Datasets:

License:
File size: 8,750 Bytes
1093ad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d3e862
1093ad1
 
 
35bef90
1093ad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d3e862
1093ad1
 
 
 
 
 
 
 
 
 
 
8d480ac
1093ad1
 
 
 
 
8d480ac
1093ad1
 
 
 
 
 
 
 
 
 
 
 
8d480ac
1093ad1
 
 
 
 
 
8d480ac
1093ad1
 
 
 
 
 
 
 
 
 
 
 
 
8d480ac
1093ad1
 
 
 
 
8d480ac
1093ad1
 
 
 
 
 
 
 
35bef90
1093ad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""IWSLT 2017 dataset """


import os

import datasets


_CITATION = """\
@inproceedings{cettoloEtAl:EAMT2012,
Address = {Trento, Italy},
Author = {Mauro Cettolo and Christian Girardi and Marcello Federico},
Booktitle = {Proceedings of the 16$^{th}$ Conference of the European Association for Machine Translation (EAMT)},
Date = {28-30},
Month = {May},
Pages = {261--268},
Title = {WIT$^3$: Web Inventory of Transcribed and Translated Talks},
Year = {2012}}
"""

_DESCRIPTION = """\
The IWSLT 2017 Evaluation Campaign includes a multilingual TED Talks MT task. The languages involved are five:

  German, English, Italian, Dutch, Romanian.

For each language pair, training and development sets are available through the entry of the table below: by clicking, an archive will be downloaded which contains the sets and a README file. Numbers in the table refer to millions of units (untokenized words) of the target side of all parallel training sets.
"""

MULTI_URL = "https://huggingface.co/datasets/iwslt2017/resolve/ebd7c60d9800c2a1be010a227e5f0a2363730f7a/data/2017-01-trnmted/texts/DeEnItNlRo/DeEnItNlRo/DeEnItNlRo-DeEnItNlRo.tgz"


class IWSLT2017Config(datasets.BuilderConfig):
    """BuilderConfig for NewDataset"""

    def __init__(self, pair, is_multilingual, **kwargs):
        """

        Args:
            pair: the language pair to consider
            is_multilingual: Is this pair in the multilingual dataset (download source is different)
            **kwargs: keyword arguments forwarded to super.
        """
        self.pair = pair
        self.is_multilingual = is_multilingual
        super().__init__(**kwargs)


# XXX: Artificially removed DE from here, as it also exists within bilingual data
MULTI_LANGUAGES = ["en", "it", "nl", "ro"]
BI_LANGUAGES = ["ar", "de", "en", "fr", "ja", "ko", "zh"]
MULTI_PAIRS = [f"{source}-{target}" for source in MULTI_LANGUAGES for target in MULTI_LANGUAGES if source != target]
BI_PAIRS = [
    f"{source}-{target}"
    for source in BI_LANGUAGES
    for target in BI_LANGUAGES
    if source != target and (source == "en" or target == "en")
]

PAIRS = MULTI_PAIRS + BI_PAIRS


class IWSLT217(datasets.GeneratorBasedBuilder):
    """The IWSLT 2017 Evaluation Campaign includes a multilingual TED Talks MT task."""

    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
    BUILDER_CONFIG_CLASS = IWSLT2017Config
    BUILDER_CONFIGS = [
        IWSLT2017Config(
            name="iwslt2017-" + pair,
            description="A small dataset",
            version=datasets.Version("1.0.0"),
            pair=pair,
            is_multilingual=pair in MULTI_PAIRS,
        )
        for pair in PAIRS
    ]

    def _info(self):
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {"translation": datasets.features.Translation(languages=self.config.pair.split("-"))}
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://sites.google.com/site/iwsltevaluation2017/TED-tasks",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        source, target = self.config.pair.split("-")
        if self.config.is_multilingual:
            dl_dir = dl_manager.download_and_extract(MULTI_URL)
            data_dir = os.path.join(dl_dir, "DeEnItNlRo-DeEnItNlRo")
            years = [2010]
        else:
            bi_url = f"https://huggingface.co/datasets/iwslt2017/resolve/ebd7c60d9800c2a1be010a227e5f0a2363730f7a/data/2017-01-trnted/texts/{source}/{target}/{source}-{target}.tgz"
            dl_dir = dl_manager.download_and_extract(bi_url)
            data_dir = os.path.join(dl_dir, f"{source}-{target}")
            years = [2010, 2011, 2012, 2013, 2014, 2015]
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "source_files": [
                        os.path.join(
                            data_dir,
                            f"train.tags.{self.config.pair}.{source}",
                        )
                    ],
                    "target_files": [
                        os.path.join(
                            data_dir,
                            f"train.tags.{self.config.pair}.{target}",
                        )
                    ],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "source_files": [
                        os.path.join(
                            data_dir,
                            f"IWSLT17.TED.tst{year}.{self.config.pair}.{source}.xml",
                        )
                        for year in years
                    ],
                    "target_files": [
                        os.path.join(
                            data_dir,
                            f"IWSLT17.TED.tst{year}.{self.config.pair}.{target}.xml",
                        )
                        for year in years
                    ],
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "source_files": [
                        os.path.join(
                            data_dir,
                            f"IWSLT17.TED.dev2010.{self.config.pair}.{source}.xml",
                        )
                    ],
                    "target_files": [
                        os.path.join(
                            data_dir,
                            f"IWSLT17.TED.dev2010.{self.config.pair}.{target}.xml",
                        )
                    ],
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, source_files, target_files, split):
        """Yields examples."""
        id_ = 0
        source, target = self.config.pair.split("-")
        for source_file, target_file in zip(source_files, target_files):
            with open(source_file, "r", encoding="utf-8") as sf:
                with open(target_file, "r", encoding="utf-8") as tf:
                    for source_row, target_row in zip(sf, tf):
                        source_row = source_row.strip()
                        target_row = target_row.strip()

                        if source_row.startswith("<"):
                            if source_row.startswith("<seg"):
                                # Remove <seg id="1">.....</seg>
                                # Very simple code instead of regex or xml parsing
                                part1 = source_row.split(">")[1]
                                source_row = part1.split("<")[0]
                                part1 = target_row.split(">")[1]
                                target_row = part1.split("<")[0]

                                source_row = source_row.strip()
                                target_row = target_row.strip()
                            else:
                                continue

                        yield id_, {"translation": {source: source_row, target: target_row}}
                        id_ += 1