|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""IIIT5K dataset.""" |
|
|
|
|
|
import scipy.io |
|
|
|
import datasets |
|
|
|
import os |
|
from pathlib import Path |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{MishraBMVC12, |
|
author = "Mishra, A. and Alahari, K. and Jawahar, C.~V.", |
|
title = "Scene Text Recognition using Higher Order Language Priors", |
|
booktitle= "BMVC", |
|
year = "2012" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The IIIT 5K-Word dataset is harvested from Google image search. |
|
Query words like billboards, signboard, house numbers, house name plates, movie posters were used to collect images. |
|
The dataset contains 5000 cropped word images from Scene Texts and born-digital images. |
|
The dataset is divided into train and test parts. |
|
This dataset can be used for large lexicon cropped word recognition. |
|
We also provide a lexicon of more than 0.5 million dictionary words with this dataset. |
|
""" |
|
|
|
_HOMEPAGE = "http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html" |
|
|
|
_DL_URL = "http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K-Word_V3.0.tar.gz" |
|
|
|
|
|
class IIIT5K(datasets.GeneratorBasedBuilder): |
|
"""IIIT-5K dataset.""" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.Value("string"), |
|
"small_lexicon": datasets.Sequence(datasets.Value("string")), |
|
"medium_lexicon": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download_and_extract(_DL_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"split": "train", |
|
"archive_path": Path(archive_path) / "IIIT5K", |
|
"info_path": Path(archive_path) / "IIIT5K/traindata.mat", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"split": "test", |
|
"archive_path": Path(archive_path) / "IIIT5K", |
|
"info_path": Path(archive_path) / "IIIT5K/testdata.mat", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, split, archive_path, info_path): |
|
info = scipy.io.loadmat(info_path) |
|
info = info[split+"data"][0] |
|
|
|
for idx, info_ex in enumerate(info): |
|
path_image = os.path.join(archive_path, str(info_ex[0][0])) |
|
label = str(info_ex[1][0]) |
|
small_lexicon = [str(lab[0]) for lab in info_ex[2][0]] |
|
medium_lexicon = [str(lab[0]) for lab in info_ex[3][0]] |
|
yield idx, { |
|
"image": path_image, |
|
"label": label, |
|
"small_lexicon": small_lexicon, |
|
"medium_lexicon": medium_lexicon, |
|
} |
|
|