)
    accelerator = Accelerator(mixed_precision=mixed_precision)
    accelerator.print(f'device {str(accelerator.device)} is used!')
    model, optimizer,lr_scheduler, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer,lr_scheduler, train_dataloader, eval_dataloader)
    #======================================================================
    

    for epoch in range(epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            features,labels = batch
            preds = model(features)
            loss = nn.CrossEntropyLoss()(preds,labels)
            
            #======================================================================
            #attention here! 
            accelerator.backward(loss) #loss.backward()
            #======================================================================
            
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()
            
        
        model.eval()
        accurate = 0
        num_elems = 0
        
        for _, batch in enumerate(eval_dataloader):
            features,labels = batch
            with torch.no_grad():
                preds = model(features)
            predictions = preds.argmax(dim=-1)
            
            #======================================================================
            #gather data from multi-gpus (used when in ddp mode)
            predictions = accelerator.gather_for_metrics(predictions)
            labels = accelerator.gather_for_metrics(labels)
            #======================================================================
            
            accurate_preds =  (predictions==labels)
            num_elems += accurate_preds.shape[0]
            accurate += accurate_preds.long().sum()

        eval_metric = accurate.item() / num_elems
        
        #======================================================================
        #print logs and save ckpt  
        accelerator.wait_for_everyone()
        nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        accelerator.print(f"epoch【{epoch}】@{nowtime} --> eval_metric= {100 * eval_metric:.2f}%")
        net_dict = accelerator.get_state_dict(model)
        accelerator.save(net_dict,ckpt_path+"_"+str(epoch))
        #======================================================================
        
#training_loop(epochs = 5,lr = 1e-3,batch_size= 1024,ckpt_path = "checkpoint.pt",
#             mixed_precision="no") 

```

```python
training_loop(epochs = 5,lr = 1e-4,batch_size= 1024,
              ckpt_path = "checkpoint.pt",
              mixed_precision="no") #mixed_precision='fp16' or  'bf16'
```

```

device cuda is used!
epoch【0】@2023-01-15 12:06:45 --> eval_metric= 95.20%
epoch【1】@2023-01-15 12:07:01 --> eval_metric= 96.79%
epoch【2】@2023-01-15 12:07:17 --> eval_metric= 98.47%
epoch【3】@2023-01-15 12:07:34 --> eval_metric= 98.78%
epoch【4】@2023-01-15 12:07:51 --> eval_metric= 98.87%

```



## 二,使用多GPU DDP模式训练你的pytorch模型


Kaggle中右边settings 中的 ACCELERATOR选择 GPU T4x2。


### 1,设置config

```python
import os
from accelerate.utils import write_basic_config
write_basic_config() # Write a config file
os._exit(0) # Restart the notebook to reload info from the latest config file 

```

```python
# or answer some question to create a config
#!accelerate config  
```

```python
# %load /root/.cache/huggingface/accelerate/default_config.yaml
{
  "compute_environment": "LOCAL_MACHINE",
  "deepspeed_config": {},
  "distributed_type": "MULTI_GPU",
  "downcast_bf16": false,
  "dynamo_backend": "NO",
  "fsdp_config": {},
  "machine_rank": 0,
  "main_training_function": "main",
  "megatron_lm_config": {},
  "mixed_precision": "no",
  "num_machines": 1,
  "num_processes": 2,
  "rdzv_backend": "static",
  "same_network": false,
  "use_cpu": false
}

```

### 2,训练代码


与之前代码完全一致。

如果是脚本方式启动,需要将训练代码写入到脚本文件中,如cv_example.py 

```python
%%writefile cv_example.py 
import os,PIL 
import numpy as np
from torch.utils.data import DataLoader, Dataset
import torch 
from torch import nn 

import torchvision 
from torchvision import transforms
import datetime

#======================================================================
# import accelerate
from accelerate import Accelerator
from accelerate.utils import set_seed
#======================================================================


def create_dataloaders(batch_size=64):
    transform = transforms.Compose([transforms.ToTensor()])

    ds_train = torchvision.datasets.MNIST(root="./mnist/",train=True,download=True,transform=transform)
    ds_val = torchvision.datasets.MNIST(root="./mnist/",train=False,download=True,transform=transform)

    dl_train =  torch.utils.data.DataLoader(ds_train, batch_size=batch_size, shuffle=True,
                                            num_workers=2,drop_last=True)
    dl_val =  torch.utils.data.DataLoader(ds_val, batch_size=batch_size, shuffle=False, 
                                          num_workers=2,drop_last=True)
    return dl_train,dl_val


def create_net():
    net = nn.Sequential()
    net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=512,kernel_size = 3))
    net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)) 
    net.add_module("conv2",nn.Conv2d(in_channels=512,out_channels=256,kernel_size = 5))
    net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
    net.add_module("dropout",nn.Dropout2d(p = 0.1))
    net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
    net.add_module("flatten",nn.Flatten())
    net.add_module("linear1",nn.Linear(256,128))
    net.add_module("relu",nn.ReLU())
    net.add_module("linear2",nn.Linear(128,10))
    return net 



def training_loop(epochs = 5,
                  lr = 1e-3,
                  batch_size= 1024,
                  ckpt_path = "checkpoint.pt",
                  mixed_precision="no", #'fp16' or  'bf16'
                 ):
    
    train_dataloader, eval_dataloader = create_dataloaders(batch_size)
    model = create_net()
    

    optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
    lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=25*lr, 
                              epochs=epochs, steps_per_epoch=len(train_dataloader))
    
    #======================================================================
    # initialize accelerator and auto move data/model to accelerator.device
    set_seed(42)
    accelerator = Accelerator(mixed_precision=mixed_precision)
    accelerator.print(f'device {str(accelerator.device)} is used!')
    model, optimizer,lr_scheduler, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer,lr_scheduler, train_dataloader, eval_dataloader)
    #======================================================================
    

    for epoch in range(epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            features,labels = batch
            preds = model(features)
            loss = nn.CrossEntropyLoss()(preds,labels)
            
            #======================================================================
            #attention here! 
            accelerator.backward(loss) #loss.backward()
            #======================================================================
            
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()
            
        
        model.eval()
        accurate = 0
        num_elems = 0
        
        for _, batch in enumerate(eval_dataloader):
            features,labels = batch
            with torch.no_grad():
                preds = model(features)
            predictions = preds.argmax(dim=-1)
            
            #======================================================================
            #gather data from multi-gpus (used when in ddp mode)
            predictions = accelerator.gather_for_metrics(predictions)
            labels = accelerator.gather_for_metrics(labels)
            #======================================================================
            
            accurate_preds =  (predictions==labels)
            num_elems += accurate_preds.shape[0]
            accurate += accurate_preds.long().sum()

        eval_metric = accurate.item() / num_elems
        
        #======================================================================
        #print logs and save ckpt  
        accelerator.wait_for_everyone()
        nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        accelerator.print(f"epoch【{epoch}】@{nowtime} --> eval_metric= {100 * eval_metric:.2f}%")
        net_dict = accelerator.get_state_dict(model)
        accelerator.save(net_dict,ckpt_path+"_"+str(epoch))
        #======================================================================
        
training_loop(epochs = 5,lr = 1e-4,batch_size= 1024,ckpt_path = "checkpoint.pt",
            mixed_precision="no") #mixed_precision='fp16' or  'bf16'

```

### 3,执行代码


**方式1,在notebook中启动**

```python
from accelerate import notebook_launcher
#args = (5,1e-4,1024,'checkpoint.pt','no')
args = dict(epochs = 5,
        lr = 1e-4,
        batch_size= 1024,
        ckpt_path = "checkpoint.pt",
        mixed_precision="no").values()
notebook_launcher(training_loop, args, num_processes=2)


```

```
Launching training on 2 GPUs.
device cuda:0 is used!
epoch【0】@2023-01-15 12:10:48 --> eval_metric= 89.18%
epoch【1】@2023-01-15 12:10:58 --> eval_metric= 97.20%
epoch【2】@2023-01-15 12:11:08 --> eval_metric= 98.03%
epoch【3】@2023-01-15 12:11:19 --> eval_metric= 98.16%
epoch【4】@2023-01-15 12:11:30 --> eval_metric= 98.32%
```



**方式2,accelerate方式执行脚本**

```python
!accelerate launch ./cv_example.py  
```

```
device cuda:0 is used!
epoch【0】@2023-02-03 11:38:02 --> eval_metric= 91.79%
epoch【1】@2023-02-03 11:38:13 --> eval_metric= 97.22%
epoch【2】@2023-02-03 11:38:22 --> eval_metric= 98.18%
epoch【3】@2023-02-03 11:38:32 --> eval_metric= 98.33%
epoch【4】@2023-02-03 11:38:43 --> eval_metric= 98.38%
```


**方式3,torch方式执行脚本**

```python
# or traditional pytorch style
!python -m torch.distributed.launch --nproc_per_node 2 --use_env ./cv_example.py
```

```
device cuda:0 is used!
epoch【0】@2023-01-15 12:18:26 --> eval_metric= 94.79%
epoch【1】@2023-01-15 12:18:37 --> eval_metric= 96.44%
epoch【2】@2023-01-15 12:18:48 --> eval_metric= 98.34%
epoch【3】@2023-01-15 12:18:59 --> eval_metric= 98.41%
epoch【4】@2023-01-15 12:19:10 --> eval_metric= 98.51%
```



## 三,使用TPU加速你的pytorch模型


Kaggle中右边settings 中的 ACCELERATOR选择 TPU v3-8。


### 1,安装torch_xla

```python
#安装torch_xla支持
!pip uninstall -y torch torch_xla 
!pip install torch==1.8.2+cpu -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
!pip install cloud-tpu-client==0.10 https://storage.googleapis.com/tpu-pytorch/wheels/torch_xla-1.8-cp37-cp37m-linux_x86_64.whl
```

```python
#从git安装最新的accelerate仓库
!pip install git+https://github.com/huggingface/accelerate
```

```python
#检查是否成功安装 torch_xla 
import torch_xla 
```

### 2,训练代码


和之前代码完全一样。

```python
import os,PIL 
import numpy as np
from torch.utils.data import DataLoader, Dataset
import torch 
from torch import nn 

import torchvision 
from torchvision import transforms
import datetime

#======================================================================
# import accelerate
from accelerate import Accelerator
from accelerate.utils import set_seed
#======================================================================


def create_dataloaders(batch_size=64):
    transform = transforms.Compose([transforms.ToTensor()])

    ds_train = torchvision.datasets.MNIST(root="./mnist/",train=True,download=True,transform=transform)
    ds_val = torchvision.datasets.MNIST(root="./mnist/",train=False,download=True,transform=transform)

    dl_train =  torch.utils.data.DataLoader(ds_train, batch_size=batch_size, shuffle=True,
                                            num_workers=2,drop_last=True)
    dl_val =  torch.utils.data.DataLoader(ds_val, batch_size=batch_size, shuffle=False, 
                                          num_workers=2,drop_last=True)
    return dl_train,dl_val


def create_net():
    net = nn.Sequential()
    net.add_module("conv1",nn.Conv2d(in_channels=1,out_channels=512,kernel_size = 3))
    net.add_module("pool1",nn.MaxPool2d(kernel_size = 2,stride = 2)) 
    net.add_module("conv2",nn.Conv2d(in_channels=512,out_channels=256,kernel_size = 5))
    net.add_module("pool2",nn.MaxPool2d(kernel_size = 2,stride = 2))
    net.add_module("dropout",nn.Dropout2d(p = 0.1))
    net.add_module("adaptive_pool",nn.AdaptiveMaxPool2d((1,1)))
    net.add_module("flatten",nn.Flatten())
    net.add_module("linear1",nn.Linear(256,128))
    net.add_module("relu",nn.ReLU())
    net.add_module("linear2",nn.Linear(128,10))
    return net 



def training_loop(epochs = 5,
                  lr = 1e-3,
                  batch_size= 1024,
                  ckpt_path = "checkpoint.pt",
                  mixed_precision="no", #fp16' or  'bf16'
                 ):
    
    train_dataloader, eval_dataloader = create_dataloaders(batch_size)
    model = create_net()
    

    optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
    lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=25*lr, 
                              epochs=epochs, steps_per_epoch=len(train_dataloader))
    
    #======================================================================
    # initialize accelerator and auto move data/model to accelerator.device
    set_seed(42)
    accelerator = Accelerator(mixed_precision=mixed_precision)
    accelerator.print(f'device {str(accelerator.device)} is used!')
    model, optimizer,lr_scheduler, train_dataloader, eval_dataloader = accelerator.prepare(
        model, optimizer,lr_scheduler, train_dataloader, eval_dataloader)
    #======================================================================
    

    for epoch in range(epochs):
        model.train()
        for step, batch in enumerate(train_dataloader):
            features,labels = batch
            preds = model(features)
            loss = nn.CrossEntropyLoss()(preds,labels)
            
            #======================================================================
            #attention here! 
            accelerator.backward(loss) #loss.backward()
            #======================================================================
            
            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()
            
        
        model.eval()
        accurate = 0
        num_elems = 0
        
        for _, batch in enumerate(eval_dataloader):
            features,labels = batch
            with torch.no_grad():
                preds = model(features)
            predictions = preds.argmax(dim=-1)
            
            #======================================================================
            #gather data from multi-gpus (used when in ddp mode)
            predictions = accelerator.gather_for_metrics(predictions)
            labels = accelerator.gather_for_metrics(labels)
            #======================================================================
            
            accurate_preds =  (predictions==labels)
            num_elems += accurate_preds.shape[0]
            accurate += accurate_preds.long().sum()

        eval_metric = accurate.item() / num_elems
        
        #======================================================================
        #print logs and save ckpt  
        accelerator.wait_for_everyone()
        nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        accelerator.print(f"epoch【{epoch}】@{nowtime} --> eval_metric= {100 * eval_metric:.2f}%")
        net_dict = accelerator.get_state_dict(model)
        accelerator.save(net_dict,ckpt_path+"_"+str(epoch))
        #======================================================================
        
#training_loop(epochs = 5,lr = 1e-3,batch_size= 1024,ckpt_path = "checkpoint.pt",
#             mixed_precision="no") #mixed_precision='fp16' or  'bf16'

```

### 3,启动训练

```python
from accelerate import notebook_launcher
#args = (5,1e-4,1024,'checkpoint.pt','no')
args = dict(epochs = 5,
        lr = 1e-4,
        batch_size= 1024,
        ckpt_path = "checkpoint.pt",
        mixed_precision="no").values()
notebook_launcher(training_loop, args, num_processes=8)

```