File size: 3,992 Bytes
659d3b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and Ilya Gusev
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HeadlineCause: A Dataset of News Headlines for Detecting Casualties"""

import json
import os

import datasets


_CITATION = """
@misc{gusev2021headlinecause,
    title={HeadlineCause: A Dataset of News Headlines for Detecting Casualties},
    author={Ilya Gusev and Alexey Tikhonov},
    year={2021},
    eprint={2108.12626},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
"""

_DESCRIPTION = "A Dataset of News Headlines for Detecting Casualties"
_HOMEPAGE = "https://github.com/IlyaGusev/HeadlineCause"
_URLS = {
    "ru_simple": {
        "train": "ru/simple/train.jsonl",
        "val": "ru/simple/val.jsonl",
        "test": "ru/simple/test.jsonl"
    },
    "ru_full": {
        "train": "ru/full/train.jsonl",
        "val": "ru/full/val.jsonl",
        "test": "ru/full/test.jsonl"
    },
    "en_simple": {
        "train": "en/simple/train.jsonl",
        "val": "en/simple/val.jsonl",
        "test": "en/simple/test.jsonl"
    },
    "en_full": {
        "train": "en/full/train.jsonl",
        "val": "en/full/val.jsonl",
        "test": "en/full/test.jsonl",
    }
}


class HeadlineCauseDataset(datasets.GeneratorBasedBuilder):
    """HeadlineCause Dataset"""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="ru_simple", version=VERSION, description="Russian language, Simple task"),
        datasets.BuilderConfig(name="en_simple", version=VERSION, description="English language, Simple task"),
        datasets.BuilderConfig(name="ru_full", version=VERSION, description="Russian language, Full task"),
        datasets.BuilderConfig(name="en_full", version=VERSION, description="English language, Full task"),
    ]

    DEFAULT_CONFIG_NAME = "en_simple"

    def _info(self):
        features = datasets.Features(
            {
                "left_url": datasets.Value("string"),
                "right_url": datasets.Value("string"),
                "left_title": datasets.Value("string"),
                "right_title": datasets.Value("string"),
                "left_timestamp": datasets.Value("timestamp[s]"),
                "right_timestamp": datasets.Value("timestamp[s]"),
                "id": datasets.Value("string"),
                "has_link": datasets.Value("bool"),
                "label": datasets.Value("int8"),
                "result": datasets.Value("string"),
                "agreement": datasets.Value("double")
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS[self.config.name])
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
        ]

    def _generate_examples(self, filepath):
        with open(filepath, encoding="utf-8") as f:
            for row in f:
                data = json.loads(row)
                yield data["id"], data