j565xu commited on
Commit
969e4d3
·
verified ·
1 Parent(s): 9dbf4f9

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -98
README.md DELETED
@@ -1,98 +0,0 @@
1
- ### A Unified Interface for IQA Datasets
2
-
3
- This repository contains a unified interface for **downloading and loading** 20 popular Image Quality Assessment (IQA) datasets. We provide codes for both general **Python** and **PyTorch**.
4
-
5
- #### Citation
6
-
7
- This repository is part of our [Bayesian IQA project](http://ivc.uwaterloo.ca/research/bayesianIQA/) where we present an overview of IQA methods from a Bayesian perspective. More detailed summaries of both IQA models and datasets can be found in this [interactive webpage](http://ivc.uwaterloo.ca/research/bayesianIQA/).
8
-
9
- If you find our project useful, please cite our paper
10
- ```
11
- @article{duanmu2021biqa,
12
- author = {Duanmu, Zhengfang and Liu, Wentao and Wang, Zhongling and Wang, Zhou},
13
- title = {Quantifying Visual Image Quality: A Bayesian View},
14
- journal = {Annual Review of Vision Science},
15
- volume = {7},
16
- number = {1},
17
- pages = {437-464},
18
- year = {2021}
19
- }
20
- ```
21
-
22
- #### Supported Datasets
23
-
24
- | Dataset | Dis Img | Ref Img | MOS | DMOS |
25
- | :-----------------------------------------------------------------------------------: | :----------------: | :----------------: | :----------------: | :----------------: |
26
- | [LIVE](https://live.ece.utexas.edu/research/quality/subjective.htm) | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: |
27
- | [A57](http://vision.eng.shizuoka.ac.jp/mod/page/view.php?id=26) | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: |
28
- | [LIVE_MD](https://live.ece.utexas.edu/research/Quality/live_multidistortedimage.html) | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: |
29
- | [MDID2013](https://ieeexplore.ieee.org/document/6879255) | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: |
30
- | [CSIQ](http://vision.eng.shizuoka.ac.jp/mod/page/view.php?id=23) | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: |
31
- | [KADID-10k](http://database.mmsp-kn.de/kadid-10k-database.html) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark:<sub>[(Note)](https://github.com/icbcbicc/IQA-Dataset/issues/3#issuecomment-2192649304)</sub> ~~~~| |
32
- | [TID2008](http://www.ponomarenko.info/tid2008.htm) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
33
- | [TID2013](http://www.ponomarenko.info/tid2013.htm) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
34
- | [CIDIQ_MOS100](https://www.ntnu.edu/web/colourlab/software) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
35
- | [CIDIQ_MOS50](https://www.ntnu.edu/web/colourlab/software) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
36
- | [MDID2016](https://www.sciencedirect.com/science/article/abs/pii/S0031320316301911) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
37
- | [SDIVL](http://www.ivl.disco.unimib.it/activities/imagequality/) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
38
- | [MDIVL](http://www.ivl.disco.unimib.it/activities/imagequality/) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
39
- | [Toyama](http://mict.eng.u-toyama.ac.jp/mictdb.html) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
40
- | [PDAP-HDDS](https://sites.google.com/site/eelab907/zi-liao-ku) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
41
- | [VCLFER](https://www.vcl.fer.hr/quality/vclfer.html) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | |
42
- | [LIVE_Challenge](https://live.ece.utexas.edu/research/ChallengeDB/index.html) | :heavy_check_mark: | | :heavy_check_mark: | |
43
- | [CID2013](https://zenodo.org/record/2647033#.YDSi73X0kUc) | :heavy_check_mark: | | :heavy_check_mark: | |
44
- | [KonIQ-10k](http://database.mmsp-kn.de/koniq-10k-database.html) | :heavy_check_mark: | | :heavy_check_mark: | |
45
- | [SPAQ](https://github.com/h4nwei/SPAQ) | :heavy_check_mark: | | :heavy_check_mark: | |
46
- | [Waterloo_Exploration](https://ece.uwaterloo.ca/~k29ma/exploration/) | :heavy_check_mark: | :heavy_check_mark: | | |
47
- | [<del>KADIS-700k</del>](http://database.mmsp-kn.de/kadid-10k-database.html) | :heavy_check_mark: <sub>(code only)</sub> | :heavy_check_mark: | | |
48
-
49
- #### Basic Usage
50
-
51
- 0. Prerequisites
52
- ```shell
53
- pip install wget
54
- ```
55
-
56
- 1. General Python (please refer [```demo.py```](demo.py))
57
-
58
- ```python
59
- from load_dataset import load_dataset
60
- dataset = load_dataset("LIVE")
61
- ```
62
-
63
- 2. PyTorch (please refer [```demo_pytorch.py```](demo_pytorch.py))
64
-
65
- ```python
66
- from load_dataset import load_dataset_pytorch
67
- dataset = load_dataset_pytorch("LIVE")
68
- ```
69
-
70
- #### Advanced Usage
71
-
72
- 1. General Python (please refer [```demo.py```](demo.py))
73
-
74
- ```python
75
- from load_dataset import load_dataset
76
- dataset = load_dataset("LIVE", dataset_root="data", attributes=["dis_img_path", "dis_type", "ref_img_path", "score"], download=True)
77
- ```
78
-
79
- 2. PyTorch (please refer [```demo_pytorch.py```](demo_pytorch.py))
80
-
81
- ```python
82
- from load_dataset import load_dataset_pytorch
83
- transform = transforms.Compose([transforms.RandomCrop(size=64), transforms.ToTensor()])
84
- dataset = load_dataset_pytorch("LIVE", dataset_root="data", attributes=["dis_img_path", "dis_type", "ref_img_path", "score"], download=True, transform=transform)
85
- ```
86
-
87
- #### TODO
88
-
89
- - [ ] Add more datasets: [PaQ-2-PiQ](https://github.com/baidut/PaQ-2-PiQ), [AVA](https://github.com/mtobeiyf/ava_downloader), [PIPAL](https://www.jasongt.com/projectpages/pipal.html), [AADB](https://github.com/aimerykong/deepImageAestheticsAnalysis), [FLIVE](https://github.com/niu-haoran/FLIVE_Database/blob/master/database_prep.ipynb), [BIQ2021](https://github.com/nisarahmedrana/BIQ2021), [IVC](http://ivc.univ-nantes.fr/en/databases/Subjective_Database/)
90
- - [ ] PyPI package
91
- - [ ] HuggingFace dataset
92
- - [ ] Provide more attributes
93
- - [ ] ~~Add TensorFlow support~~
94
- - [ ] ~~Add MATLAB support~~
95
-
96
- #### Star History
97
-
98
- [![Star History Chart](https://api.star-history.com/svg?repos=icbcbicc/IQA-Dataset&type=Date)](https://star-history.com/#icbcbicc/IQA-Dataset&Date)