Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
File size: 6,118 Bytes
b8d792c
 
5023ad3
b8d792c
 
 
 
 
 
 
 
 
 
 
 
 
23574ee
 
 
 
 
 
 
 
 
 
 
 
b8d792c
 
 
 
 
23574ee
 
 
 
b8d792c
86621d3
92b5367
86621d3
92b5367
86621d3
92b5367
86621d3
92b5367
 
 
86621d3
 
 
 
 
 
 
 
92b5367
 
86621d3
 
 
93af36a
86621d3
 
 
 
 
 
 
 
 
92b5367
86621d3
92b5367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86621d3
 
ef882ad
86621d3
 
92b5367
 
 
 
 
 
 
 
 
 
 
 
 
 
86621d3
92b5367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86621d3
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
dataset_info:
- config_name: issues
  features:
  - name: repo_name
    dtype: string
  - name: issue_id
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 30986711842
    num_examples: 15549682
  download_size: 16370074732
  dataset_size: 30986711842
- config_name: kaggle
  features:
  - name: file_id
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 5209133899
    num_examples: 580195
  download_size: 2222724371
  dataset_size: 5209133899
configs:
- config_name: issues
  data_files:
  - split: train
    path: issues/train-*
- config_name: kaggle
  data_files:
  - split: train
    path: kaggle/train-*
---

# GitHub Issues & Kaggle Notebooks
## Description
GitHub Issues & Kaggle Notebooks is a collection of two code datasets intended for language models training, they are sourced from GitHub issues and notebooks in Kaggle platform. These datasets are a modified part of the [StarCoder2](https://arxiv.org/abs/2402.19173) model training corpus, precisely the [bigcode/StarCoder2-Extras](https://huggingface.co/datasets/bigcode/starcoder2data-extras) dataset. We reformat the samples to remove StarCoder2's special tokens and use natural text to delimit comments in issues and display kaggle notebooks in markdown and code blocks.  

The dataset includes:

- ๐Ÿ› GitHub Issues โ€“ 11B tokens of discussions from GitHub issues sourced from [GH Archive](https://www.gharchive.org/).
- ๐Ÿ“Š Kaggle Notebooks โ€“ 1.7B tokens of data analysis notebooks in markdonw format, curated from Kaggle's [Meta Kaggle Code](https://www.kaggle.com/datasets/kaggle/meta-kaggle-code) dataset.
These datasets have undergone filtering to remove low-quality content, duplicates and PII. More details in StarCoder2 [paper](https://arxiv.org/abs/2402.19173)

## How to load the dataset

You can load a specific subset using the following code:

```python
from datasets import load_dataset

issues = load_dataset("HuggingFaceTB/github-issues-notebooks", "issues", split="train")  # GitHub Issues
kaggle_notebooks = load_dataset("HuggingFaceTB/github-issues-notebooks", "kaggle", split="train")  # Kaggle Notebooks
```

## Dataset curation
These curation details are from the StarCoder2 pipeline. The original datasets can be found at: https://huggingface.co/datasets/bigcode/starcoder2data-extras and more details can be found in the StarCoder2 paper.

### ๐Ÿ› GitHub Issues
The GitHub Issues dataset consists of discussions from GitHub repositories, sourced from GHArchive. It contains issue reports, bug tracking, and technical Q&A discussions.

To ensure high-quality data, the StarCoder2 processing pipeline included:

- Removing bot-generated comments and auto-replies from email responses.
- Filtering out short issues (<200 characters) and extremely long comments.
- Keeping only discussions with multiple users (or highly detailed single-user reports).
- Anonymizing usernames while preserving the conversation structure, names, emails, keys, passwords, IP addresses using [StarPII](https://huggingface.co/bigcode/starpii).

We format the conversatiosn using this template:

```
Title: [Issue title]

Question:
username_0: [Issue content]

Answers:
username_1: [Answer from user 1]
username_0: [Author reply]
username_2: [Answer from user 2]
...
Status: Issue closed (optional)
```

## ๐Ÿ“Š Kaggle Notebooks
The Kaggle Notebooks are sourced from the [Meta Kaggle Code](https://www.kaggle.com/datasets/kaggle/meta-kaggle-code) dataset, licensed under Apache 2.0. They were cleaned using a multi-step filtering process, which included:

- Removing notebooks with syntax errors or less than 100 characters.
- Extracting metadata for notebooks that reference Kaggle datasets. When possible, we retrieve the datasets references in the notebook and add information about them to the beginning of the notebook (description, `ds.info()` output and 4 examples)
- Filtering out duplicates, which reduced the dataset volume by 78%, and redacting PII.
Each notebook is formatted in Markdown format, where we start with the notebook title, dataset description when available and put the notebook (converted to a Python script) in a code block. 

Below is an example of a kaggle notebook:

````
# Iris Flower Dataset

### Context
The Iris flower data set is a multivariate data set introduced ... (truncated)

```python
import pandas as pd

df = pd.read_csv('iris-flower-dataset/IRIS.csv')
df.info()
```
```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
 #   Column        Non-Null Count  Dtype  
---  ------        --------------  -----  
 0   sepal_length  150 non-null    float64
 1   sepal_width   150 non-null    float64
 2   petal_length  150 non-null    float64
 3   petal_width   150 non-null    float64
 4   species       150 non-null    object 
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
```

Examples from the dataset:
```
{
    "sepal_length": 5.1,
    "sepal_width": 3.5,
    "petal_length": 1.4,
    "petal_width": 0.2,
    "species": "Iris-setosa"
}
... (truncated)
```

Code:
```python
import numpy as np  # linear algebra
import pandas as pd  # data processing, CSV file I/O (e.g. pd.read_csv)

# Input data files are available in the read-only "../input/" directory
import os

for dirname, _, filenames in os.walk("/kaggle/input"):
    for filename in filenames:
        print(os.path.join(dirname, filename))
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
import matplotlib.pyplot as plt

data = pd.read_csv("/kaggle/input/iris-flower-dataset/IRIS.csv")
data.head()
X = data.drop("species", axis=1)
... (truncated)
````

## Citation
```
@article{lozhkov2024starcoder,
  title={Starcoder 2 and the stack v2: The next generation},
  author={Lozhkov, Anton and Li, Raymond and Allal, Loubna Ben and Cassano, Federico and Lamy-Poirier, Joel and Tazi, Nouamane and Tang, Ao and Pykhtar, Dmytro and Liu, Jiawei and Wei, Yuxiang and others},
  journal={arXiv preprint arXiv:2402.19173},
  year={2024}
}
```