Illia56's picture
Upload 4 files
f5ff449 verified
import os
import librosa
import numpy as np
import soundfile as sf
from tqdm import tqdm # Import tqdm for progress tracking
from concurrent.futures import ProcessPoolExecutor # Import for parallel processing
# Define the directory containing the audio files
audio_dir = 'audio'
output_dir = 'processed_audio'
# Create output directory if it doesn't exist
os.makedirs(output_dir, exist_ok=True)
# Function to load audio
def load_audio(file_path):
audio, sr = librosa.load(file_path, sr=None) # Load with original sampling rate
return audio, sr
# Function to normalize audio
def normalize_audio(audio):
return audio / np.max(np.abs(audio))
# Function to save audio in a compressed format
def save_audio(output_path, audio, sr):
# Save the processed audio as MP3 to reduce file size
sf.write(output_path.replace('.wav', '.mp3'), audio, sr, format='MP3') # Save as MP3
# Function to process a single audio file
def process_audio(file_path):
audio, sr = load_audio(file_path) # Load the audio file
audio = normalize_audio(audio) # Normalize audio
output_path = os.path.join(output_dir, os.path.basename(file_path).replace('.mp3', '.wav')) # Save as .wav
save_audio(output_path, audio, sr) # Save the processed audio
return os.path.basename(file_path) # Return the filename for logging
if __name__ == '__main__': # Protect the main execution
# Get a list of all mp3 files in the audio directory
audio_files = [os.path.join(audio_dir, filename) for filename in os.listdir(audio_dir) if filename.endswith('.mp3')]
# Process audio files in parallel
with ProcessPoolExecutor() as executor:
for result in tqdm(executor.map(process_audio, audio_files), total=len(audio_files), desc="Processing files", unit="file"):
print(f'Processed {result}') # Log the processing