albertvillanova HF staff commited on
Commit
fc8ede4
·
verified ·
1 Parent(s): 5848f2d

Delete legacy JSON metadata (#2)

Browse files

- Delete legacy JSON metadata (e47f79f4fd07e533d755209e61c74318a0ed6552)

Files changed (1) hide show
  1. dataset_infos.json +0 -1
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"dialogue_domain": {"description": "Doc2dial is dataset of goal-oriented dialogues that are grounded in the associated documents. It includes over 4500 annotated conversations with an average of 14 turns that are grounded in over 450 documents from four domains. Compared to the prior document-grounded dialogue datasets this dataset covers a variety of dialogue scenes in information-seeking conversations.\n", "citation": "@inproceedings{feng-etal-2020-doc2dial,\n title = \"doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset\",\n author = \"Feng, Song and Wan, Hui and Gunasekara, Chulaka and Patel, Siva and Joshi, Sachindra and Lastras, Luis\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.652\",\n}\n", "homepage": "https://doc2dial.github.io", "license": "", "features": {"dial_id": {"dtype": "string", "id": null, "_type": "Value"}, "doc_id": {"dtype": "string", "id": null, "_type": "Value"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}, "turns": [{"turn_id": {"dtype": "int32", "id": null, "_type": "Value"}, "role": {"dtype": "string", "id": null, "_type": "Value"}, "da": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"sp_id": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}], "utterance": {"dtype": "string", "id": null, "_type": "Value"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "doc2dial", "config_name": "dialogue_domain", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 6924209, "num_examples": 3474, "dataset_name": "doc2dial"}, "validation": {"name": "validation", "num_bytes": 1315815, "num_examples": 661, "dataset_name": "doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/file/doc2dial_v1.0.1.zip": {"num_bytes": 5879543, "checksum": "c764d86628431fc1e54819d687a36f1d00b7ee95b8db2b3a7454149673ca4c17"}}, "download_size": 5879543, "post_processing_size": null, "dataset_size": 8240024, "size_in_bytes": 14119567}, "document_domain": {"description": "Doc2dial is dataset of goal-oriented dialogues that are grounded in the associated documents. It includes over 4500 annotated conversations with an average of 14 turns that are grounded in over 450 documents from four domains. Compared to the prior document-grounded dialogue datasets this dataset covers a variety of dialogue scenes in information-seeking conversations.\n", "citation": "@inproceedings{feng-etal-2020-doc2dial,\n title = \"doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset\",\n author = \"Feng, Song and Wan, Hui and Gunasekara, Chulaka and Patel, Siva and Joshi, Sachindra and Lastras, Luis\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.652\",\n}\n", "homepage": "https://doc2dial.github.io", "license": "", "features": {"domain": {"dtype": "string", "id": null, "_type": "Value"}, "doc_id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "doc_text": {"dtype": "string", "id": null, "_type": "Value"}, "spans": [{"id_sp": {"dtype": "string", "id": null, "_type": "Value"}, "tag": {"dtype": "string", "id": null, "_type": "Value"}, "start_sp": {"dtype": "int32", "id": null, "_type": "Value"}, "end_sp": {"dtype": "int32", "id": null, "_type": "Value"}, "text_sp": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "parent_titles": {"dtype": "string", "id": null, "_type": "Value"}, "id_sec": {"dtype": "string", "id": null, "_type": "Value"}, "start_sec": {"dtype": "int32", "id": null, "_type": "Value"}, "text_sec": {"dtype": "string", "id": null, "_type": "Value"}, "end_sec": {"dtype": "int32", "id": null, "_type": "Value"}}], "doc_html_ts": {"dtype": "string", "id": null, "_type": "Value"}, "doc_html_raw": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "doc2dial", "config_name": "document_domain", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 204874908, "num_examples": 3416, "dataset_name": "doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/file/doc2dial_v1.0.1.zip": {"num_bytes": 5879543, "checksum": "c764d86628431fc1e54819d687a36f1d00b7ee95b8db2b3a7454149673ca4c17"}}, "download_size": 5879543, "post_processing_size": null, "dataset_size": 204874908, "size_in_bytes": 210754451}, "doc2dial_rc": {"description": "Doc2dial is dataset of goal-oriented dialogues that are grounded in the associated documents. It includes over 4500 annotated conversations with an average of 14 turns that are grounded in over 450 documents from four domains. Compared to the prior document-grounded dialogue datasets this dataset covers a variety of dialogue scenes in information-seeking conversations.\n", "citation": "@inproceedings{feng-etal-2020-doc2dial,\n title = \"doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset\",\n author = \"Feng, Song and Wan, Hui and Gunasekara, Chulaka and Patel, Siva and Joshi, Sachindra and Lastras, Luis\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.652\",\n}\n", "homepage": "https://doc2dial.github.io", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "doc2dial", "config_name": "doc2dial_rc", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"validation": {"name": "validation", "num_bytes": 22705288, "num_examples": 3972, "dataset_name": "doc2dial"}, "train": {"name": "train", "num_bytes": 114778994, "num_examples": 20431, "dataset_name": "doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/file/doc2dial_v1.0.1.zip": {"num_bytes": 5879543, "checksum": "c764d86628431fc1e54819d687a36f1d00b7ee95b8db2b3a7454149673ca4c17"}}, "download_size": 5879543, "post_processing_size": null, "dataset_size": 137484282, "size_in_bytes": 143363825}}