hdallatorre commited on
Commit
b897361
·
1 Parent(s): bf3d976

feat: Add deepstarr dataset

Browse files
nucleotide_transformer_downstream_tasks_multilabel.py CHANGED
@@ -41,15 +41,13 @@ _HOMEPAGE = "https://github.com/instadeepai/nucleotide-transformer"
41
 
42
  _LICENSE = "https://github.com/instadeepai/nucleotide-transformer/LICENSE.md"
43
 
44
- _TASKS = [
45
- "deepstarr",
46
- ]
47
 
48
 
49
  class NucleotideTransformerDownstreamTasksConfig(datasets.BuilderConfig):
50
  """BuilderConfig for The Nucleotide Transformer downstream taks dataset."""
51
 
52
- def __init__(self, *args, task: str, **kwargs):
53
  """BuilderConfig downstream tasks dataset.
54
  Args:
55
  task (:obj:`str`): Task name.
@@ -61,30 +59,29 @@ class NucleotideTransformerDownstreamTasksConfig(datasets.BuilderConfig):
61
  **kwargs,
62
  )
63
  self.task = task
 
64
 
65
 
66
  class NucleotideTransformerDownstreamTasks(datasets.GeneratorBasedBuilder):
67
  VERSION = datasets.Version("1.1.0")
68
  BUILDER_CONFIG_CLASS = NucleotideTransformerDownstreamTasksConfig
69
  BUILDER_CONFIGS = [
70
- NucleotideTransformerDownstreamTasksConfig(task=task) for task in _TASKS
 
71
  ]
72
  DEFAULT_CONFIG_NAME = "deepstarr"
73
 
74
  def _info(self):
 
 
 
 
 
 
 
 
 
75
 
76
- features = datasets.Features(
77
- {
78
- "sequence": datasets.Value("string"),
79
- "name": datasets.Value("string"),
80
- "label_0": datasets.Value("float32"),
81
- "label_1": datasets.Value("float32"),
82
- "label_2": datasets.Value("float32"),
83
- "label_3": datasets.Value("float32"),
84
- "label_4": datasets.Value("float32"),
85
- "label_5": datasets.Value("float32"),
86
- }
87
- )
88
  return datasets.DatasetInfo(
89
  # This is the description that will appear on the datasets page.
90
  description=_DESCRIPTION,
@@ -101,7 +98,6 @@ class NucleotideTransformerDownstreamTasks(datasets.GeneratorBasedBuilder):
101
  def _split_generators(
102
  self, dl_manager: datasets.DownloadManager
103
  ) -> List[datasets.SplitGenerator]:
104
-
105
  train_file = dl_manager.download_and_extract(self.config.task + "/train.fna")
106
  test_file = dl_manager.download_and_extract(self.config.task + "/test.fna")
107
 
@@ -126,15 +122,15 @@ class NucleotideTransformerDownstreamTasks(datasets.GeneratorBasedBuilder):
126
  sequence, name = str(record.seq), str(record.name)
127
  labels = [float(label) for label in name.split("|")[1:]]
128
 
129
- # yield example
130
- yield key, {
131
  "sequence": sequence,
132
  "name": name,
133
- "label_0": labels[0],
134
- "label_1": labels[1],
135
- "label_2": labels[2],
136
- "label_3": labels[3],
137
- "label_4": labels[4],
138
- "label_5": labels[5],
139
  }
 
 
 
 
 
 
 
140
  key += 1
 
41
 
42
  _LICENSE = "https://github.com/instadeepai/nucleotide-transformer/LICENSE.md"
43
 
44
+ _TASKS = [("deepstarr", 6)]
 
 
45
 
46
 
47
  class NucleotideTransformerDownstreamTasksConfig(datasets.BuilderConfig):
48
  """BuilderConfig for The Nucleotide Transformer downstream taks dataset."""
49
 
50
+ def __init__(self, *args, task: str, num_labels=int, **kwargs):
51
  """BuilderConfig downstream tasks dataset.
52
  Args:
53
  task (:obj:`str`): Task name.
 
59
  **kwargs,
60
  )
61
  self.task = task
62
+ self.num_labels = num_labels
63
 
64
 
65
  class NucleotideTransformerDownstreamTasks(datasets.GeneratorBasedBuilder):
66
  VERSION = datasets.Version("1.1.0")
67
  BUILDER_CONFIG_CLASS = NucleotideTransformerDownstreamTasksConfig
68
  BUILDER_CONFIGS = [
69
+ NucleotideTransformerDownstreamTasksConfig(task=task, num_labels=num_labels)
70
+ for (task, num_labels) in _TASKS
71
  ]
72
  DEFAULT_CONFIG_NAME = "deepstarr"
73
 
74
  def _info(self):
75
+ features_dict = {
76
+ "sequence": datasets.Value("string"),
77
+ "name": datasets.Value("string"),
78
+ }
79
+ labels_dict = {
80
+ f"label_{i}": datasets.Value("float32")
81
+ for i in range(self.config.num_labels)
82
+ }
83
+ features = datasets.Features(dict(features_dict.items() + labels_dict.items()))
84
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  return datasets.DatasetInfo(
86
  # This is the description that will appear on the datasets page.
87
  description=_DESCRIPTION,
 
98
  def _split_generators(
99
  self, dl_manager: datasets.DownloadManager
100
  ) -> List[datasets.SplitGenerator]:
 
101
  train_file = dl_manager.download_and_extract(self.config.task + "/train.fna")
102
  test_file = dl_manager.download_and_extract(self.config.task + "/test.fna")
103
 
 
122
  sequence, name = str(record.seq), str(record.name)
123
  labels = [float(label) for label in name.split("|")[1:]]
124
 
125
+ sequence_name_dict = {
 
126
  "sequence": sequence,
127
  "name": name,
 
 
 
 
 
 
128
  }
129
+
130
+ labels_dict = {
131
+ f"label_{i}": labels[i] for i in range(self.config.num_labels)
132
+ }
133
+ final_dict = dict(sequence_name_dict.items() + labels_dict.items())
134
+ # yield example
135
+ yield key, final_dict
136
  key += 1