File size: 7,251 Bytes
0f41da0 f8ce412 0f41da0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
### A Unified Interface for IQA Datasets
This repository contains a unified interface for **downloading and loading** 20 popular Image Quality Assessment (IQA) datasets. We provide codes for both general **Python** and **PyTorch**.
#### Citation
This repository is part of our [Bayesian IQA project](http://ivc.uwaterloo.ca/research/bayesianIQA/) where we present an overview of IQA methods from a Bayesian perspective. More detailed summaries of both IQA models and datasets can be found in this [interactive webpage](http://ivc.uwaterloo.ca/research/bayesianIQA/).
If you find our project useful, please cite our paper
```
@article{duanmu2021biqa,
author = {Duanmu, Zhengfang and Liu, Wentao and Wang, Zhongling and Wang, Zhou},
title = {Quantifying Visual Image Quality: A Bayesian View},
journal = {Annual Review of Vision Science},
volume = {7},
number = {1},
pages = {437-464},
year = {2021}
}
```
#### Supported Datasets
| Dataset | Dis Img | Ref Img | MOS | DMOS |
| :-----------------------------------------------------------------------------------: | :----------------: | :----------------: | :----------------: | :----------------: |
| [LIVE](https://live.ece.utexas.edu/research/quality/subjective.htm) | β | β | | β |
| [A57](http://vision.eng.shizuoka.ac.jp/mod/page/view.php?id=26) | β | β | | β |
| [LIVE_MD](https://live.ece.utexas.edu/research/Quality/live_multidistortedimage.html) | β | β | | β |
| [MDID2013](https://ieeexplore.ieee.org/document/6879255) | β | β | | β |
| [CSIQ](http://vision.eng.shizuoka.ac.jp/mod/page/view.php?id=23) | β | β | | β |
| [KADID-10k](http://database.mmsp-kn.de/kadid-10k-database.html) | β | β | β<sub>[(Note)](https://github.com/icbcbicc/IQA-Dataset/issues/3#issuecomment-2192649304)</sub> ~~~~| |
| [TID2008](http://www.ponomarenko.info/tid2008.htm) | β | β | β | |
| [TID2013](http://www.ponomarenko.info/tid2013.htm) | β | β | β | |
| [CIDIQ_MOS100](https://www.ntnu.edu/web/colourlab/software) | β | β | β | |
| [CIDIQ_MOS50](https://www.ntnu.edu/web/colourlab/software) | β | β | β | |
| [MDID2016](https://www.sciencedirect.com/science/article/abs/pii/S0031320316301911) | β | β | β | |
| [SDIVL](http://www.ivl.disco.unimib.it/activities/imagequality/) | β | β | β | |
| [MDIVL](http://www.ivl.disco.unimib.it/activities/imagequality/) | β | β | β | |
| [Toyama](http://mict.eng.u-toyama.ac.jp/mictdb.html) | β | β | β | |
| [PDAP-HDDS](https://sites.google.com/site/eelab907/zi-liao-ku) | β | β | β | |
| [VCLFER](https://www.vcl.fer.hr/quality/vclfer.html) | β | β | β | |
| [LIVE_Challenge](https://live.ece.utexas.edu/research/ChallengeDB/index.html) | β | | β | |
| [CID2013](https://zenodo.org/record/2647033#.YDSi73X0kUc) | β | | β | |
| [KonIQ-10k](http://database.mmsp-kn.de/koniq-10k-database.html) | β | | β | |
| [SPAQ](https://github.com/h4nwei/SPAQ) | β | | β | |
| [Waterloo_Exploration](https://ece.uwaterloo.ca/~k29ma/exploration/) | β | β | | |
| [<del>KADIS-700k</del>](http://database.mmsp-kn.de/kadid-10k-database.html) | β <sub>(code only)</sub> | β | | |
#### Basic Usage
0. Prerequisites
```shell
pip install wget
```
1. General Python (please refer [```demo.py```](demo.py))
```python
from load_dataset import load_dataset
dataset = load_dataset("LIVE")
```
2. PyTorch (please refer [```demo_pytorch.py```](demo_pytorch.py))
```python
from load_dataset import load_dataset_pytorch
dataset = load_dataset_pytorch("LIVE")
```
#### Advanced Usage
1. General Python (please refer [```demo.py```](demo.py))
```python
from load_dataset import load_dataset
dataset = load_dataset("LIVE", dataset_root="data", attributes=["dis_img_path", "dis_type", "ref_img_path", "score"], download=True)
```
2. PyTorch (please refer [```demo_pytorch.py```](demo_pytorch.py))
```python
from load_dataset import load_dataset_pytorch
transform = transforms.Compose([transforms.RandomCrop(size=64), transforms.ToTensor()])
dataset = load_dataset_pytorch("LIVE", dataset_root="data", attributes=["dis_img_path", "dis_type", "ref_img_path", "score"], download=True, transform=transform)
```
#### TODO
- [ ] Add more datasets: [PaQ-2-PiQ](https://github.com/baidut/PaQ-2-PiQ), [AVA](https://github.com/mtobeiyf/ava_downloader), [PIPAL](https://www.jasongt.com/projectpages/pipal.html), [AADB](https://github.com/aimerykong/deepImageAestheticsAnalysis), [FLIVE](https://github.com/niu-haoran/FLIVE_Database/blob/master/database_prep.ipynb), [BIQ2021](https://github.com/nisarahmedrana/BIQ2021), [IVC](http://ivc.univ-nantes.fr/en/databases/Subjective_Database/)
- [ ] PyPI package
- [ ] HuggingFace dataset
- [ ] Provide more attributes
- [ ] ~~Add TensorFlow support~~
- [ ] ~~Add MATLAB support~~
#### Star History
[](https://star-history.com/#icbcbicc/IQA-Dataset&Date) |