# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script # contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script for the dataset containing the "promoter_all" and "enhancers" downstream tasks from the Nucleotide Transformer paper.""" from typing import List import datasets from Bio import SeqIO # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @article{dalla2023nucleotide, title={The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics}, author={Dalla-Torre, Hugo and Gonzalez, Liam and Mendoza-Revilla, Javier and Carranza, Nicolas Lopez and Grzywaczewski, Adam Henryk and Oteri, Francesco and Dallago, Christian and Trop, Evan and Sirelkhatim, Hassan and Richard, Guillaume and others}, journal={bioRxiv}, pages={2023--01}, year={2023}, publisher={Cold Spring Harbor Laboratory} } """ # You can copy an official description _DESCRIPTION = """\ Multilabel datasets used in the Nucleotide Transformer paper. """ _HOMEPAGE = "https://github.com/instadeepai/nucleotide-transformer" _LICENSE = "https://github.com/instadeepai/nucleotide-transformer/LICENSE.md" # The toy_classification and toy_regression are two manually created configurations # with 5 samples in both the train and test fasta files. It is notably used in order to # test the scripts. _TASKS_NUM_LABELS_DTYPE = [ ("deepstarr", 6, "float32"), ("toy_classification", 2, "int32"), ("toy_regression", 2, "float32"), ] _SPLIT_SIZES = { "deepstarr": {"train": 402034, "test": 41184}, "toy_classification": {"train": 35, "test": 35}, "toy_regression": {"train": 25, "test": 15}, } class NucleotideTransformerDownstreamTasksConfig(datasets.BuilderConfig): """BuilderConfig for The Nucleotide Transformer downstream taks dataset.""" def __init__( self, *args, task: str, num_labels=int, dtype: str = "int32", **kwargs ): """BuilderConfig downstream tasks dataset. Args: task (:obj:`str`): Task name. **kwargs: keyword arguments forwarded to super. """ super().__init__( *args, name=f"{task}", **kwargs, ) self.task = task self.num_labels = num_labels self.dtype = dtype self.split_sizes = _SPLIT_SIZES[task] class NucleotideTransformerDownstreamTasks(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") BUILDER_CONFIG_CLASS = NucleotideTransformerDownstreamTasksConfig BUILDER_CONFIGS = [ NucleotideTransformerDownstreamTasksConfig( task=task, num_labels=num_labels, dtype=dtype ) for (task, num_labels, dtype) in _TASKS_NUM_LABELS_DTYPE ] DEFAULT_CONFIG_NAME = "deepstarr" def _info(self): features_dict = { "sequence": datasets.Value("string"), "name": datasets.Value("string"), } labels_dict = { f"label_{i}": datasets.Value(self.config.dtype) for i in range(self.config.num_labels) } features_dict.update(labels_dict) features = datasets.Features(features_dict) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, # Number of sequences dataset_size=self.config.split_sizes, ) def _split_generators( self, dl_manager: datasets.DownloadManager ) -> List[datasets.SplitGenerator]: train_file = dl_manager.download_and_extract(self.config.task + "/train.fna") test_file = dl_manager.download_and_extract(self.config.task + "/test.fna") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"file": train_file} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"file": test_file} ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, file): key = 0 with open(file, "rt") as f: fasta_sequences = SeqIO.parse(f, "fasta") for record in fasta_sequences: # parse descriptions in the fasta file sequence, name = str(record.seq), str(record.name) labels = [float(label) for label in name.split("|")[1:]] sequence_name_dict = { "sequence": sequence, "name": name, } labels_dict = { f"label_{i}": labels[i] for i in range(self.config.num_labels) } sequence_name_dict.update(labels_dict) # yield example yield key, sequence_name_dict key += 1