html_url
stringlengths
51
51
title
stringlengths
6
280
comments
stringlengths
67
24.7k
body
stringlengths
51
36.2k
__index_level_0__
int64
1
1.17k
comment_length
int64
16
1.45k
text
stringlengths
190
38.3k
embeddings
sequence
https://github.com/huggingface/datasets/issues/5946
IndexError Not Solving -> IndexError: Invalid key: ?? is out of bounds for size 0 or ??
> Looks related to https://discuss.huggingface.co/t/indexerror-invalid-key-16-is-out-of-bounds-for-size-0/14298/4?u=lhoestq The problem has not been solved, I have tried this before, but the problem is the same
### Describe the bug in <cell line: 1>:1 │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1537 in train │ │ │ │ 1534 │ │ inner_training_loop = find_executable_batch_size( │ │ 1535 │ │ │ self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size │ │ 1536 │ │ ) │ │ ❱ 1537 │ │ return inner_training_loop( │ │ 1538 │ │ │ args=args, │ │ 1539 │ │ │ resume_from_checkpoint=resume_from_checkpoint, │ │ 1540 │ │ │ trial=trial, │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1789 in _inner_training_loop │ │ │ │ 1786 │ │ │ │ rng_to_sync = True │ │ 1787 │ │ │ │ │ 1788 │ │ │ step = -1 │ │ ❱ 1789 │ │ │ for step, inputs in enumerate(epoch_iterator): │ │ 1790 │ │ │ │ total_batched_samples += 1 │ │ 1791 │ │ │ │ if rng_to_sync: │ │ 1792 │ │ │ │ │ self._load_rng_state(resume_from_checkpoint) │ │ │ │ /usr/local/lib/python3.10/dist-packages/accelerate/data_loader.py:377 in __iter__ │ │ │ │ 374 │ │ dataloader_iter = super().__iter__() │ │ 375 │ │ # We iterate one batch ahead to check when we are at the end │ │ 376 │ │ try: │ │ ❱ 377 │ │ │ current_batch = next(dataloader_iter) │ │ 378 │ │ except StopIteration: │ │ 379 │ │ │ yield │ │ 380 │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:633 in __next__ │ │ │ │ 630 │ │ │ if self._sampler_iter is None: │ │ 631 │ │ │ │ # TODO(https://github.com/pytorch/pytorch/issues/76750) │ │ 632 │ │ │ │ self._reset() # type: ignore[call-arg] │ │ ❱ 633 │ │ │ data = self._next_data() │ │ 634 │ │ │ self._num_yielded += 1 │ │ 635 │ │ │ if self._dataset_kind == _DatasetKind.Iterable and \ │ │ 636 │ │ │ │ │ self._IterableDataset_len_called is not None and \ │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:677 in _next_data │ │ │ │ 674 │ │ │ 675 │ def _next_data(self): │ │ 676 │ │ index = self._next_index() # may raise StopIteration │ │ ❱ 677 │ │ data = self._dataset_fetcher.fetch(index) # may raise StopIteration │ │ 678 │ │ if self._pin_memory: │ │ 679 │ │ │ data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) │ │ 680 │ │ return data │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/fetch.py:49 in fetch │ │ │ │ 46 │ def fetch(self, possibly_batched_index): │ │ 47 │ │ if self.auto_collation: │ │ 48 │ │ │ if hasattr(self.dataset, "__getitems__") and self.dataset.__getitems__: │ │ ❱ 49 │ │ │ │ data = self.dataset.__getitems__(possibly_batched_index) │ │ 50 │ │ │ else: │ │ 51 │ │ │ │ data = [self.dataset[idx] for idx in possibly_batched_index] │ │ 52 │ │ else: │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2782 in __getitems__ │ │ │ │ 2779 │ │ │ 2780 │ def __getitems__(self, keys: List) -> List: │ │ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │ │ ❱ 2782 │ │ batch = self.__getitem__(keys) │ │ 2783 │ │ n_examples = len(batch[next(iter(batch))]) │ │ 2784 │ │ return [{col: array[i] for col, array in batch.items()} for i in range(n_example │ │ 2785 │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2778 in __getitem__ │ │ │ │ 2775 │ │ │ 2776 │ def __getitem__(self, key): # noqa: F811 │ │ 2777 │ │ """Can be used to index columns (by string names) or rows (by integer index or i │ │ ❱ 2778 │ │ return self._getitem(key) │ │ 2779 │ │ │ 2780 │ def __getitems__(self, keys: List) -> List: │ │ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2762 in _getitem │ │ │ │ 2759 │ │ format_kwargs = kwargs["format_kwargs"] if "format_kwargs" in kwargs else self._ │ │ 2760 │ │ format_kwargs = format_kwargs if format_kwargs is not None else {} │ │ 2761 │ │ formatter = get_formatter(format_type, features=self._info.features, **format_kw │ │ ❱ 2762 │ │ pa_subtable = query_table(self._data, key, indices=self._indices if self._indice │ │ 2763 │ │ formatted_output = format_table( │ │ 2764 │ │ │ pa_subtable, key, formatter=formatter, format_columns=format_columns, output │ │ 2765 │ │ ) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:578 in query_table │ │ │ │ 575 │ │ _check_valid_column_key(key, table.column_names) │ │ 576 │ else: │ │ 577 │ │ size = indices.num_rows if indices is not None else table.num_rows │ │ ❱ 578 │ │ _check_valid_index_key(key, size) │ │ 579 │ # Query the main table │ │ 580 │ if indices is None: │ │ 581 │ │ pa_subtable = _query_table(table, key) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:531 in │ │ _check_valid_index_key │ │ │ │ 528 │ │ │ _check_valid_index_key(min(key), size=size) │ │ 529 │ elif isinstance(key, Iterable): │ │ 530 │ │ if len(key) > 0: │ │ ❱ 531 │ │ │ _check_valid_index_key(int(max(key)), size=size) │ │ 532 │ │ │ _check_valid_index_key(int(min(key)), size=size) │ │ 533 │ else: │ │ 534 │ │ _raise_bad_key_type(key) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:521 in │ │ _check_valid_index_key │ │ │ │ 518 def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None: │ │ 519 │ if isinstance(key, int): │ │ 520 │ │ if (key < 0 and key + size < 0) or (key >= size): │ │ ❱ 521 │ │ │ raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") │ │ 522 │ │ return │ │ 523 │ elif isinstance(key, slice): │ │ 524 │ │ pass ### Steps to reproduce the bug `` import json import os from pprint import pprint import bitsandbytes as bnb import pandas as pd import torch import torch.nn as nn import transformers from datasets import Dataset,load_dataset from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training ) from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0" def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) MODEL_NAME = "tiiuae/falcon-7b" bnb_config = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map = "auto", trust_remote_code = True, quantization_config = bnb_config ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) tokenizer.pad_token = tokenizer.eos_token model.gradient_checkpointing_enable() model = prepare_model_for_kbit_training(model) config = LoraConfig( r = 16, lora_alpha = 32, target_modules = ["query_key_value"], lora_dropout = 0.05, bias = "none", task_type = "CASUAL_LM" ) model = get_peft_model(model,config) print_trainable_parameters(model) def generate_prompt(data_point): return f""" <human>: {data_point["question"]} <assistant>: {data_point["answer"]} """.strip() def generate_and_tokenize_prompt(data_point): full_prompt = generate_prompt(data_point) tokenized_full_prompt = tokenizer(full_prompt, padding = True, truncation = True,return_tensors = None) return dict({ "input_ids" : tokenized_full_prompt["input_ids"], "attention_mask" : tokenized_full_prompt["attention_mask"] }) data = data["train"].shuffle().map(generate_and_tokenize_prompt, batched = False) OUTPUT_DIR = "experiments" trainings_args = transformers.TrainingArguments( per_device_train_batch_size = 1, gradient_accumulation_steps = 4, num_train_epochs = 1, learning_rate = 2e-4, fp16 = True, save_total_limit = 3, logging_steps = 1, output_dir = OUTPUT_DIR, max_steps = 80, optim = "paged_adamw_8bit", lr_scheduler_type = "cosine", warmup_ratio = 0.05, #remove_unused_columns=True ) trainer = transformers.Trainer( model = model, train_dataset = data, args = trainings_args, data_collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train() IndexError: Invalid key: 32 is out of bounds for size 0 DataSet Format is like : [{"question": "How can I create an account?", "answer": "To create an account, click on the 'Sign Up' button on the top right corner of our website and follow the instructions to complete the registration process."}, .... ] ### Expected behavior - ### Environment info !pip install -q pip !pip install -q bitsandbytes==0.39.0 !pip install -q torch==2.0.1 !pip install -q git+https://github.com/huggingface/transformers.git !pip install -q git+https://github.com/huggingface/peft.git !pip install -q git+https://github.com/huggingface/accelerate.git !pip install -q datasets !pip install -q loralib==0.1.1 !pip install -q einops==0.6.1 import json import os from pprint import pprint import bitsandbytes as bnb import pandas as pd import torch import torch.nn as nn import transformers from datasets import Dataset,load_dataset from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training ) from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0"
102
22
IndexError Not Solving -> IndexError: Invalid key: ?? is out of bounds for size 0 or ?? ### Describe the bug in <cell line: 1>:1 │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1537 in train │ │ │ │ 1534 │ │ inner_training_loop = find_executable_batch_size( │ │ 1535 │ │ │ self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size │ │ 1536 │ │ ) │ │ ❱ 1537 │ │ return inner_training_loop( │ │ 1538 │ │ │ args=args, │ │ 1539 │ │ │ resume_from_checkpoint=resume_from_checkpoint, │ │ 1540 │ │ │ trial=trial, │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1789 in _inner_training_loop │ │ │ │ 1786 │ │ │ │ rng_to_sync = True │ │ 1787 │ │ │ │ │ 1788 │ │ │ step = -1 │ │ ❱ 1789 │ │ │ for step, inputs in enumerate(epoch_iterator): │ │ 1790 │ │ │ │ total_batched_samples += 1 │ │ 1791 │ │ │ │ if rng_to_sync: │ │ 1792 │ │ │ │ │ self._load_rng_state(resume_from_checkpoint) │ │ │ │ /usr/local/lib/python3.10/dist-packages/accelerate/data_loader.py:377 in __iter__ │ │ │ │ 374 │ │ dataloader_iter = super().__iter__() │ │ 375 │ │ # We iterate one batch ahead to check when we are at the end │ │ 376 │ │ try: │ │ ❱ 377 │ │ │ current_batch = next(dataloader_iter) │ │ 378 │ │ except StopIteration: │ │ 379 │ │ │ yield │ │ 380 │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:633 in __next__ │ │ │ │ 630 │ │ │ if self._sampler_iter is None: │ │ 631 │ │ │ │ # TODO(https://github.com/pytorch/pytorch/issues/76750) │ │ 632 │ │ │ │ self._reset() # type: ignore[call-arg] │ │ ❱ 633 │ │ │ data = self._next_data() │ │ 634 │ │ │ self._num_yielded += 1 │ │ 635 │ │ │ if self._dataset_kind == _DatasetKind.Iterable and \ │ │ 636 │ │ │ │ │ self._IterableDataset_len_called is not None and \ │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:677 in _next_data │ │ │ │ 674 │ │ │ 675 │ def _next_data(self): │ │ 676 │ │ index = self._next_index() # may raise StopIteration │ │ ❱ 677 │ │ data = self._dataset_fetcher.fetch(index) # may raise StopIteration │ │ 678 │ │ if self._pin_memory: │ │ 679 │ │ │ data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) │ │ 680 │ │ return data │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/fetch.py:49 in fetch │ │ │ │ 46 │ def fetch(self, possibly_batched_index): │ │ 47 │ │ if self.auto_collation: │ │ 48 │ │ │ if hasattr(self.dataset, "__getitems__") and self.dataset.__getitems__: │ │ ❱ 49 │ │ │ │ data = self.dataset.__getitems__(possibly_batched_index) │ │ 50 │ │ │ else: │ │ 51 │ │ │ │ data = [self.dataset[idx] for idx in possibly_batched_index] │ │ 52 │ │ else: │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2782 in __getitems__ │ │ │ │ 2779 │ │ │ 2780 │ def __getitems__(self, keys: List) -> List: │ │ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │ │ ❱ 2782 │ │ batch = self.__getitem__(keys) │ │ 2783 │ │ n_examples = len(batch[next(iter(batch))]) │ │ 2784 │ │ return [{col: array[i] for col, array in batch.items()} for i in range(n_example │ │ 2785 │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2778 in __getitem__ │ │ │ │ 2775 │ │ │ 2776 │ def __getitem__(self, key): # noqa: F811 │ │ 2777 │ │ """Can be used to index columns (by string names) or rows (by integer index or i │ │ ❱ 2778 │ │ return self._getitem(key) │ │ 2779 │ │ │ 2780 │ def __getitems__(self, keys: List) -> List: │ │ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2762 in _getitem │ │ │ │ 2759 │ │ format_kwargs = kwargs["format_kwargs"] if "format_kwargs" in kwargs else self._ │ │ 2760 │ │ format_kwargs = format_kwargs if format_kwargs is not None else {} │ │ 2761 │ │ formatter = get_formatter(format_type, features=self._info.features, **format_kw │ │ ❱ 2762 │ │ pa_subtable = query_table(self._data, key, indices=self._indices if self._indice │ │ 2763 │ │ formatted_output = format_table( │ │ 2764 │ │ │ pa_subtable, key, formatter=formatter, format_columns=format_columns, output │ │ 2765 │ │ ) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:578 in query_table │ │ │ │ 575 │ │ _check_valid_column_key(key, table.column_names) │ │ 576 │ else: │ │ 577 │ │ size = indices.num_rows if indices is not None else table.num_rows │ │ ❱ 578 │ │ _check_valid_index_key(key, size) │ │ 579 │ # Query the main table │ │ 580 │ if indices is None: │ │ 581 │ │ pa_subtable = _query_table(table, key) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:531 in │ │ _check_valid_index_key │ │ │ │ 528 │ │ │ _check_valid_index_key(min(key), size=size) │ │ 529 │ elif isinstance(key, Iterable): │ │ 530 │ │ if len(key) > 0: │ │ ❱ 531 │ │ │ _check_valid_index_key(int(max(key)), size=size) │ │ 532 │ │ │ _check_valid_index_key(int(min(key)), size=size) │ │ 533 │ else: │ │ 534 │ │ _raise_bad_key_type(key) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:521 in │ │ _check_valid_index_key │ │ │ │ 518 def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None: │ │ 519 │ if isinstance(key, int): │ │ 520 │ │ if (key < 0 and key + size < 0) or (key >= size): │ │ ❱ 521 │ │ │ raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") │ │ 522 │ │ return │ │ 523 │ elif isinstance(key, slice): │ │ 524 │ │ pass ### Steps to reproduce the bug `` import json import os from pprint import pprint import bitsandbytes as bnb import pandas as pd import torch import torch.nn as nn import transformers from datasets import Dataset,load_dataset from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training ) from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0" def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) MODEL_NAME = "tiiuae/falcon-7b" bnb_config = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map = "auto", trust_remote_code = True, quantization_config = bnb_config ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) tokenizer.pad_token = tokenizer.eos_token model.gradient_checkpointing_enable() model = prepare_model_for_kbit_training(model) config = LoraConfig( r = 16, lora_alpha = 32, target_modules = ["query_key_value"], lora_dropout = 0.05, bias = "none", task_type = "CASUAL_LM" ) model = get_peft_model(model,config) print_trainable_parameters(model) def generate_prompt(data_point): return f""" <human>: {data_point["question"]} <assistant>: {data_point["answer"]} """.strip() def generate_and_tokenize_prompt(data_point): full_prompt = generate_prompt(data_point) tokenized_full_prompt = tokenizer(full_prompt, padding = True, truncation = True,return_tensors = None) return dict({ "input_ids" : tokenized_full_prompt["input_ids"], "attention_mask" : tokenized_full_prompt["attention_mask"] }) data = data["train"].shuffle().map(generate_and_tokenize_prompt, batched = False) OUTPUT_DIR = "experiments" trainings_args = transformers.TrainingArguments( per_device_train_batch_size = 1, gradient_accumulation_steps = 4, num_train_epochs = 1, learning_rate = 2e-4, fp16 = True, save_total_limit = 3, logging_steps = 1, output_dir = OUTPUT_DIR, max_steps = 80, optim = "paged_adamw_8bit", lr_scheduler_type = "cosine", warmup_ratio = 0.05, #remove_unused_columns=True ) trainer = transformers.Trainer( model = model, train_dataset = data, args = trainings_args, data_collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train() IndexError: Invalid key: 32 is out of bounds for size 0 DataSet Format is like : [{"question": "How can I create an account?", "answer": "To create an account, click on the 'Sign Up' button on the top right corner of our website and follow the instructions to complete the registration process."}, .... ] ### Expected behavior - ### Environment info !pip install -q pip !pip install -q bitsandbytes==0.39.0 !pip install -q torch==2.0.1 !pip install -q git+https://github.com/huggingface/transformers.git !pip install -q git+https://github.com/huggingface/peft.git !pip install -q git+https://github.com/huggingface/accelerate.git !pip install -q datasets !pip install -q loralib==0.1.1 !pip install -q einops==0.6.1 import json import os from pprint import pprint import bitsandbytes as bnb import pandas as pd import torch import torch.nn as nn import transformers from datasets import Dataset,load_dataset from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training ) from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0" > Looks related to https://discuss.huggingface.co/t/indexerror-invalid-key-16-is-out-of-bounds-for-size-0/14298/4?u=lhoestq The problem has not been solved, I have tried this before, but the problem is the same
[ -1.0899585485458374, -0.6860926747322083, -0.3947448432445526, 1.7805007696151733, -0.10308399051427841, -1.1954777240753174, 0.2851788103580475, -1.0154169797897339, 1.3759500980377197, -0.6906192302703857, 0.2353612333536148, -1.5166146755218506, 0.45380547642707825, -0.43396854400634766, -0.6014120578765869, -1.0316795110702515, -0.6903113722801208, -0.7869057655334473, 1.1818100214004517, 2.355071783065796, 1.3642624616622925, -1.4216617345809937, 2.6783549785614014, 0.6093857884407043, -0.5316646099090576, -1.3303860425949097, 0.2900221049785614, 0.02263393998146057, -1.3905413150787354, -0.36158373951911926, -1.0165742635726929, -0.2627878785133362, -0.5485901236534119, -0.6842862963676453, 0.3801984190940857, 0.5797930359840393, -0.2943718731403351, -0.20547302067279816, -0.7201831936836243, -0.5387290120124817, 0.4906533658504486, -0.33467891812324524, 0.8209221363067627, -0.2343820482492447, 1.6272563934326172, -0.6255741715431213, 0.4335472881793976, 0.7530830502510071, 1.3640738725662231, 0.049858514219522476, 0.056320127099752426, 0.3553604185581207, 0.3244102895259857, -0.18597987294197083, 0.3356623649597168, 1.2954516410827637, 0.8904043436050415, 0.5047529935836792, 0.6166817545890808, -2.1257054805755615, 1.5575499534606934, -0.9187287092208862, 0.24075092375278473, 1.401941180229187, -1.0707042217254639, 0.5275971293449402, -1.566368818283081, 0.09886589646339417, 0.5959907174110413, -2.257028102874756, 0.012537759728729725, -0.954049825668335, -0.3130289912223816, 1.0979670286178589, 0.25334277749061584, -1.2360355854034424, 0.34159770607948303, -0.5540820956230164, 1.1540039777755737, 0.42105332016944885, 0.9617578983306885, -1.7631059885025024, 0.18493303656578064, -0.10006391257047653, 0.021056130528450012, -1.3666900396347046, -1.4361851215362549, 0.5798687934875488, 0.43822145462036133, 0.5454311370849609, -0.08045059442520142, 1.101325511932373, -1.081362247467041, 0.7831241488456726, -0.86110919713974, -1.4919235706329346, -1.3561193943023682, -2.670588731765747, -2.384612798690796, 0.48978492617607117, -0.48154497146606445, -0.5965787768363953, 1.8482247591018677, -0.865893542766571, -1.437887191772461, 0.8248633146286011, 0.3189850151538849, 0.2163260579109192, 2.39636492729187, 0.14112047851085663, -0.8733274340629578, 0.1498604565858841, -0.7794256806373596, 1.2310912609100342, -0.45226624608039856, 1.2638823986053467, 0.48251375555992126, -1.018391489982605, 1.141770839691162, -0.1458432823419571, 0.595544695854187, -0.6630540490150452, -0.41817721724510193, -0.9030172228813171, 0.3224560618400574, 1.761095404624939, -0.1782912015914917, 1.6320464611053467, -0.22778905928134918, -1.383249044418335, -1.5560258626937866, 0.6954851150512695, 0.5198793411254883, -0.8487301468849182, 0.2997913062572479, -0.5967124700546265, -0.049490634351968765, 0.09724146872758865, 1.160128116607666, 1.317113995552063, 0.5661519765853882, -0.4814220070838928, -1.1388909816741943, 0.021244656294584274, -0.03537875786423683, -0.5233930349349976, -2.1984057426452637, -0.2179887592792511, 0.24245397746562958, 0.6364367604255676, -1.0759278535842896, 1.669690489768982, 0.8669548034667969, 2.011709451675415, 1.1556761264801025, -0.43655240535736084, 1.7037674188613892, -0.24553726613521576, 1.7325618267059326, -0.7654938101768494, 0.4168311655521393, -0.43330591917037964, -1.3705472946166992, 0.6940691471099854, -0.3629002273082733, -2.176608085632324, -0.7943809032440186, -0.7588841319084167, -0.2127138376235962, -0.7319319844245911, 0.8735069632530212, -0.3163747787475586, -1.4133803844451904, 0.24236910045146942, -0.3632744252681732, 0.29278260469436646, -1.083217740058899, 0.4131673276424408, 0.702924370765686, -0.5759463310241699, -0.010726716369390488, -0.3712545335292816, -1.3628699779510498, -0.4966520071029663, 0.38329628109931946, 1.424181342124939, -0.5226438641548157, 0.880117654800415, 1.0343594551086426, -0.45551568269729614, 0.3133069574832916, -0.17283348739147186, -0.2378600686788559, 0.722587525844574, -1.3181549310684204, -0.35581260919570923, 1.0564215183258057, -0.5181309580802917, -0.721515417098999, 1.3184078931808472, 0.821725070476532, -1.0687915086746216, -0.3028516173362732, -0.06632443517446518, -1.1670160293579102, 0.24812041223049164, -1.607688307762146, -0.03639937564730644, 0.4576488733291626, -1.5176188945770264, -0.3539067506790161, -0.14941351115703583, 1.2491356134414673, -0.22641229629516602, 1.3337651491165161, -0.3900289833545685, -0.0588575042784214, -0.5124375224113464, -0.6476839184761047, 0.2277221530675888, -0.39641067385673523, -0.5878489017486572, 0.1936761736869812, -0.6841647028923035, 0.4018905460834503, 1.3857933282852173, 0.1527613252401352, 0.10924319922924042, 0.5755775570869446, 1.328715205192566, 0.5435265898704529, -0.036054711788892746, -0.6978457570075989, -1.781272292137146, 2.108614206314087, -1.290616512298584, 1.945746660232544, 0.9203001260757446, 0.17257024347782135, -1.450618863105774, -1.4330006837844849, 1.42936110496521, 1.1891138553619385, 2.49650239944458, 0.5886161923408508, 0.14117009937763214, -0.85878586769104, -0.9961589574813843, 0.3396188020706177, -1.1493041515350342, -0.5177745819091797, 0.2671859562397003, 2.607842206954956, 2.028043508529663, -0.19946995377540588, -0.17940682172775269, -0.9496164321899414, 1.1775596141815186, -0.025843631476163864, 0.2919760048389435, 1.8508787155151367, -0.10327569395303726, -1.132870078086853, 1.0682939291000366, -2.3403160572052, 0.22975844144821167, 2.172975778579712, 0.4212583005428314, 0.2509216070175171, -1.4557976722717285, -0.6794366240501404, -0.2685081660747528, -0.5302286148071289, -1.3888731002807617, 0.5242372155189514, -0.31454071402549744, -0.582934558391571, -1.4798237085342407, 0.21207843720912933, -1.274048089981079, -1.4934568405151367, 0.36727985739707947, 1.7943416833877563, 2.2187445163726807, -0.6335437893867493, 1.411206603050232, -0.4168136715888977, -0.05237477272748947, 1.0166170597076416, 1.2369635105133057, 3.0395901203155518, 2.0351386070251465, -1.1978579759597778, 0.7120831608772278, -0.27192723751068115, -0.524142324924469, 0.9468289613723755, -1.2088594436645508, 1.4024813175201416, 0.020225316286087036, -1.279697299003601, -1.244120478630066, 1.0846025943756104, 0.4158177673816681, 0.03875970095396042, -0.543423593044281, 1.3365222215652466, 0.07969822734594345, 1.2967809438705444, 0.5957525968551636, -0.211782768368721, 0.44269078969955444, -0.5033270120620728, -0.5460807681083679, 1.4582253694534302, 0.26015016436576843, -1.6505950689315796, -2.06547212600708, -0.24517197906970978, -0.5745187997817993, 0.0003873715177178383, -0.6602375507354736, -1.0356947183609009, 1.6665979623794556, 0.16180557012557983, -1.152768611907959, -0.29603275656700134, -0.2657887637615204, -0.5194793939590454, 2.611839532852173, -1.6035540103912354, -0.09030751883983612, -1.0700230598449707, -0.7630327939987183, 1.4369219541549683, -0.906222403049469, -0.21298949420452118, -0.9700524210929871, -0.6739645004272461, -1.2463936805725098, -0.3475325107574463, 0.014865987934172153, -0.7798030376434326, 0.6004525423049927, 0.1716061681509018, -0.9812284708023071, -0.2396661937236786, -0.6526273488998413, 1.0910208225250244, -0.33149173855781555, 0.10148678719997406, 1.7984249591827393, 0.23223698139190674, -0.29650789499282837, 0.6167979836463928, 1.1108046770095825, 0.8193454742431641, -0.7036337852478027, -0.31948697566986084, -0.6942994594573975, 0.20328788459300995, -1.1271636486053467, 0.2572989761829376, -2.8288345336914062, 0.44942349195480347, -0.15322436392307281, 0.06987324357032776, -0.008229166269302368, -1.3382368087768555, 0.9676965475082397, 2.74845814704895, -1.0002235174179077, 0.28972992300987244, 0.5990450382232666, 1.1014024019241333, -1.6655539274215698, 0.2869301438331604, -0.5011366009712219, 2.0320687294006348, 0.1534890979528427, 1.2239680290222168, -0.9501466155052185, -2.5262906551361084, 0.37021389603614807, -1.2029069662094116, -0.8580279350280762, 0.9703675508499146, -0.7094672918319702, 0.1854434758424759, -1.3242933750152588, -0.3550431728363037, -0.6209257245063782, -1.4290904998779297, 0.6136847138404846, 0.19637931883335114, 0.24093283712863922, -0.541360080242157, 0.20419244468212128, -2.117351531982422, -1.3037607669830322, -0.18191030621528625, -1.0846446752548218, 0.6786805391311646, -0.6334722638130188, 0.7819628715515137, -0.0010406207293272018, 0.3200675845146179, 0.09162446856498718, 1.497713327407837, 3.3054025173187256, 0.13793475925922394, 0.16413268446922302, -0.1106376126408577, -0.7575969099998474, 1.5272974967956543, 0.7763941884040833, 0.01177708338946104, -0.7696465849876404, -0.7833510637283325, 1.1816039085388184, 2.2976441383361816, 1.2020832300186157, 0.1406085342168808, -1.3010544776916504, -0.7824316024780273, -0.06064741313457489, 0.19472543895244598, 0.37680232524871826, 0.7983731031417847, -0.017955852672457695, -0.02362317219376564, 1.452472448348999, 1.300638198852539, -0.40217727422714233, 0.2407635897397995, -0.7651996612548828, -0.2775401473045349, 0.5288308262825012, 0.1842273473739624, -0.04295411705970764, 0.45931607484817505, -0.7307993769645691, 0.19384418427944183, -0.6321091055870056, -0.7820875644683838, -0.6940466165542603, -0.1968601793050766, -0.39938071370124817, 1.8241063356399536, 0.24810679256916046, -0.5397112369537354, 0.20958417654037476, -0.7323570251464844, -0.44599562883377075, -1.0487439632415771, 0.2734188437461853, -0.1484663486480713, -0.07811696082353592, -0.2313765585422516, 1.6885515451431274, -0.8757344484329224, -2.2900230884552, 0.0718063935637474, 0.2733519375324249, -0.4998681843280792, 0.16647395491600037, 1.7896413803100586, 0.392084538936615, 1.4967858791351318, 1.1873424053192139, 1.211024522781372, -0.895225465297699, -1.4466174840927124, 0.7861080169677734, 1.048945426940918, -1.6980136632919312, 0.7153477072715759, -0.21039490401744843, -0.3720710277557373, 0.7683072090148926, 1.249245285987854, 0.42131903767585754, -2.3355016708374023, 1.0603874921798706, -1.1610558032989502, 0.759891152381897, 0.988115131855011, 0.5831331610679626, 0.26048481464385986, 0.8350086212158203, -1.233687162399292, -1.0264912843704224, -0.7630889415740967, -0.7040569186210632, 2.05122447013855, -0.45738837122917175, 0.7622401714324951, 0.04104151949286461, -1.4913660287857056, 0.11847078055143356, 1.0474568605422974, 0.13240578770637512, -0.30116066336631775, 1.128731369972229, -0.8839834332466125, -0.7394554615020752, -1.4444317817687988, -0.5601069927215576, -1.085097074508667, -1.261960744857788, 1.5064713954925537, 0.5828611254692078, 0.586724579334259, 1.9434512853622437, 0.663727879524231, 0.2825041711330414, -2.617180109024048, 0.6579627990722656, -0.013033329509198666, 0.04924880713224411, 0.6899446845054626, 0.40119174122810364, 0.9829707741737366, -0.013531871140003204, 0.6891048550605774, -2.423523187637329, 2.4404590129852295, 0.08361540734767914, 0.8400909304618835, 0.1650807112455368, -0.23105798661708832, 1.0970433950424194, 0.4767029583454132, 0.7591175436973572, -1.4049615859985352, 0.9729636907577515, -0.5932074785232544, 1.188886046409607, 0.5927760601043701, -0.9821727275848389, -0.11438355594873428, 1.235946774482727, 0.17382939159870148, -0.5692780017852783, -1.0423308610916138, -0.98288494348526, 0.7302255630493164, 1.6748768091201782, -0.055013321340084076, 0.10958532989025116, 0.8083702921867371, 0.7026118040084839, -0.9651473164558411, 0.055870261043310165, -0.5899059772491455, -0.7304933667182922, 1.6322821378707886, 2.1277310848236084, -0.3950503170490265, -0.11320728063583374, -0.715213418006897, -1.0566596984863281, 0.7051931023597717, 0.17791993916034698, 0.1764196902513504, 0.1949092000722885, -0.7838069796562195, 1.0118424892425537, 0.567096471786499, 0.689409613609314, 0.13005629181861877, 0.2981231212615967, 0.24028296768665314, -0.08507147431373596, -1.0906199216842651, -0.5334534049034119, -0.9519143104553223, -2.607614040374756, 0.12305703014135361, -0.17135338485240936, -1.3871817588806152, 0.06809626519680023, -1.091753363609314, 0.846741795539856, -0.43938204646110535, -1.2224533557891846, -1.6006290912628174, 0.35011887550354004, -0.38530197739601135, 0.826036810874939, -1.5069292783737183, 0.0624816007912159, 1.1309837102890015, 0.7681499719619751, -0.5191339254379272, 1.212570309638977, 0.03364534676074982, 0.4743483364582062, 1.0592812299728394, -0.08744765818119049, 0.5003729462623596, 0.41278621554374695, -1.266133427619934, 0.48164016008377075, 0.9408565163612366, 0.13391318917274475, 1.3645222187042236, -0.40893474221229553, -0.13018591701984406, 0.326589971780777, -0.3354170024394989, -0.3855939507484436, -0.19509541988372803, 0.7797859907150269, 0.19344741106033325, -1.0614432096481323, 0.26548105478286743, -0.4397907853126526, -0.23939679563045502, 0.27799585461616516, -1.2746955156326294, -0.10461481660604477, -0.4358750581741333, -0.28349390625953674, -1.20949125289917, 0.14725396037101746, 1.4850443601608276, -0.43239855766296387, -0.34436026215553284, 0.4090310335159302, 0.5276132822036743, 0.2588719427585602, 0.971603274345398, -0.7280420064926147, -0.33039700984954834, -0.180989071726799, -0.3444962501525879, 0.6485052704811096, 1.0532605648040771, -0.1656465381383896, -1.0670607089996338, 0.699991762638092, -0.36213916540145874, 0.19916433095932007, 1.9815924167633057, 0.21838851273059845, -0.807805597782135, 0.5035788416862488, -0.9736440181732178, 1.7519489526748657, 1.6638282537460327, 1.2978798151016235, -0.47813698649406433, -1.1822373867034912, 0.770622730255127, -0.24095706641674042, -0.4163423776626587, 0.9157528281211853, 0.3262357711791992, -0.2922409474849701, -1.453542709350586, 0.5896255970001221, 1.0605021715164185, -0.6550634503364563, -0.47954261302948, 0.251407653093338, -0.8018825054168701, 1.3085170984268188, 0.6534817218780518, 0.3423655927181244, 0.09457448124885559, 1.9037305116653442, 0.6025558710098267, -0.6003457903862, 0.6238954067230225, 0.4829278290271759, -0.35969290137290955, -1.9709502458572388, -1.2213408946990967, 0.2819996774196625, -0.6278477907180786, -1.5186519622802734, 1.382001519203186, -1.1909443140029907, -1.0872148275375366, 0.5207186937332153, -0.10013031959533691, 1.653507947921753, 0.08106113225221634, 1.6560598611831665, 2.126033067703247, 0.8686391711235046, 0.30544590950012207, 1.1403776407241821, -0.09800617396831512, -0.6208130121231079, 1.714207410812378, -0.5245749950408936, 0.0930241271853447, 1.137804627418518, -0.6030403971672058, -1.2224091291427612, -0.6791753768920898, -0.862234890460968, -0.523163914680481, 1.1127068996429443, 0.1600058376789093, -1.238835096359253, 0.41771236062049866, 1.5933626890182495, -0.01937994547188282, -0.2896142303943634, 0.4111824631690979, 0.6395195126533508, -0.48760858178138733, -0.08741965144872665, -0.8617536425590515, 0.5293577909469604, -0.39908549189567566, -0.30290892720222473, 0.1687847226858139, 0.4122008979320526, 0.8683678507804871, 0.09162170439958572, 0.17760010063648224, 0.8872107267379761, -1.5355011224746704, 1.442269206047058, -0.6044548749923706, 0.22125983238220215, -2.292154312133789, 1.430054783821106, -0.5595361590385437, 2.1181914806365967, -2.349821090698242, 0.2873391807079315, -0.7068998217582703, -0.5702043771743774, 0.5825450420379639, -0.46083542704582214, 0.232543483376503, -0.31424036622047424, -0.9181884527206421, -0.21304082870483398, -0.7706307768821716, 0.8883419632911682, 0.9544705152511597, 1.3222328424453735, -1.0074472427368164, -0.3280436098575592, -1.5042426586151123, -0.32098233699798584, -0.7055517435073853, 0.3037969768047333, -1.9504506587982178, -0.3632313013076782, -2.028186798095703, -2.2683069705963135, -1.6337522268295288, -0.6201007962226868, 0.8263794183731079, 0.5475321412086487, -0.7536169290542603, 1.185879111289978, -0.206149160861969, -1.7637110948562622, 1.1902799606323242, -1.8641365766525269 ]
https://github.com/huggingface/datasets/issues/5946
IndexError Not Solving -> IndexError: Invalid key: ?? is out of bounds for size 0 or ??
data = data["train"].shuffle().map(generate_and_tokenize_prompt, batched = False) # change this line to - data["train"] = data["train"].shuffle().map(generate_and_tokenize_prompt, batched = False) After doing this change you code should run fine.
### Describe the bug in <cell line: 1>:1 │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1537 in train │ │ │ │ 1534 │ │ inner_training_loop = find_executable_batch_size( │ │ 1535 │ │ │ self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size │ │ 1536 │ │ ) │ │ ❱ 1537 │ │ return inner_training_loop( │ │ 1538 │ │ │ args=args, │ │ 1539 │ │ │ resume_from_checkpoint=resume_from_checkpoint, │ │ 1540 │ │ │ trial=trial, │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1789 in _inner_training_loop │ │ │ │ 1786 │ │ │ │ rng_to_sync = True │ │ 1787 │ │ │ │ │ 1788 │ │ │ step = -1 │ │ ❱ 1789 │ │ │ for step, inputs in enumerate(epoch_iterator): │ │ 1790 │ │ │ │ total_batched_samples += 1 │ │ 1791 │ │ │ │ if rng_to_sync: │ │ 1792 │ │ │ │ │ self._load_rng_state(resume_from_checkpoint) │ │ │ │ /usr/local/lib/python3.10/dist-packages/accelerate/data_loader.py:377 in __iter__ │ │ │ │ 374 │ │ dataloader_iter = super().__iter__() │ │ 375 │ │ # We iterate one batch ahead to check when we are at the end │ │ 376 │ │ try: │ │ ❱ 377 │ │ │ current_batch = next(dataloader_iter) │ │ 378 │ │ except StopIteration: │ │ 379 │ │ │ yield │ │ 380 │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:633 in __next__ │ │ │ │ 630 │ │ │ if self._sampler_iter is None: │ │ 631 │ │ │ │ # TODO(https://github.com/pytorch/pytorch/issues/76750) │ │ 632 │ │ │ │ self._reset() # type: ignore[call-arg] │ │ ❱ 633 │ │ │ data = self._next_data() │ │ 634 │ │ │ self._num_yielded += 1 │ │ 635 │ │ │ if self._dataset_kind == _DatasetKind.Iterable and \ │ │ 636 │ │ │ │ │ self._IterableDataset_len_called is not None and \ │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:677 in _next_data │ │ │ │ 674 │ │ │ 675 │ def _next_data(self): │ │ 676 │ │ index = self._next_index() # may raise StopIteration │ │ ❱ 677 │ │ data = self._dataset_fetcher.fetch(index) # may raise StopIteration │ │ 678 │ │ if self._pin_memory: │ │ 679 │ │ │ data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) │ │ 680 │ │ return data │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/fetch.py:49 in fetch │ │ │ │ 46 │ def fetch(self, possibly_batched_index): │ │ 47 │ │ if self.auto_collation: │ │ 48 │ │ │ if hasattr(self.dataset, "__getitems__") and self.dataset.__getitems__: │ │ ❱ 49 │ │ │ │ data = self.dataset.__getitems__(possibly_batched_index) │ │ 50 │ │ │ else: │ │ 51 │ │ │ │ data = [self.dataset[idx] for idx in possibly_batched_index] │ │ 52 │ │ else: │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2782 in __getitems__ │ │ │ │ 2779 │ │ │ 2780 │ def __getitems__(self, keys: List) -> List: │ │ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │ │ ❱ 2782 │ │ batch = self.__getitem__(keys) │ │ 2783 │ │ n_examples = len(batch[next(iter(batch))]) │ │ 2784 │ │ return [{col: array[i] for col, array in batch.items()} for i in range(n_example │ │ 2785 │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2778 in __getitem__ │ │ │ │ 2775 │ │ │ 2776 │ def __getitem__(self, key): # noqa: F811 │ │ 2777 │ │ """Can be used to index columns (by string names) or rows (by integer index or i │ │ ❱ 2778 │ │ return self._getitem(key) │ │ 2779 │ │ │ 2780 │ def __getitems__(self, keys: List) -> List: │ │ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2762 in _getitem │ │ │ │ 2759 │ │ format_kwargs = kwargs["format_kwargs"] if "format_kwargs" in kwargs else self._ │ │ 2760 │ │ format_kwargs = format_kwargs if format_kwargs is not None else {} │ │ 2761 │ │ formatter = get_formatter(format_type, features=self._info.features, **format_kw │ │ ❱ 2762 │ │ pa_subtable = query_table(self._data, key, indices=self._indices if self._indice │ │ 2763 │ │ formatted_output = format_table( │ │ 2764 │ │ │ pa_subtable, key, formatter=formatter, format_columns=format_columns, output │ │ 2765 │ │ ) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:578 in query_table │ │ │ │ 575 │ │ _check_valid_column_key(key, table.column_names) │ │ 576 │ else: │ │ 577 │ │ size = indices.num_rows if indices is not None else table.num_rows │ │ ❱ 578 │ │ _check_valid_index_key(key, size) │ │ 579 │ # Query the main table │ │ 580 │ if indices is None: │ │ 581 │ │ pa_subtable = _query_table(table, key) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:531 in │ │ _check_valid_index_key │ │ │ │ 528 │ │ │ _check_valid_index_key(min(key), size=size) │ │ 529 │ elif isinstance(key, Iterable): │ │ 530 │ │ if len(key) > 0: │ │ ❱ 531 │ │ │ _check_valid_index_key(int(max(key)), size=size) │ │ 532 │ │ │ _check_valid_index_key(int(min(key)), size=size) │ │ 533 │ else: │ │ 534 │ │ _raise_bad_key_type(key) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:521 in │ │ _check_valid_index_key │ │ │ │ 518 def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None: │ │ 519 │ if isinstance(key, int): │ │ 520 │ │ if (key < 0 and key + size < 0) or (key >= size): │ │ ❱ 521 │ │ │ raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") │ │ 522 │ │ return │ │ 523 │ elif isinstance(key, slice): │ │ 524 │ │ pass ### Steps to reproduce the bug `` import json import os from pprint import pprint import bitsandbytes as bnb import pandas as pd import torch import torch.nn as nn import transformers from datasets import Dataset,load_dataset from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training ) from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0" def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) MODEL_NAME = "tiiuae/falcon-7b" bnb_config = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map = "auto", trust_remote_code = True, quantization_config = bnb_config ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) tokenizer.pad_token = tokenizer.eos_token model.gradient_checkpointing_enable() model = prepare_model_for_kbit_training(model) config = LoraConfig( r = 16, lora_alpha = 32, target_modules = ["query_key_value"], lora_dropout = 0.05, bias = "none", task_type = "CASUAL_LM" ) model = get_peft_model(model,config) print_trainable_parameters(model) def generate_prompt(data_point): return f""" <human>: {data_point["question"]} <assistant>: {data_point["answer"]} """.strip() def generate_and_tokenize_prompt(data_point): full_prompt = generate_prompt(data_point) tokenized_full_prompt = tokenizer(full_prompt, padding = True, truncation = True,return_tensors = None) return dict({ "input_ids" : tokenized_full_prompt["input_ids"], "attention_mask" : tokenized_full_prompt["attention_mask"] }) data = data["train"].shuffle().map(generate_and_tokenize_prompt, batched = False) OUTPUT_DIR = "experiments" trainings_args = transformers.TrainingArguments( per_device_train_batch_size = 1, gradient_accumulation_steps = 4, num_train_epochs = 1, learning_rate = 2e-4, fp16 = True, save_total_limit = 3, logging_steps = 1, output_dir = OUTPUT_DIR, max_steps = 80, optim = "paged_adamw_8bit", lr_scheduler_type = "cosine", warmup_ratio = 0.05, #remove_unused_columns=True ) trainer = transformers.Trainer( model = model, train_dataset = data, args = trainings_args, data_collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train() IndexError: Invalid key: 32 is out of bounds for size 0 DataSet Format is like : [{"question": "How can I create an account?", "answer": "To create an account, click on the 'Sign Up' button on the top right corner of our website and follow the instructions to complete the registration process."}, .... ] ### Expected behavior - ### Environment info !pip install -q pip !pip install -q bitsandbytes==0.39.0 !pip install -q torch==2.0.1 !pip install -q git+https://github.com/huggingface/transformers.git !pip install -q git+https://github.com/huggingface/peft.git !pip install -q git+https://github.com/huggingface/accelerate.git !pip install -q datasets !pip install -q loralib==0.1.1 !pip install -q einops==0.6.1 import json import os from pprint import pprint import bitsandbytes as bnb import pandas as pd import torch import torch.nn as nn import transformers from datasets import Dataset,load_dataset from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training ) from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0"
102
27
IndexError Not Solving -> IndexError: Invalid key: ?? is out of bounds for size 0 or ?? ### Describe the bug in <cell line: 1>:1 │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1537 in train │ │ │ │ 1534 │ │ inner_training_loop = find_executable_batch_size( │ │ 1535 │ │ │ self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size │ │ 1536 │ │ ) │ │ ❱ 1537 │ │ return inner_training_loop( │ │ 1538 │ │ │ args=args, │ │ 1539 │ │ │ resume_from_checkpoint=resume_from_checkpoint, │ │ 1540 │ │ │ trial=trial, │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1789 in _inner_training_loop │ │ │ │ 1786 │ │ │ │ rng_to_sync = True │ │ 1787 │ │ │ │ │ 1788 │ │ │ step = -1 │ │ ❱ 1789 │ │ │ for step, inputs in enumerate(epoch_iterator): │ │ 1790 │ │ │ │ total_batched_samples += 1 │ │ 1791 │ │ │ │ if rng_to_sync: │ │ 1792 │ │ │ │ │ self._load_rng_state(resume_from_checkpoint) │ │ │ │ /usr/local/lib/python3.10/dist-packages/accelerate/data_loader.py:377 in __iter__ │ │ │ │ 374 │ │ dataloader_iter = super().__iter__() │ │ 375 │ │ # We iterate one batch ahead to check when we are at the end │ │ 376 │ │ try: │ │ ❱ 377 │ │ │ current_batch = next(dataloader_iter) │ │ 378 │ │ except StopIteration: │ │ 379 │ │ │ yield │ │ 380 │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:633 in __next__ │ │ │ │ 630 │ │ │ if self._sampler_iter is None: │ │ 631 │ │ │ │ # TODO(https://github.com/pytorch/pytorch/issues/76750) │ │ 632 │ │ │ │ self._reset() # type: ignore[call-arg] │ │ ❱ 633 │ │ │ data = self._next_data() │ │ 634 │ │ │ self._num_yielded += 1 │ │ 635 │ │ │ if self._dataset_kind == _DatasetKind.Iterable and \ │ │ 636 │ │ │ │ │ self._IterableDataset_len_called is not None and \ │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:677 in _next_data │ │ │ │ 674 │ │ │ 675 │ def _next_data(self): │ │ 676 │ │ index = self._next_index() # may raise StopIteration │ │ ❱ 677 │ │ data = self._dataset_fetcher.fetch(index) # may raise StopIteration │ │ 678 │ │ if self._pin_memory: │ │ 679 │ │ │ data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) │ │ 680 │ │ return data │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/fetch.py:49 in fetch │ │ │ │ 46 │ def fetch(self, possibly_batched_index): │ │ 47 │ │ if self.auto_collation: │ │ 48 │ │ │ if hasattr(self.dataset, "__getitems__") and self.dataset.__getitems__: │ │ ❱ 49 │ │ │ │ data = self.dataset.__getitems__(possibly_batched_index) │ │ 50 │ │ │ else: │ │ 51 │ │ │ │ data = [self.dataset[idx] for idx in possibly_batched_index] │ │ 52 │ │ else: │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2782 in __getitems__ │ │ │ │ 2779 │ │ │ 2780 │ def __getitems__(self, keys: List) -> List: │ │ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │ │ ❱ 2782 │ │ batch = self.__getitem__(keys) │ │ 2783 │ │ n_examples = len(batch[next(iter(batch))]) │ │ 2784 │ │ return [{col: array[i] for col, array in batch.items()} for i in range(n_example │ │ 2785 │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2778 in __getitem__ │ │ │ │ 2775 │ │ │ 2776 │ def __getitem__(self, key): # noqa: F811 │ │ 2777 │ │ """Can be used to index columns (by string names) or rows (by integer index or i │ │ ❱ 2778 │ │ return self._getitem(key) │ │ 2779 │ │ │ 2780 │ def __getitems__(self, keys: List) -> List: │ │ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2762 in _getitem │ │ │ │ 2759 │ │ format_kwargs = kwargs["format_kwargs"] if "format_kwargs" in kwargs else self._ │ │ 2760 │ │ format_kwargs = format_kwargs if format_kwargs is not None else {} │ │ 2761 │ │ formatter = get_formatter(format_type, features=self._info.features, **format_kw │ │ ❱ 2762 │ │ pa_subtable = query_table(self._data, key, indices=self._indices if self._indice │ │ 2763 │ │ formatted_output = format_table( │ │ 2764 │ │ │ pa_subtable, key, formatter=formatter, format_columns=format_columns, output │ │ 2765 │ │ ) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:578 in query_table │ │ │ │ 575 │ │ _check_valid_column_key(key, table.column_names) │ │ 576 │ else: │ │ 577 │ │ size = indices.num_rows if indices is not None else table.num_rows │ │ ❱ 578 │ │ _check_valid_index_key(key, size) │ │ 579 │ # Query the main table │ │ 580 │ if indices is None: │ │ 581 │ │ pa_subtable = _query_table(table, key) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:531 in │ │ _check_valid_index_key │ │ │ │ 528 │ │ │ _check_valid_index_key(min(key), size=size) │ │ 529 │ elif isinstance(key, Iterable): │ │ 530 │ │ if len(key) > 0: │ │ ❱ 531 │ │ │ _check_valid_index_key(int(max(key)), size=size) │ │ 532 │ │ │ _check_valid_index_key(int(min(key)), size=size) │ │ 533 │ else: │ │ 534 │ │ _raise_bad_key_type(key) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:521 in │ │ _check_valid_index_key │ │ │ │ 518 def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None: │ │ 519 │ if isinstance(key, int): │ │ 520 │ │ if (key < 0 and key + size < 0) or (key >= size): │ │ ❱ 521 │ │ │ raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") │ │ 522 │ │ return │ │ 523 │ elif isinstance(key, slice): │ │ 524 │ │ pass ### Steps to reproduce the bug `` import json import os from pprint import pprint import bitsandbytes as bnb import pandas as pd import torch import torch.nn as nn import transformers from datasets import Dataset,load_dataset from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training ) from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0" def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) MODEL_NAME = "tiiuae/falcon-7b" bnb_config = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map = "auto", trust_remote_code = True, quantization_config = bnb_config ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) tokenizer.pad_token = tokenizer.eos_token model.gradient_checkpointing_enable() model = prepare_model_for_kbit_training(model) config = LoraConfig( r = 16, lora_alpha = 32, target_modules = ["query_key_value"], lora_dropout = 0.05, bias = "none", task_type = "CASUAL_LM" ) model = get_peft_model(model,config) print_trainable_parameters(model) def generate_prompt(data_point): return f""" <human>: {data_point["question"]} <assistant>: {data_point["answer"]} """.strip() def generate_and_tokenize_prompt(data_point): full_prompt = generate_prompt(data_point) tokenized_full_prompt = tokenizer(full_prompt, padding = True, truncation = True,return_tensors = None) return dict({ "input_ids" : tokenized_full_prompt["input_ids"], "attention_mask" : tokenized_full_prompt["attention_mask"] }) data = data["train"].shuffle().map(generate_and_tokenize_prompt, batched = False) OUTPUT_DIR = "experiments" trainings_args = transformers.TrainingArguments( per_device_train_batch_size = 1, gradient_accumulation_steps = 4, num_train_epochs = 1, learning_rate = 2e-4, fp16 = True, save_total_limit = 3, logging_steps = 1, output_dir = OUTPUT_DIR, max_steps = 80, optim = "paged_adamw_8bit", lr_scheduler_type = "cosine", warmup_ratio = 0.05, #remove_unused_columns=True ) trainer = transformers.Trainer( model = model, train_dataset = data, args = trainings_args, data_collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train() IndexError: Invalid key: 32 is out of bounds for size 0 DataSet Format is like : [{"question": "How can I create an account?", "answer": "To create an account, click on the 'Sign Up' button on the top right corner of our website and follow the instructions to complete the registration process."}, .... ] ### Expected behavior - ### Environment info !pip install -q pip !pip install -q bitsandbytes==0.39.0 !pip install -q torch==2.0.1 !pip install -q git+https://github.com/huggingface/transformers.git !pip install -q git+https://github.com/huggingface/peft.git !pip install -q git+https://github.com/huggingface/accelerate.git !pip install -q datasets !pip install -q loralib==0.1.1 !pip install -q einops==0.6.1 import json import os from pprint import pprint import bitsandbytes as bnb import pandas as pd import torch import torch.nn as nn import transformers from datasets import Dataset,load_dataset from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training ) from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0" data = data["train"].shuffle().map(generate_and_tokenize_prompt, batched = False) # change this line to - data["train"] = data["train"].shuffle().map(generate_and_tokenize_prompt, batched = False) After doing this change you code should run fine.
[ -1.0899585485458374, -0.6860926747322083, -0.3947448432445526, 1.7805007696151733, -0.10308399051427841, -1.1954777240753174, 0.2851788103580475, -1.0154169797897339, 1.3759500980377197, -0.6906192302703857, 0.2353612333536148, -1.5166146755218506, 0.45380547642707825, -0.43396854400634766, -0.6014120578765869, -1.0316795110702515, -0.6903113722801208, -0.7869057655334473, 1.1818100214004517, 2.355071783065796, 1.3642624616622925, -1.4216617345809937, 2.6783549785614014, 0.6093857884407043, -0.5316646099090576, -1.3303860425949097, 0.2900221049785614, 0.02263393998146057, -1.3905413150787354, -0.36158373951911926, -1.0165742635726929, -0.2627878785133362, -0.5485901236534119, -0.6842862963676453, 0.3801984190940857, 0.5797930359840393, -0.2943718731403351, -0.20547302067279816, -0.7201831936836243, -0.5387290120124817, 0.4906533658504486, -0.33467891812324524, 0.8209221363067627, -0.2343820482492447, 1.6272563934326172, -0.6255741715431213, 0.4335472881793976, 0.7530830502510071, 1.3640738725662231, 0.049858514219522476, 0.056320127099752426, 0.3553604185581207, 0.3244102895259857, -0.18597987294197083, 0.3356623649597168, 1.2954516410827637, 0.8904043436050415, 0.5047529935836792, 0.6166817545890808, -2.1257054805755615, 1.5575499534606934, -0.9187287092208862, 0.24075092375278473, 1.401941180229187, -1.0707042217254639, 0.5275971293449402, -1.566368818283081, 0.09886589646339417, 0.5959907174110413, -2.257028102874756, 0.012537759728729725, -0.954049825668335, -0.3130289912223816, 1.0979670286178589, 0.25334277749061584, -1.2360355854034424, 0.34159770607948303, -0.5540820956230164, 1.1540039777755737, 0.42105332016944885, 0.9617578983306885, -1.7631059885025024, 0.18493303656578064, -0.10006391257047653, 0.021056130528450012, -1.3666900396347046, -1.4361851215362549, 0.5798687934875488, 0.43822145462036133, 0.5454311370849609, -0.08045059442520142, 1.101325511932373, -1.081362247467041, 0.7831241488456726, -0.86110919713974, -1.4919235706329346, -1.3561193943023682, -2.670588731765747, -2.384612798690796, 0.48978492617607117, -0.48154497146606445, -0.5965787768363953, 1.8482247591018677, -0.865893542766571, -1.437887191772461, 0.8248633146286011, 0.3189850151538849, 0.2163260579109192, 2.39636492729187, 0.14112047851085663, -0.8733274340629578, 0.1498604565858841, -0.7794256806373596, 1.2310912609100342, -0.45226624608039856, 1.2638823986053467, 0.48251375555992126, -1.018391489982605, 1.141770839691162, -0.1458432823419571, 0.595544695854187, -0.6630540490150452, -0.41817721724510193, -0.9030172228813171, 0.3224560618400574, 1.761095404624939, -0.1782912015914917, 1.6320464611053467, -0.22778905928134918, -1.383249044418335, -1.5560258626937866, 0.6954851150512695, 0.5198793411254883, -0.8487301468849182, 0.2997913062572479, -0.5967124700546265, -0.049490634351968765, 0.09724146872758865, 1.160128116607666, 1.317113995552063, 0.5661519765853882, -0.4814220070838928, -1.1388909816741943, 0.021244656294584274, -0.03537875786423683, -0.5233930349349976, -2.1984057426452637, -0.2179887592792511, 0.24245397746562958, 0.6364367604255676, -1.0759278535842896, 1.669690489768982, 0.8669548034667969, 2.011709451675415, 1.1556761264801025, -0.43655240535736084, 1.7037674188613892, -0.24553726613521576, 1.7325618267059326, -0.7654938101768494, 0.4168311655521393, -0.43330591917037964, -1.3705472946166992, 0.6940691471099854, -0.3629002273082733, -2.176608085632324, -0.7943809032440186, -0.7588841319084167, -0.2127138376235962, -0.7319319844245911, 0.8735069632530212, -0.3163747787475586, -1.4133803844451904, 0.24236910045146942, -0.3632744252681732, 0.29278260469436646, -1.083217740058899, 0.4131673276424408, 0.702924370765686, -0.5759463310241699, -0.010726716369390488, -0.3712545335292816, -1.3628699779510498, -0.4966520071029663, 0.38329628109931946, 1.424181342124939, -0.5226438641548157, 0.880117654800415, 1.0343594551086426, -0.45551568269729614, 0.3133069574832916, -0.17283348739147186, -0.2378600686788559, 0.722587525844574, -1.3181549310684204, -0.35581260919570923, 1.0564215183258057, -0.5181309580802917, -0.721515417098999, 1.3184078931808472, 0.821725070476532, -1.0687915086746216, -0.3028516173362732, -0.06632443517446518, -1.1670160293579102, 0.24812041223049164, -1.607688307762146, -0.03639937564730644, 0.4576488733291626, -1.5176188945770264, -0.3539067506790161, -0.14941351115703583, 1.2491356134414673, -0.22641229629516602, 1.3337651491165161, -0.3900289833545685, -0.0588575042784214, -0.5124375224113464, -0.6476839184761047, 0.2277221530675888, -0.39641067385673523, -0.5878489017486572, 0.1936761736869812, -0.6841647028923035, 0.4018905460834503, 1.3857933282852173, 0.1527613252401352, 0.10924319922924042, 0.5755775570869446, 1.328715205192566, 0.5435265898704529, -0.036054711788892746, -0.6978457570075989, -1.781272292137146, 2.108614206314087, -1.290616512298584, 1.945746660232544, 0.9203001260757446, 0.17257024347782135, -1.450618863105774, -1.4330006837844849, 1.42936110496521, 1.1891138553619385, 2.49650239944458, 0.5886161923408508, 0.14117009937763214, -0.85878586769104, -0.9961589574813843, 0.3396188020706177, -1.1493041515350342, -0.5177745819091797, 0.2671859562397003, 2.607842206954956, 2.028043508529663, -0.19946995377540588, -0.17940682172775269, -0.9496164321899414, 1.1775596141815186, -0.025843631476163864, 0.2919760048389435, 1.8508787155151367, -0.10327569395303726, -1.132870078086853, 1.0682939291000366, -2.3403160572052, 0.22975844144821167, 2.172975778579712, 0.4212583005428314, 0.2509216070175171, -1.4557976722717285, -0.6794366240501404, -0.2685081660747528, -0.5302286148071289, -1.3888731002807617, 0.5242372155189514, -0.31454071402549744, -0.582934558391571, -1.4798237085342407, 0.21207843720912933, -1.274048089981079, -1.4934568405151367, 0.36727985739707947, 1.7943416833877563, 2.2187445163726807, -0.6335437893867493, 1.411206603050232, -0.4168136715888977, -0.05237477272748947, 1.0166170597076416, 1.2369635105133057, 3.0395901203155518, 2.0351386070251465, -1.1978579759597778, 0.7120831608772278, -0.27192723751068115, -0.524142324924469, 0.9468289613723755, -1.2088594436645508, 1.4024813175201416, 0.020225316286087036, -1.279697299003601, -1.244120478630066, 1.0846025943756104, 0.4158177673816681, 0.03875970095396042, -0.543423593044281, 1.3365222215652466, 0.07969822734594345, 1.2967809438705444, 0.5957525968551636, -0.211782768368721, 0.44269078969955444, -0.5033270120620728, -0.5460807681083679, 1.4582253694534302, 0.26015016436576843, -1.6505950689315796, -2.06547212600708, -0.24517197906970978, -0.5745187997817993, 0.0003873715177178383, -0.6602375507354736, -1.0356947183609009, 1.6665979623794556, 0.16180557012557983, -1.152768611907959, -0.29603275656700134, -0.2657887637615204, -0.5194793939590454, 2.611839532852173, -1.6035540103912354, -0.09030751883983612, -1.0700230598449707, -0.7630327939987183, 1.4369219541549683, -0.906222403049469, -0.21298949420452118, -0.9700524210929871, -0.6739645004272461, -1.2463936805725098, -0.3475325107574463, 0.014865987934172153, -0.7798030376434326, 0.6004525423049927, 0.1716061681509018, -0.9812284708023071, -0.2396661937236786, -0.6526273488998413, 1.0910208225250244, -0.33149173855781555, 0.10148678719997406, 1.7984249591827393, 0.23223698139190674, -0.29650789499282837, 0.6167979836463928, 1.1108046770095825, 0.8193454742431641, -0.7036337852478027, -0.31948697566986084, -0.6942994594573975, 0.20328788459300995, -1.1271636486053467, 0.2572989761829376, -2.8288345336914062, 0.44942349195480347, -0.15322436392307281, 0.06987324357032776, -0.008229166269302368, -1.3382368087768555, 0.9676965475082397, 2.74845814704895, -1.0002235174179077, 0.28972992300987244, 0.5990450382232666, 1.1014024019241333, -1.6655539274215698, 0.2869301438331604, -0.5011366009712219, 2.0320687294006348, 0.1534890979528427, 1.2239680290222168, -0.9501466155052185, -2.5262906551361084, 0.37021389603614807, -1.2029069662094116, -0.8580279350280762, 0.9703675508499146, -0.7094672918319702, 0.1854434758424759, -1.3242933750152588, -0.3550431728363037, -0.6209257245063782, -1.4290904998779297, 0.6136847138404846, 0.19637931883335114, 0.24093283712863922, -0.541360080242157, 0.20419244468212128, -2.117351531982422, -1.3037607669830322, -0.18191030621528625, -1.0846446752548218, 0.6786805391311646, -0.6334722638130188, 0.7819628715515137, -0.0010406207293272018, 0.3200675845146179, 0.09162446856498718, 1.497713327407837, 3.3054025173187256, 0.13793475925922394, 0.16413268446922302, -0.1106376126408577, -0.7575969099998474, 1.5272974967956543, 0.7763941884040833, 0.01177708338946104, -0.7696465849876404, -0.7833510637283325, 1.1816039085388184, 2.2976441383361816, 1.2020832300186157, 0.1406085342168808, -1.3010544776916504, -0.7824316024780273, -0.06064741313457489, 0.19472543895244598, 0.37680232524871826, 0.7983731031417847, -0.017955852672457695, -0.02362317219376564, 1.452472448348999, 1.300638198852539, -0.40217727422714233, 0.2407635897397995, -0.7651996612548828, -0.2775401473045349, 0.5288308262825012, 0.1842273473739624, -0.04295411705970764, 0.45931607484817505, -0.7307993769645691, 0.19384418427944183, -0.6321091055870056, -0.7820875644683838, -0.6940466165542603, -0.1968601793050766, -0.39938071370124817, 1.8241063356399536, 0.24810679256916046, -0.5397112369537354, 0.20958417654037476, -0.7323570251464844, -0.44599562883377075, -1.0487439632415771, 0.2734188437461853, -0.1484663486480713, -0.07811696082353592, -0.2313765585422516, 1.6885515451431274, -0.8757344484329224, -2.2900230884552, 0.0718063935637474, 0.2733519375324249, -0.4998681843280792, 0.16647395491600037, 1.7896413803100586, 0.392084538936615, 1.4967858791351318, 1.1873424053192139, 1.211024522781372, -0.895225465297699, -1.4466174840927124, 0.7861080169677734, 1.048945426940918, -1.6980136632919312, 0.7153477072715759, -0.21039490401744843, -0.3720710277557373, 0.7683072090148926, 1.249245285987854, 0.42131903767585754, -2.3355016708374023, 1.0603874921798706, -1.1610558032989502, 0.759891152381897, 0.988115131855011, 0.5831331610679626, 0.26048481464385986, 0.8350086212158203, -1.233687162399292, -1.0264912843704224, -0.7630889415740967, -0.7040569186210632, 2.05122447013855, -0.45738837122917175, 0.7622401714324951, 0.04104151949286461, -1.4913660287857056, 0.11847078055143356, 1.0474568605422974, 0.13240578770637512, -0.30116066336631775, 1.128731369972229, -0.8839834332466125, -0.7394554615020752, -1.4444317817687988, -0.5601069927215576, -1.085097074508667, -1.261960744857788, 1.5064713954925537, 0.5828611254692078, 0.586724579334259, 1.9434512853622437, 0.663727879524231, 0.2825041711330414, -2.617180109024048, 0.6579627990722656, -0.013033329509198666, 0.04924880713224411, 0.6899446845054626, 0.40119174122810364, 0.9829707741737366, -0.013531871140003204, 0.6891048550605774, -2.423523187637329, 2.4404590129852295, 0.08361540734767914, 0.8400909304618835, 0.1650807112455368, -0.23105798661708832, 1.0970433950424194, 0.4767029583454132, 0.7591175436973572, -1.4049615859985352, 0.9729636907577515, -0.5932074785232544, 1.188886046409607, 0.5927760601043701, -0.9821727275848389, -0.11438355594873428, 1.235946774482727, 0.17382939159870148, -0.5692780017852783, -1.0423308610916138, -0.98288494348526, 0.7302255630493164, 1.6748768091201782, -0.055013321340084076, 0.10958532989025116, 0.8083702921867371, 0.7026118040084839, -0.9651473164558411, 0.055870261043310165, -0.5899059772491455, -0.7304933667182922, 1.6322821378707886, 2.1277310848236084, -0.3950503170490265, -0.11320728063583374, -0.715213418006897, -1.0566596984863281, 0.7051931023597717, 0.17791993916034698, 0.1764196902513504, 0.1949092000722885, -0.7838069796562195, 1.0118424892425537, 0.567096471786499, 0.689409613609314, 0.13005629181861877, 0.2981231212615967, 0.24028296768665314, -0.08507147431373596, -1.0906199216842651, -0.5334534049034119, -0.9519143104553223, -2.607614040374756, 0.12305703014135361, -0.17135338485240936, -1.3871817588806152, 0.06809626519680023, -1.091753363609314, 0.846741795539856, -0.43938204646110535, -1.2224533557891846, -1.6006290912628174, 0.35011887550354004, -0.38530197739601135, 0.826036810874939, -1.5069292783737183, 0.0624816007912159, 1.1309837102890015, 0.7681499719619751, -0.5191339254379272, 1.212570309638977, 0.03364534676074982, 0.4743483364582062, 1.0592812299728394, -0.08744765818119049, 0.5003729462623596, 0.41278621554374695, -1.266133427619934, 0.48164016008377075, 0.9408565163612366, 0.13391318917274475, 1.3645222187042236, -0.40893474221229553, -0.13018591701984406, 0.326589971780777, -0.3354170024394989, -0.3855939507484436, -0.19509541988372803, 0.7797859907150269, 0.19344741106033325, -1.0614432096481323, 0.26548105478286743, -0.4397907853126526, -0.23939679563045502, 0.27799585461616516, -1.2746955156326294, -0.10461481660604477, -0.4358750581741333, -0.28349390625953674, -1.20949125289917, 0.14725396037101746, 1.4850443601608276, -0.43239855766296387, -0.34436026215553284, 0.4090310335159302, 0.5276132822036743, 0.2588719427585602, 0.971603274345398, -0.7280420064926147, -0.33039700984954834, -0.180989071726799, -0.3444962501525879, 0.6485052704811096, 1.0532605648040771, -0.1656465381383896, -1.0670607089996338, 0.699991762638092, -0.36213916540145874, 0.19916433095932007, 1.9815924167633057, 0.21838851273059845, -0.807805597782135, 0.5035788416862488, -0.9736440181732178, 1.7519489526748657, 1.6638282537460327, 1.2978798151016235, -0.47813698649406433, -1.1822373867034912, 0.770622730255127, -0.24095706641674042, -0.4163423776626587, 0.9157528281211853, 0.3262357711791992, -0.2922409474849701, -1.453542709350586, 0.5896255970001221, 1.0605021715164185, -0.6550634503364563, -0.47954261302948, 0.251407653093338, -0.8018825054168701, 1.3085170984268188, 0.6534817218780518, 0.3423655927181244, 0.09457448124885559, 1.9037305116653442, 0.6025558710098267, -0.6003457903862, 0.6238954067230225, 0.4829278290271759, -0.35969290137290955, -1.9709502458572388, -1.2213408946990967, 0.2819996774196625, -0.6278477907180786, -1.5186519622802734, 1.382001519203186, -1.1909443140029907, -1.0872148275375366, 0.5207186937332153, -0.10013031959533691, 1.653507947921753, 0.08106113225221634, 1.6560598611831665, 2.126033067703247, 0.8686391711235046, 0.30544590950012207, 1.1403776407241821, -0.09800617396831512, -0.6208130121231079, 1.714207410812378, -0.5245749950408936, 0.0930241271853447, 1.137804627418518, -0.6030403971672058, -1.2224091291427612, -0.6791753768920898, -0.862234890460968, -0.523163914680481, 1.1127068996429443, 0.1600058376789093, -1.238835096359253, 0.41771236062049866, 1.5933626890182495, -0.01937994547188282, -0.2896142303943634, 0.4111824631690979, 0.6395195126533508, -0.48760858178138733, -0.08741965144872665, -0.8617536425590515, 0.5293577909469604, -0.39908549189567566, -0.30290892720222473, 0.1687847226858139, 0.4122008979320526, 0.8683678507804871, 0.09162170439958572, 0.17760010063648224, 0.8872107267379761, -1.5355011224746704, 1.442269206047058, -0.6044548749923706, 0.22125983238220215, -2.292154312133789, 1.430054783821106, -0.5595361590385437, 2.1181914806365967, -2.349821090698242, 0.2873391807079315, -0.7068998217582703, -0.5702043771743774, 0.5825450420379639, -0.46083542704582214, 0.232543483376503, -0.31424036622047424, -0.9181884527206421, -0.21304082870483398, -0.7706307768821716, 0.8883419632911682, 0.9544705152511597, 1.3222328424453735, -1.0074472427368164, -0.3280436098575592, -1.5042426586151123, -0.32098233699798584, -0.7055517435073853, 0.3037969768047333, -1.9504506587982178, -0.3632313013076782, -2.028186798095703, -2.2683069705963135, -1.6337522268295288, -0.6201007962226868, 0.8263794183731079, 0.5475321412086487, -0.7536169290542603, 1.185879111289978, -0.206149160861969, -1.7637110948562622, 1.1902799606323242, -1.8641365766525269 ]
https://github.com/huggingface/datasets/issues/5946
IndexError Not Solving -> IndexError: Invalid key: ?? is out of bounds for size 0 or ??
> > > > @syngokhan did u solve it? I am desperate refer to my earlier comment. you will find the solution.
### Describe the bug in <cell line: 1>:1 │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1537 in train │ │ │ │ 1534 │ │ inner_training_loop = find_executable_batch_size( │ │ 1535 │ │ │ self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size │ │ 1536 │ │ ) │ │ ❱ 1537 │ │ return inner_training_loop( │ │ 1538 │ │ │ args=args, │ │ 1539 │ │ │ resume_from_checkpoint=resume_from_checkpoint, │ │ 1540 │ │ │ trial=trial, │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1789 in _inner_training_loop │ │ │ │ 1786 │ │ │ │ rng_to_sync = True │ │ 1787 │ │ │ │ │ 1788 │ │ │ step = -1 │ │ ❱ 1789 │ │ │ for step, inputs in enumerate(epoch_iterator): │ │ 1790 │ │ │ │ total_batched_samples += 1 │ │ 1791 │ │ │ │ if rng_to_sync: │ │ 1792 │ │ │ │ │ self._load_rng_state(resume_from_checkpoint) │ │ │ │ /usr/local/lib/python3.10/dist-packages/accelerate/data_loader.py:377 in __iter__ │ │ │ │ 374 │ │ dataloader_iter = super().__iter__() │ │ 375 │ │ # We iterate one batch ahead to check when we are at the end │ │ 376 │ │ try: │ │ ❱ 377 │ │ │ current_batch = next(dataloader_iter) │ │ 378 │ │ except StopIteration: │ │ 379 │ │ │ yield │ │ 380 │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:633 in __next__ │ │ │ │ 630 │ │ │ if self._sampler_iter is None: │ │ 631 │ │ │ │ # TODO(https://github.com/pytorch/pytorch/issues/76750) │ │ 632 │ │ │ │ self._reset() # type: ignore[call-arg] │ │ ❱ 633 │ │ │ data = self._next_data() │ │ 634 │ │ │ self._num_yielded += 1 │ │ 635 │ │ │ if self._dataset_kind == _DatasetKind.Iterable and \ │ │ 636 │ │ │ │ │ self._IterableDataset_len_called is not None and \ │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:677 in _next_data │ │ │ │ 674 │ │ │ 675 │ def _next_data(self): │ │ 676 │ │ index = self._next_index() # may raise StopIteration │ │ ❱ 677 │ │ data = self._dataset_fetcher.fetch(index) # may raise StopIteration │ │ 678 │ │ if self._pin_memory: │ │ 679 │ │ │ data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) │ │ 680 │ │ return data │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/fetch.py:49 in fetch │ │ │ │ 46 │ def fetch(self, possibly_batched_index): │ │ 47 │ │ if self.auto_collation: │ │ 48 │ │ │ if hasattr(self.dataset, "__getitems__") and self.dataset.__getitems__: │ │ ❱ 49 │ │ │ │ data = self.dataset.__getitems__(possibly_batched_index) │ │ 50 │ │ │ else: │ │ 51 │ │ │ │ data = [self.dataset[idx] for idx in possibly_batched_index] │ │ 52 │ │ else: │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2782 in __getitems__ │ │ │ │ 2779 │ │ │ 2780 │ def __getitems__(self, keys: List) -> List: │ │ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │ │ ❱ 2782 │ │ batch = self.__getitem__(keys) │ │ 2783 │ │ n_examples = len(batch[next(iter(batch))]) │ │ 2784 │ │ return [{col: array[i] for col, array in batch.items()} for i in range(n_example │ │ 2785 │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2778 in __getitem__ │ │ │ │ 2775 │ │ │ 2776 │ def __getitem__(self, key): # noqa: F811 │ │ 2777 │ │ """Can be used to index columns (by string names) or rows (by integer index or i │ │ ❱ 2778 │ │ return self._getitem(key) │ │ 2779 │ │ │ 2780 │ def __getitems__(self, keys: List) -> List: │ │ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2762 in _getitem │ │ │ │ 2759 │ │ format_kwargs = kwargs["format_kwargs"] if "format_kwargs" in kwargs else self._ │ │ 2760 │ │ format_kwargs = format_kwargs if format_kwargs is not None else {} │ │ 2761 │ │ formatter = get_formatter(format_type, features=self._info.features, **format_kw │ │ ❱ 2762 │ │ pa_subtable = query_table(self._data, key, indices=self._indices if self._indice │ │ 2763 │ │ formatted_output = format_table( │ │ 2764 │ │ │ pa_subtable, key, formatter=formatter, format_columns=format_columns, output │ │ 2765 │ │ ) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:578 in query_table │ │ │ │ 575 │ │ _check_valid_column_key(key, table.column_names) │ │ 576 │ else: │ │ 577 │ │ size = indices.num_rows if indices is not None else table.num_rows │ │ ❱ 578 │ │ _check_valid_index_key(key, size) │ │ 579 │ # Query the main table │ │ 580 │ if indices is None: │ │ 581 │ │ pa_subtable = _query_table(table, key) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:531 in │ │ _check_valid_index_key │ │ │ │ 528 │ │ │ _check_valid_index_key(min(key), size=size) │ │ 529 │ elif isinstance(key, Iterable): │ │ 530 │ │ if len(key) > 0: │ │ ❱ 531 │ │ │ _check_valid_index_key(int(max(key)), size=size) │ │ 532 │ │ │ _check_valid_index_key(int(min(key)), size=size) │ │ 533 │ else: │ │ 534 │ │ _raise_bad_key_type(key) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:521 in │ │ _check_valid_index_key │ │ │ │ 518 def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None: │ │ 519 │ if isinstance(key, int): │ │ 520 │ │ if (key < 0 and key + size < 0) or (key >= size): │ │ ❱ 521 │ │ │ raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") │ │ 522 │ │ return │ │ 523 │ elif isinstance(key, slice): │ │ 524 │ │ pass ### Steps to reproduce the bug `` import json import os from pprint import pprint import bitsandbytes as bnb import pandas as pd import torch import torch.nn as nn import transformers from datasets import Dataset,load_dataset from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training ) from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0" def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) MODEL_NAME = "tiiuae/falcon-7b" bnb_config = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map = "auto", trust_remote_code = True, quantization_config = bnb_config ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) tokenizer.pad_token = tokenizer.eos_token model.gradient_checkpointing_enable() model = prepare_model_for_kbit_training(model) config = LoraConfig( r = 16, lora_alpha = 32, target_modules = ["query_key_value"], lora_dropout = 0.05, bias = "none", task_type = "CASUAL_LM" ) model = get_peft_model(model,config) print_trainable_parameters(model) def generate_prompt(data_point): return f""" <human>: {data_point["question"]} <assistant>: {data_point["answer"]} """.strip() def generate_and_tokenize_prompt(data_point): full_prompt = generate_prompt(data_point) tokenized_full_prompt = tokenizer(full_prompt, padding = True, truncation = True,return_tensors = None) return dict({ "input_ids" : tokenized_full_prompt["input_ids"], "attention_mask" : tokenized_full_prompt["attention_mask"] }) data = data["train"].shuffle().map(generate_and_tokenize_prompt, batched = False) OUTPUT_DIR = "experiments" trainings_args = transformers.TrainingArguments( per_device_train_batch_size = 1, gradient_accumulation_steps = 4, num_train_epochs = 1, learning_rate = 2e-4, fp16 = True, save_total_limit = 3, logging_steps = 1, output_dir = OUTPUT_DIR, max_steps = 80, optim = "paged_adamw_8bit", lr_scheduler_type = "cosine", warmup_ratio = 0.05, #remove_unused_columns=True ) trainer = transformers.Trainer( model = model, train_dataset = data, args = trainings_args, data_collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train() IndexError: Invalid key: 32 is out of bounds for size 0 DataSet Format is like : [{"question": "How can I create an account?", "answer": "To create an account, click on the 'Sign Up' button on the top right corner of our website and follow the instructions to complete the registration process."}, .... ] ### Expected behavior - ### Environment info !pip install -q pip !pip install -q bitsandbytes==0.39.0 !pip install -q torch==2.0.1 !pip install -q git+https://github.com/huggingface/transformers.git !pip install -q git+https://github.com/huggingface/peft.git !pip install -q git+https://github.com/huggingface/accelerate.git !pip install -q datasets !pip install -q loralib==0.1.1 !pip install -q einops==0.6.1 import json import os from pprint import pprint import bitsandbytes as bnb import pandas as pd import torch import torch.nn as nn import transformers from datasets import Dataset,load_dataset from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training ) from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0"
102
22
IndexError Not Solving -> IndexError: Invalid key: ?? is out of bounds for size 0 or ?? ### Describe the bug in <cell line: 1>:1 │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1537 in train │ │ │ │ 1534 │ │ inner_training_loop = find_executable_batch_size( │ │ 1535 │ │ │ self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size │ │ 1536 │ │ ) │ │ ❱ 1537 │ │ return inner_training_loop( │ │ 1538 │ │ │ args=args, │ │ 1539 │ │ │ resume_from_checkpoint=resume_from_checkpoint, │ │ 1540 │ │ │ trial=trial, │ │ │ │ /usr/local/lib/python3.10/dist-packages/transformers/trainer.py:1789 in _inner_training_loop │ │ │ │ 1786 │ │ │ │ rng_to_sync = True │ │ 1787 │ │ │ │ │ 1788 │ │ │ step = -1 │ │ ❱ 1789 │ │ │ for step, inputs in enumerate(epoch_iterator): │ │ 1790 │ │ │ │ total_batched_samples += 1 │ │ 1791 │ │ │ │ if rng_to_sync: │ │ 1792 │ │ │ │ │ self._load_rng_state(resume_from_checkpoint) │ │ │ │ /usr/local/lib/python3.10/dist-packages/accelerate/data_loader.py:377 in __iter__ │ │ │ │ 374 │ │ dataloader_iter = super().__iter__() │ │ 375 │ │ # We iterate one batch ahead to check when we are at the end │ │ 376 │ │ try: │ │ ❱ 377 │ │ │ current_batch = next(dataloader_iter) │ │ 378 │ │ except StopIteration: │ │ 379 │ │ │ yield │ │ 380 │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:633 in __next__ │ │ │ │ 630 │ │ │ if self._sampler_iter is None: │ │ 631 │ │ │ │ # TODO(https://github.com/pytorch/pytorch/issues/76750) │ │ 632 │ │ │ │ self._reset() # type: ignore[call-arg] │ │ ❱ 633 │ │ │ data = self._next_data() │ │ 634 │ │ │ self._num_yielded += 1 │ │ 635 │ │ │ if self._dataset_kind == _DatasetKind.Iterable and \ │ │ 636 │ │ │ │ │ self._IterableDataset_len_called is not None and \ │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/dataloader.py:677 in _next_data │ │ │ │ 674 │ │ │ 675 │ def _next_data(self): │ │ 676 │ │ index = self._next_index() # may raise StopIteration │ │ ❱ 677 │ │ data = self._dataset_fetcher.fetch(index) # may raise StopIteration │ │ 678 │ │ if self._pin_memory: │ │ 679 │ │ │ data = _utils.pin_memory.pin_memory(data, self._pin_memory_device) │ │ 680 │ │ return data │ │ │ │ /usr/local/lib/python3.10/dist-packages/torch/utils/data/_utils/fetch.py:49 in fetch │ │ │ │ 46 │ def fetch(self, possibly_batched_index): │ │ 47 │ │ if self.auto_collation: │ │ 48 │ │ │ if hasattr(self.dataset, "__getitems__") and self.dataset.__getitems__: │ │ ❱ 49 │ │ │ │ data = self.dataset.__getitems__(possibly_batched_index) │ │ 50 │ │ │ else: │ │ 51 │ │ │ │ data = [self.dataset[idx] for idx in possibly_batched_index] │ │ 52 │ │ else: │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2782 in __getitems__ │ │ │ │ 2779 │ │ │ 2780 │ def __getitems__(self, keys: List) -> List: │ │ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │ │ ❱ 2782 │ │ batch = self.__getitem__(keys) │ │ 2783 │ │ n_examples = len(batch[next(iter(batch))]) │ │ 2784 │ │ return [{col: array[i] for col, array in batch.items()} for i in range(n_example │ │ 2785 │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2778 in __getitem__ │ │ │ │ 2775 │ │ │ 2776 │ def __getitem__(self, key): # noqa: F811 │ │ 2777 │ │ """Can be used to index columns (by string names) or rows (by integer index or i │ │ ❱ 2778 │ │ return self._getitem(key) │ │ 2779 │ │ │ 2780 │ def __getitems__(self, keys: List) -> List: │ │ 2781 │ │ """Can be used to get a batch using a list of integers indices.""" │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py:2762 in _getitem │ │ │ │ 2759 │ │ format_kwargs = kwargs["format_kwargs"] if "format_kwargs" in kwargs else self._ │ │ 2760 │ │ format_kwargs = format_kwargs if format_kwargs is not None else {} │ │ 2761 │ │ formatter = get_formatter(format_type, features=self._info.features, **format_kw │ │ ❱ 2762 │ │ pa_subtable = query_table(self._data, key, indices=self._indices if self._indice │ │ 2763 │ │ formatted_output = format_table( │ │ 2764 │ │ │ pa_subtable, key, formatter=formatter, format_columns=format_columns, output │ │ 2765 │ │ ) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:578 in query_table │ │ │ │ 575 │ │ _check_valid_column_key(key, table.column_names) │ │ 576 │ else: │ │ 577 │ │ size = indices.num_rows if indices is not None else table.num_rows │ │ ❱ 578 │ │ _check_valid_index_key(key, size) │ │ 579 │ # Query the main table │ │ 580 │ if indices is None: │ │ 581 │ │ pa_subtable = _query_table(table, key) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:531 in │ │ _check_valid_index_key │ │ │ │ 528 │ │ │ _check_valid_index_key(min(key), size=size) │ │ 529 │ elif isinstance(key, Iterable): │ │ 530 │ │ if len(key) > 0: │ │ ❱ 531 │ │ │ _check_valid_index_key(int(max(key)), size=size) │ │ 532 │ │ │ _check_valid_index_key(int(min(key)), size=size) │ │ 533 │ else: │ │ 534 │ │ _raise_bad_key_type(key) │ │ │ │ /usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py:521 in │ │ _check_valid_index_key │ │ │ │ 518 def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None: │ │ 519 │ if isinstance(key, int): │ │ 520 │ │ if (key < 0 and key + size < 0) or (key >= size): │ │ ❱ 521 │ │ │ raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") │ │ 522 │ │ return │ │ 523 │ elif isinstance(key, slice): │ │ 524 │ │ pass ### Steps to reproduce the bug `` import json import os from pprint import pprint import bitsandbytes as bnb import pandas as pd import torch import torch.nn as nn import transformers from datasets import Dataset,load_dataset from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training ) from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0" def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) MODEL_NAME = "tiiuae/falcon-7b" bnb_config = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map = "auto", trust_remote_code = True, quantization_config = bnb_config ) tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) tokenizer.pad_token = tokenizer.eos_token model.gradient_checkpointing_enable() model = prepare_model_for_kbit_training(model) config = LoraConfig( r = 16, lora_alpha = 32, target_modules = ["query_key_value"], lora_dropout = 0.05, bias = "none", task_type = "CASUAL_LM" ) model = get_peft_model(model,config) print_trainable_parameters(model) def generate_prompt(data_point): return f""" <human>: {data_point["question"]} <assistant>: {data_point["answer"]} """.strip() def generate_and_tokenize_prompt(data_point): full_prompt = generate_prompt(data_point) tokenized_full_prompt = tokenizer(full_prompt, padding = True, truncation = True,return_tensors = None) return dict({ "input_ids" : tokenized_full_prompt["input_ids"], "attention_mask" : tokenized_full_prompt["attention_mask"] }) data = data["train"].shuffle().map(generate_and_tokenize_prompt, batched = False) OUTPUT_DIR = "experiments" trainings_args = transformers.TrainingArguments( per_device_train_batch_size = 1, gradient_accumulation_steps = 4, num_train_epochs = 1, learning_rate = 2e-4, fp16 = True, save_total_limit = 3, logging_steps = 1, output_dir = OUTPUT_DIR, max_steps = 80, optim = "paged_adamw_8bit", lr_scheduler_type = "cosine", warmup_ratio = 0.05, #remove_unused_columns=True ) trainer = transformers.Trainer( model = model, train_dataset = data, args = trainings_args, data_collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False trainer.train() IndexError: Invalid key: 32 is out of bounds for size 0 DataSet Format is like : [{"question": "How can I create an account?", "answer": "To create an account, click on the 'Sign Up' button on the top right corner of our website and follow the instructions to complete the registration process."}, .... ] ### Expected behavior - ### Environment info !pip install -q pip !pip install -q bitsandbytes==0.39.0 !pip install -q torch==2.0.1 !pip install -q git+https://github.com/huggingface/transformers.git !pip install -q git+https://github.com/huggingface/peft.git !pip install -q git+https://github.com/huggingface/accelerate.git !pip install -q datasets !pip install -q loralib==0.1.1 !pip install -q einops==0.6.1 import json import os from pprint import pprint import bitsandbytes as bnb import pandas as pd import torch import torch.nn as nn import transformers from datasets import Dataset,load_dataset from peft import ( LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training ) from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0" > > > > @syngokhan did u solve it? I am desperate refer to my earlier comment. you will find the solution.
[ -1.0899585485458374, -0.6860926747322083, -0.3947448432445526, 1.7805007696151733, -0.10308399051427841, -1.1954777240753174, 0.2851788103580475, -1.0154169797897339, 1.3759500980377197, -0.6906192302703857, 0.2353612333536148, -1.5166146755218506, 0.45380547642707825, -0.43396854400634766, -0.6014120578765869, -1.0316795110702515, -0.6903113722801208, -0.7869057655334473, 1.1818100214004517, 2.355071783065796, 1.3642624616622925, -1.4216617345809937, 2.6783549785614014, 0.6093857884407043, -0.5316646099090576, -1.3303860425949097, 0.2900221049785614, 0.02263393998146057, -1.3905413150787354, -0.36158373951911926, -1.0165742635726929, -0.2627878785133362, -0.5485901236534119, -0.6842862963676453, 0.3801984190940857, 0.5797930359840393, -0.2943718731403351, -0.20547302067279816, -0.7201831936836243, -0.5387290120124817, 0.4906533658504486, -0.33467891812324524, 0.8209221363067627, -0.2343820482492447, 1.6272563934326172, -0.6255741715431213, 0.4335472881793976, 0.7530830502510071, 1.3640738725662231, 0.049858514219522476, 0.056320127099752426, 0.3553604185581207, 0.3244102895259857, -0.18597987294197083, 0.3356623649597168, 1.2954516410827637, 0.8904043436050415, 0.5047529935836792, 0.6166817545890808, -2.1257054805755615, 1.5575499534606934, -0.9187287092208862, 0.24075092375278473, 1.401941180229187, -1.0707042217254639, 0.5275971293449402, -1.566368818283081, 0.09886589646339417, 0.5959907174110413, -2.257028102874756, 0.012537759728729725, -0.954049825668335, -0.3130289912223816, 1.0979670286178589, 0.25334277749061584, -1.2360355854034424, 0.34159770607948303, -0.5540820956230164, 1.1540039777755737, 0.42105332016944885, 0.9617578983306885, -1.7631059885025024, 0.18493303656578064, -0.10006391257047653, 0.021056130528450012, -1.3666900396347046, -1.4361851215362549, 0.5798687934875488, 0.43822145462036133, 0.5454311370849609, -0.08045059442520142, 1.101325511932373, -1.081362247467041, 0.7831241488456726, -0.86110919713974, -1.4919235706329346, -1.3561193943023682, -2.670588731765747, -2.384612798690796, 0.48978492617607117, -0.48154497146606445, -0.5965787768363953, 1.8482247591018677, -0.865893542766571, -1.437887191772461, 0.8248633146286011, 0.3189850151538849, 0.2163260579109192, 2.39636492729187, 0.14112047851085663, -0.8733274340629578, 0.1498604565858841, -0.7794256806373596, 1.2310912609100342, -0.45226624608039856, 1.2638823986053467, 0.48251375555992126, -1.018391489982605, 1.141770839691162, -0.1458432823419571, 0.595544695854187, -0.6630540490150452, -0.41817721724510193, -0.9030172228813171, 0.3224560618400574, 1.761095404624939, -0.1782912015914917, 1.6320464611053467, -0.22778905928134918, -1.383249044418335, -1.5560258626937866, 0.6954851150512695, 0.5198793411254883, -0.8487301468849182, 0.2997913062572479, -0.5967124700546265, -0.049490634351968765, 0.09724146872758865, 1.160128116607666, 1.317113995552063, 0.5661519765853882, -0.4814220070838928, -1.1388909816741943, 0.021244656294584274, -0.03537875786423683, -0.5233930349349976, -2.1984057426452637, -0.2179887592792511, 0.24245397746562958, 0.6364367604255676, -1.0759278535842896, 1.669690489768982, 0.8669548034667969, 2.011709451675415, 1.1556761264801025, -0.43655240535736084, 1.7037674188613892, -0.24553726613521576, 1.7325618267059326, -0.7654938101768494, 0.4168311655521393, -0.43330591917037964, -1.3705472946166992, 0.6940691471099854, -0.3629002273082733, -2.176608085632324, -0.7943809032440186, -0.7588841319084167, -0.2127138376235962, -0.7319319844245911, 0.8735069632530212, -0.3163747787475586, -1.4133803844451904, 0.24236910045146942, -0.3632744252681732, 0.29278260469436646, -1.083217740058899, 0.4131673276424408, 0.702924370765686, -0.5759463310241699, -0.010726716369390488, -0.3712545335292816, -1.3628699779510498, -0.4966520071029663, 0.38329628109931946, 1.424181342124939, -0.5226438641548157, 0.880117654800415, 1.0343594551086426, -0.45551568269729614, 0.3133069574832916, -0.17283348739147186, -0.2378600686788559, 0.722587525844574, -1.3181549310684204, -0.35581260919570923, 1.0564215183258057, -0.5181309580802917, -0.721515417098999, 1.3184078931808472, 0.821725070476532, -1.0687915086746216, -0.3028516173362732, -0.06632443517446518, -1.1670160293579102, 0.24812041223049164, -1.607688307762146, -0.03639937564730644, 0.4576488733291626, -1.5176188945770264, -0.3539067506790161, -0.14941351115703583, 1.2491356134414673, -0.22641229629516602, 1.3337651491165161, -0.3900289833545685, -0.0588575042784214, -0.5124375224113464, -0.6476839184761047, 0.2277221530675888, -0.39641067385673523, -0.5878489017486572, 0.1936761736869812, -0.6841647028923035, 0.4018905460834503, 1.3857933282852173, 0.1527613252401352, 0.10924319922924042, 0.5755775570869446, 1.328715205192566, 0.5435265898704529, -0.036054711788892746, -0.6978457570075989, -1.781272292137146, 2.108614206314087, -1.290616512298584, 1.945746660232544, 0.9203001260757446, 0.17257024347782135, -1.450618863105774, -1.4330006837844849, 1.42936110496521, 1.1891138553619385, 2.49650239944458, 0.5886161923408508, 0.14117009937763214, -0.85878586769104, -0.9961589574813843, 0.3396188020706177, -1.1493041515350342, -0.5177745819091797, 0.2671859562397003, 2.607842206954956, 2.028043508529663, -0.19946995377540588, -0.17940682172775269, -0.9496164321899414, 1.1775596141815186, -0.025843631476163864, 0.2919760048389435, 1.8508787155151367, -0.10327569395303726, -1.132870078086853, 1.0682939291000366, -2.3403160572052, 0.22975844144821167, 2.172975778579712, 0.4212583005428314, 0.2509216070175171, -1.4557976722717285, -0.6794366240501404, -0.2685081660747528, -0.5302286148071289, -1.3888731002807617, 0.5242372155189514, -0.31454071402549744, -0.582934558391571, -1.4798237085342407, 0.21207843720912933, -1.274048089981079, -1.4934568405151367, 0.36727985739707947, 1.7943416833877563, 2.2187445163726807, -0.6335437893867493, 1.411206603050232, -0.4168136715888977, -0.05237477272748947, 1.0166170597076416, 1.2369635105133057, 3.0395901203155518, 2.0351386070251465, -1.1978579759597778, 0.7120831608772278, -0.27192723751068115, -0.524142324924469, 0.9468289613723755, -1.2088594436645508, 1.4024813175201416, 0.020225316286087036, -1.279697299003601, -1.244120478630066, 1.0846025943756104, 0.4158177673816681, 0.03875970095396042, -0.543423593044281, 1.3365222215652466, 0.07969822734594345, 1.2967809438705444, 0.5957525968551636, -0.211782768368721, 0.44269078969955444, -0.5033270120620728, -0.5460807681083679, 1.4582253694534302, 0.26015016436576843, -1.6505950689315796, -2.06547212600708, -0.24517197906970978, -0.5745187997817993, 0.0003873715177178383, -0.6602375507354736, -1.0356947183609009, 1.6665979623794556, 0.16180557012557983, -1.152768611907959, -0.29603275656700134, -0.2657887637615204, -0.5194793939590454, 2.611839532852173, -1.6035540103912354, -0.09030751883983612, -1.0700230598449707, -0.7630327939987183, 1.4369219541549683, -0.906222403049469, -0.21298949420452118, -0.9700524210929871, -0.6739645004272461, -1.2463936805725098, -0.3475325107574463, 0.014865987934172153, -0.7798030376434326, 0.6004525423049927, 0.1716061681509018, -0.9812284708023071, -0.2396661937236786, -0.6526273488998413, 1.0910208225250244, -0.33149173855781555, 0.10148678719997406, 1.7984249591827393, 0.23223698139190674, -0.29650789499282837, 0.6167979836463928, 1.1108046770095825, 0.8193454742431641, -0.7036337852478027, -0.31948697566986084, -0.6942994594573975, 0.20328788459300995, -1.1271636486053467, 0.2572989761829376, -2.8288345336914062, 0.44942349195480347, -0.15322436392307281, 0.06987324357032776, -0.008229166269302368, -1.3382368087768555, 0.9676965475082397, 2.74845814704895, -1.0002235174179077, 0.28972992300987244, 0.5990450382232666, 1.1014024019241333, -1.6655539274215698, 0.2869301438331604, -0.5011366009712219, 2.0320687294006348, 0.1534890979528427, 1.2239680290222168, -0.9501466155052185, -2.5262906551361084, 0.37021389603614807, -1.2029069662094116, -0.8580279350280762, 0.9703675508499146, -0.7094672918319702, 0.1854434758424759, -1.3242933750152588, -0.3550431728363037, -0.6209257245063782, -1.4290904998779297, 0.6136847138404846, 0.19637931883335114, 0.24093283712863922, -0.541360080242157, 0.20419244468212128, -2.117351531982422, -1.3037607669830322, -0.18191030621528625, -1.0846446752548218, 0.6786805391311646, -0.6334722638130188, 0.7819628715515137, -0.0010406207293272018, 0.3200675845146179, 0.09162446856498718, 1.497713327407837, 3.3054025173187256, 0.13793475925922394, 0.16413268446922302, -0.1106376126408577, -0.7575969099998474, 1.5272974967956543, 0.7763941884040833, 0.01177708338946104, -0.7696465849876404, -0.7833510637283325, 1.1816039085388184, 2.2976441383361816, 1.2020832300186157, 0.1406085342168808, -1.3010544776916504, -0.7824316024780273, -0.06064741313457489, 0.19472543895244598, 0.37680232524871826, 0.7983731031417847, -0.017955852672457695, -0.02362317219376564, 1.452472448348999, 1.300638198852539, -0.40217727422714233, 0.2407635897397995, -0.7651996612548828, -0.2775401473045349, 0.5288308262825012, 0.1842273473739624, -0.04295411705970764, 0.45931607484817505, -0.7307993769645691, 0.19384418427944183, -0.6321091055870056, -0.7820875644683838, -0.6940466165542603, -0.1968601793050766, -0.39938071370124817, 1.8241063356399536, 0.24810679256916046, -0.5397112369537354, 0.20958417654037476, -0.7323570251464844, -0.44599562883377075, -1.0487439632415771, 0.2734188437461853, -0.1484663486480713, -0.07811696082353592, -0.2313765585422516, 1.6885515451431274, -0.8757344484329224, -2.2900230884552, 0.0718063935637474, 0.2733519375324249, -0.4998681843280792, 0.16647395491600037, 1.7896413803100586, 0.392084538936615, 1.4967858791351318, 1.1873424053192139, 1.211024522781372, -0.895225465297699, -1.4466174840927124, 0.7861080169677734, 1.048945426940918, -1.6980136632919312, 0.7153477072715759, -0.21039490401744843, -0.3720710277557373, 0.7683072090148926, 1.249245285987854, 0.42131903767585754, -2.3355016708374023, 1.0603874921798706, -1.1610558032989502, 0.759891152381897, 0.988115131855011, 0.5831331610679626, 0.26048481464385986, 0.8350086212158203, -1.233687162399292, -1.0264912843704224, -0.7630889415740967, -0.7040569186210632, 2.05122447013855, -0.45738837122917175, 0.7622401714324951, 0.04104151949286461, -1.4913660287857056, 0.11847078055143356, 1.0474568605422974, 0.13240578770637512, -0.30116066336631775, 1.128731369972229, -0.8839834332466125, -0.7394554615020752, -1.4444317817687988, -0.5601069927215576, -1.085097074508667, -1.261960744857788, 1.5064713954925537, 0.5828611254692078, 0.586724579334259, 1.9434512853622437, 0.663727879524231, 0.2825041711330414, -2.617180109024048, 0.6579627990722656, -0.013033329509198666, 0.04924880713224411, 0.6899446845054626, 0.40119174122810364, 0.9829707741737366, -0.013531871140003204, 0.6891048550605774, -2.423523187637329, 2.4404590129852295, 0.08361540734767914, 0.8400909304618835, 0.1650807112455368, -0.23105798661708832, 1.0970433950424194, 0.4767029583454132, 0.7591175436973572, -1.4049615859985352, 0.9729636907577515, -0.5932074785232544, 1.188886046409607, 0.5927760601043701, -0.9821727275848389, -0.11438355594873428, 1.235946774482727, 0.17382939159870148, -0.5692780017852783, -1.0423308610916138, -0.98288494348526, 0.7302255630493164, 1.6748768091201782, -0.055013321340084076, 0.10958532989025116, 0.8083702921867371, 0.7026118040084839, -0.9651473164558411, 0.055870261043310165, -0.5899059772491455, -0.7304933667182922, 1.6322821378707886, 2.1277310848236084, -0.3950503170490265, -0.11320728063583374, -0.715213418006897, -1.0566596984863281, 0.7051931023597717, 0.17791993916034698, 0.1764196902513504, 0.1949092000722885, -0.7838069796562195, 1.0118424892425537, 0.567096471786499, 0.689409613609314, 0.13005629181861877, 0.2981231212615967, 0.24028296768665314, -0.08507147431373596, -1.0906199216842651, -0.5334534049034119, -0.9519143104553223, -2.607614040374756, 0.12305703014135361, -0.17135338485240936, -1.3871817588806152, 0.06809626519680023, -1.091753363609314, 0.846741795539856, -0.43938204646110535, -1.2224533557891846, -1.6006290912628174, 0.35011887550354004, -0.38530197739601135, 0.826036810874939, -1.5069292783737183, 0.0624816007912159, 1.1309837102890015, 0.7681499719619751, -0.5191339254379272, 1.212570309638977, 0.03364534676074982, 0.4743483364582062, 1.0592812299728394, -0.08744765818119049, 0.5003729462623596, 0.41278621554374695, -1.266133427619934, 0.48164016008377075, 0.9408565163612366, 0.13391318917274475, 1.3645222187042236, -0.40893474221229553, -0.13018591701984406, 0.326589971780777, -0.3354170024394989, -0.3855939507484436, -0.19509541988372803, 0.7797859907150269, 0.19344741106033325, -1.0614432096481323, 0.26548105478286743, -0.4397907853126526, -0.23939679563045502, 0.27799585461616516, -1.2746955156326294, -0.10461481660604477, -0.4358750581741333, -0.28349390625953674, -1.20949125289917, 0.14725396037101746, 1.4850443601608276, -0.43239855766296387, -0.34436026215553284, 0.4090310335159302, 0.5276132822036743, 0.2588719427585602, 0.971603274345398, -0.7280420064926147, -0.33039700984954834, -0.180989071726799, -0.3444962501525879, 0.6485052704811096, 1.0532605648040771, -0.1656465381383896, -1.0670607089996338, 0.699991762638092, -0.36213916540145874, 0.19916433095932007, 1.9815924167633057, 0.21838851273059845, -0.807805597782135, 0.5035788416862488, -0.9736440181732178, 1.7519489526748657, 1.6638282537460327, 1.2978798151016235, -0.47813698649406433, -1.1822373867034912, 0.770622730255127, -0.24095706641674042, -0.4163423776626587, 0.9157528281211853, 0.3262357711791992, -0.2922409474849701, -1.453542709350586, 0.5896255970001221, 1.0605021715164185, -0.6550634503364563, -0.47954261302948, 0.251407653093338, -0.8018825054168701, 1.3085170984268188, 0.6534817218780518, 0.3423655927181244, 0.09457448124885559, 1.9037305116653442, 0.6025558710098267, -0.6003457903862, 0.6238954067230225, 0.4829278290271759, -0.35969290137290955, -1.9709502458572388, -1.2213408946990967, 0.2819996774196625, -0.6278477907180786, -1.5186519622802734, 1.382001519203186, -1.1909443140029907, -1.0872148275375366, 0.5207186937332153, -0.10013031959533691, 1.653507947921753, 0.08106113225221634, 1.6560598611831665, 2.126033067703247, 0.8686391711235046, 0.30544590950012207, 1.1403776407241821, -0.09800617396831512, -0.6208130121231079, 1.714207410812378, -0.5245749950408936, 0.0930241271853447, 1.137804627418518, -0.6030403971672058, -1.2224091291427612, -0.6791753768920898, -0.862234890460968, -0.523163914680481, 1.1127068996429443, 0.1600058376789093, -1.238835096359253, 0.41771236062049866, 1.5933626890182495, -0.01937994547188282, -0.2896142303943634, 0.4111824631690979, 0.6395195126533508, -0.48760858178138733, -0.08741965144872665, -0.8617536425590515, 0.5293577909469604, -0.39908549189567566, -0.30290892720222473, 0.1687847226858139, 0.4122008979320526, 0.8683678507804871, 0.09162170439958572, 0.17760010063648224, 0.8872107267379761, -1.5355011224746704, 1.442269206047058, -0.6044548749923706, 0.22125983238220215, -2.292154312133789, 1.430054783821106, -0.5595361590385437, 2.1181914806365967, -2.349821090698242, 0.2873391807079315, -0.7068998217582703, -0.5702043771743774, 0.5825450420379639, -0.46083542704582214, 0.232543483376503, -0.31424036622047424, -0.9181884527206421, -0.21304082870483398, -0.7706307768821716, 0.8883419632911682, 0.9544705152511597, 1.3222328424453735, -1.0074472427368164, -0.3280436098575592, -1.5042426586151123, -0.32098233699798584, -0.7055517435073853, 0.3037969768047333, -1.9504506587982178, -0.3632313013076782, -2.028186798095703, -2.2683069705963135, -1.6337522268295288, -0.6201007962226868, 0.8263794183731079, 0.5475321412086487, -0.7536169290542603, 1.185879111289978, -0.206149160861969, -1.7637110948562622, 1.1902799606323242, -1.8641365766525269 ]
https://github.com/huggingface/datasets/issues/5945
Failing to upload dataset to the hub
Hi ! Feel free to re-run your code later, it will resume automatically where you left
### Describe the bug Trying to upload a dataset of hundreds of thousands of audio samples (the total volume is not very large, 60 gb) to the hub with push_to_hub, it doesn't work. From time to time one piece of the data (parquet) gets pushed and then I get RemoteDisconnected even though my internet is stable. Please help. I'm trying to upload the dataset for almost a week. Thanks ### Steps to reproduce the bug not relevant ### Expected behavior Be able to upload thedataset ### Environment info python: 3.9
103
16
Failing to upload dataset to the hub ### Describe the bug Trying to upload a dataset of hundreds of thousands of audio samples (the total volume is not very large, 60 gb) to the hub with push_to_hub, it doesn't work. From time to time one piece of the data (parquet) gets pushed and then I get RemoteDisconnected even though my internet is stable. Please help. I'm trying to upload the dataset for almost a week. Thanks ### Steps to reproduce the bug not relevant ### Expected behavior Be able to upload thedataset ### Environment info python: 3.9 Hi ! Feel free to re-run your code later, it will resume automatically where you left
[ -1.1463006734848022, -0.9852508902549744, -0.9576606154441833, 1.5194764137268066, -0.22411711513996124, -1.3026936054229736, 0.07107631117105484, -1.0489076375961304, 1.5510239601135254, -0.8261783123016357, 0.3836766481399536, -1.6459275484085083, 0.04675637185573578, -0.5636143088340759, -0.6956684589385986, -0.9679304957389832, -0.45008280873298645, -0.7241069078445435, 1.0954880714416504, 2.6570346355438232, 1.0658485889434814, -1.3009846210479736, 2.7627508640289307, 0.7361932992935181, -0.14490723609924316, -1.05339515209198, 0.5467435121536255, 0.06102411448955536, -1.2491090297698975, -0.5777019262313843, -0.9340390563011169, -0.0939260721206665, -0.4673701524734497, -0.5069732666015625, -0.025762002915143967, 0.4624869227409363, -0.18749091029167175, -0.5140804648399353, -0.619920015335083, -0.7590349912643433, 0.40371549129486084, -0.4409593343734741, 0.932762086391449, -0.44450291991233826, 1.8957445621490479, -0.48484915494918823, 0.41019967198371887, 0.6739436984062195, 1.5081490278244019, 0.18391689658164978, -0.08341602236032486, 0.3430267572402954, 0.46623459458351135, -0.1682947725057602, 0.35604745149612427, 0.9439317584037781, 0.5379942655563354, 0.6456693410873413, 0.6765428185462952, -2.093475341796875, 1.4244385957717896, -1.057751178741455, 0.35041773319244385, 1.4161481857299805, -1.0824127197265625, 0.4532198905944824, -1.687261939048767, -0.08081218600273132, 0.5328401327133179, -2.273132562637329, 0.21170784533023834, -1.1357636451721191, -0.5584003329277039, 0.9775835275650024, 0.443447470664978, -1.433514952659607, 0.03529832512140274, -0.5029230117797852, 1.0765539407730103, 0.45924994349479675, 1.1019997596740723, -1.6743266582489014, -0.02509436383843422, -0.3432579040527344, -0.1529095321893692, -1.4742515087127686, -1.4339438676834106, 0.5256270170211792, 0.5493887066841125, 0.6545910835266113, 0.05722547322511673, 0.902580201625824, -1.0032076835632324, 0.7369765043258667, -0.8386076092720032, -1.6591731309890747, -1.3712302446365356, -2.340115547180176, -2.299079179763794, 0.800913393497467, -0.42520105838775635, -0.6142169833183289, 1.98875093460083, -1.0552217960357666, -1.7742098569869995, 1.251304030418396, 0.33618587255477905, -0.09469041228294373, 2.5308611392974854, 0.1485726237297058, -0.5865033864974976, 0.42435353994369507, -0.6271830201148987, 0.9053041338920593, -0.7538306713104248, 1.404206395149231, 0.27722784876823425, -1.0937716960906982, 1.6076141595840454, -0.38916081190109253, 0.704464316368103, -0.7398689985275269, -0.4815590977668762, -0.9828153848648071, 0.3747556805610657, 1.8517512083053589, -0.28160497546195984, 1.5713849067687988, -0.4171029329299927, -1.481631875038147, -1.6424095630645752, 1.0011165142059326, 0.41567063331604004, -0.8420771360397339, 0.17735078930854797, -0.3197024464607239, 0.027518516406416893, -0.042529527097940445, 1.031461477279663, 1.2497220039367676, 0.5283719301223755, -0.23888535797595978, -0.90537029504776, 0.28803128004074097, -0.11880411207675934, -0.617150604724884, -1.7959868907928467, -0.36724013090133667, 0.07572020590305328, 0.5947246551513672, -1.1369547843933105, 1.6425442695617676, 0.8855881690979004, 1.9114694595336914, 1.0730353593826294, -0.2801828980445862, 1.3381125926971436, 0.06379768252372742, 1.8255634307861328, -0.5585522651672363, 0.7744473814964294, -0.35900241136550903, -1.1191208362579346, 0.6522225141525269, -0.4669839143753052, -2.000617742538452, -0.812970757484436, -0.7296931743621826, -0.2546277344226837, -0.7153099775314331, 1.104353666305542, -0.38446059823036194, -1.1973642110824585, 0.25467804074287415, -0.7101262211799622, 0.18913303315639496, -1.2747299671173096, 0.4428565800189972, 0.7560675144195557, -0.5340180993080139, 0.04222876578569412, -0.22737281024456024, -1.2990667819976807, -0.43305227160453796, 0.32225149869918823, 1.8574243783950806, -0.8830811977386475, 0.9351024627685547, 0.899283230304718, -0.6427327990531921, -0.063068687915802, 0.35507622361183167, -0.2782774269580841, 0.9115338921546936, -1.0177885293960571, -0.4825083613395691, 1.3034641742706299, -0.3741549849510193, -0.6839970350265503, 1.564434289932251, 0.7905229330062866, -0.9376153945922852, -0.11275773495435715, -0.10523319989442825, -0.9486847519874573, 0.06519636511802673, -1.7603626251220703, -0.1136702448129654, 0.3268794119358063, -1.4926245212554932, -0.4736257791519165, -0.1735754758119583, 1.2157928943634033, -0.06128639727830887, 1.4509496688842773, -0.44166505336761475, -0.2886660397052765, -0.43779313564300537, -0.46171265840530396, 0.17687314748764038, -0.18034280836582184, -0.5095760822296143, 0.22339944541454315, -0.6706103682518005, 0.4265403747558594, 1.4360733032226562, 0.375746488571167, 0.15166476368904114, 0.6643619537353516, 0.9679117798805237, 0.24757343530654907, -0.14663653075695038, -0.8618859648704529, -1.6024032831192017, 1.9667062759399414, -1.369873285293579, 2.101762533187866, 0.8654163479804993, -0.20489127933979034, -1.6984875202178955, -1.8154823780059814, 1.3893318176269531, 1.2422723770141602, 2.2121787071228027, 0.6978026032447815, 0.3913949131965637, -0.9364024996757507, -0.6490064263343811, 0.1633702516555786, -1.1090372800827026, -0.7520571947097778, 0.05333695560693741, 2.3264212608337402, 1.7920361757278442, -0.47960755228996277, -0.012436124496161938, -1.1950485706329346, 1.290809988975525, -0.08642702549695969, 0.245345801115036, 1.9349156618118286, -0.2920170724391937, -1.0553292036056519, 1.0917524099349976, -2.26543927192688, 0.03326334059238434, 1.9670894145965576, 0.28020450472831726, 0.11743039637804031, -1.4415637254714966, -0.6665095686912537, -0.27878379821777344, -0.19635799527168274, -1.2797174453735352, 0.6125985980033875, -0.31290677189826965, -0.7739986777305603, -1.4516561031341553, 0.13338153064250946, -1.1141589879989624, -1.4523957967758179, 0.3207290768623352, 1.8617794513702393, 2.004457950592041, -0.6693283915519714, 1.6343134641647339, -0.08721055835485458, 0.07839633524417877, 1.177158236503601, 1.2173168659210205, 3.072025775909424, 2.0410027503967285, -1.2361323833465576, 0.6529810428619385, -0.029095584526658058, -0.4874729514122009, 1.193537950515747, -1.0551838874816895, 1.4665275812149048, -0.07844305783510208, -1.1456314325332642, -1.3322432041168213, 0.8703624606132507, 0.5340782999992371, 0.06320337951183319, -0.4644363224506378, 1.2434221506118774, -0.04643988981842995, 1.2294210195541382, 0.49489644169807434, -0.37804630398750305, 0.6605722308158875, -0.43559423089027405, -0.45538148283958435, 1.6649689674377441, 0.2694806754589081, -1.4706488847732544, -2.291152000427246, -0.24671225249767303, -0.7037283182144165, -0.03212497755885124, -0.7110316753387451, -0.9821697473526001, 1.6252236366271973, 0.42220208048820496, -1.240610957145691, -0.4522492289543152, -0.3039917051792145, -0.6862884163856506, 2.766244411468506, -1.5312833786010742, -0.37611162662506104, -1.027989149093628, -0.4704284071922302, 1.5905357599258423, -1.2853256464004517, -0.16261662542819977, -1.001299500465393, -0.5724179744720459, -1.193047285079956, -0.5213925242424011, -0.05456235632300377, -1.0343037843704224, 0.8232341408729553, 0.13320548832416534, -1.1378768682479858, -0.1568213403224945, -0.8006682395935059, 0.7601008415222168, -0.05451580882072449, 0.3182322680950165, 1.8111989498138428, 0.47864651679992676, -0.38575124740600586, 0.8251749277114868, 1.165937066078186, 0.5951868295669556, -0.7374355792999268, 0.16797661781311035, -0.6525783538818359, 0.2267986536026001, -1.1269315481185913, 0.3197428584098816, -2.9044809341430664, 0.5775887966156006, -0.11586598306894302, -0.172617107629776, 0.09121116995811462, -1.2349534034729004, 1.1156244277954102, 2.5543341636657715, -1.2564221620559692, 0.47576582431793213, 0.2172359824180603, 1.2602312564849854, -1.680523157119751, 0.4299014210700989, -0.4334445297718048, 2.059109687805176, 0.2064209133386612, 0.996037483215332, -0.5400359630584717, -2.220574140548706, 0.5958319306373596, -1.3002833127975464, -1.211127758026123, 0.6489474773406982, -0.9001660943031311, -0.0860685408115387, -1.3862733840942383, -0.14849218726158142, -0.7761074304580688, -1.3083128929138184, 0.6815356016159058, 0.14167681336402893, 0.4217939078807831, -0.47708627581596375, 0.1870221346616745, -2.208432197570801, -1.3585553169250488, -0.30829858779907227, -0.9094058871269226, 0.310893177986145, -0.4639514982700348, 0.7483350038528442, -0.21350768208503723, 0.14356879889965057, 0.29163944721221924, 1.3561322689056396, 3.3883821964263916, 0.21867236495018005, 0.4598346948623657, -0.22370044887065887, -0.831071138381958, 1.4656316041946411, 0.9866546988487244, -0.0363679900765419, -0.6938859820365906, -0.8939995765686035, 1.3185795545578003, 1.966717004776001, 0.9993525743484497, 0.07788652926683426, -0.8897209763526917, -0.5324978828430176, -0.21808898448944092, 0.20386545360088348, 0.4279947280883789, 0.8580134510993958, -0.023829329758882523, 0.1146523654460907, 1.4439926147460938, 1.3514926433563232, -0.5362935662269592, 0.3734489381313324, -0.670028805732727, -0.3708914816379547, 0.5104407668113708, 0.3079519271850586, -0.05116092041134834, 0.2636069655418396, -0.9086502194404602, -0.1588977575302124, -0.5074357986450195, -0.9854965806007385, -0.8001093864440918, -0.29831162095069885, -0.34840503334999084, 1.7531383037567139, 0.1042359322309494, -0.5914596319198608, -0.15721480548381805, -0.7984798550605774, -0.06011178717017174, -1.075315237045288, 0.25209110975265503, -0.09155761450529099, -0.08644766360521317, 0.07558822631835938, 1.8421999216079712, -1.1556003093719482, -2.3138535022735596, 0.22555583715438843, 0.20685485005378723, -0.24241039156913757, 0.21881605684757233, 1.4806036949157715, 0.4535137116909027, 1.4687870740890503, 1.466991662979126, 0.997342586517334, -0.8679981231689453, -1.3866405487060547, 0.6531334519386292, 0.9921605587005615, -1.503039002418518, 0.7854821681976318, 0.013405613601207733, -0.5778374671936035, 0.7933934926986694, 1.1867694854736328, 0.5719077587127686, -1.9469572305679321, 0.8160130977630615, -1.0486828088760376, 0.9014492034912109, 0.7064951062202454, 0.5852119326591492, 0.33504363894462585, 0.8134380578994751, -1.2260184288024902, -1.1357499361038208, -0.7765412926673889, -0.6621588468551636, 1.9569131135940552, -0.29678478837013245, 0.6106409430503845, -0.04706993326544762, -1.3097270727157593, 0.005971275735646486, 0.6878079771995544, 0.4072069823741913, -0.2985984981060028, 0.7915578484535217, -0.665715217590332, -1.2594965696334839, -1.4845577478408813, -0.42124271392822266, -1.0286285877227783, -0.8994919657707214, 1.2146955728530884, 0.8926863670349121, 0.1684865951538086, 1.7666133642196655, 0.5822639465332031, 0.2640431821346283, -2.6656625270843506, 0.9283899664878845, 0.3133431375026703, -0.028172163292765617, 0.8670149445533752, 0.43268999457359314, 1.009867548942566, 0.04724940285086632, 0.4163294732570648, -2.347862482070923, 2.341630458831787, -0.34442946314811707, 0.6233525276184082, -0.04292179271578789, 0.013181556016206741, 1.1435290575027466, 0.4704379737377167, 0.5703150629997253, -1.0386828184127808, 0.7800722718238831, -0.43950045108795166, 1.2725088596343994, 0.9465638399124146, -0.793635368347168, -0.009667320176959038, 1.372480034828186, 0.5765173435211182, -0.5421661138534546, -0.9247804284095764, -0.8753480315208435, 0.8899837732315063, 1.8010106086730957, -0.06541771441698074, 0.06543383747339249, 0.7705714702606201, 0.4929572641849518, -1.3120269775390625, 0.15792986750602722, -0.7533141374588013, -0.7415446639060974, 1.4951233863830566, 1.9664241075515747, -0.054403334856033325, -0.12892091274261475, -0.7321482300758362, -1.2858103513717651, 0.7651650309562683, -0.026778748258948326, 0.17791743576526642, 0.6692942976951599, -0.5826499462127686, 1.0369244813919067, 0.9000146985054016, 0.8810045123100281, 0.12070519477128983, 0.20250453054904938, 0.4100082218647003, -0.2484678030014038, -1.0600506067276, -0.1240113154053688, -1.0607023239135742, -2.491276264190674, 0.37983736395835876, -0.2540796399116516, -1.4455074071884155, 0.021328775212168694, -1.0984148979187012, 0.920075535774231, -0.41728463768959045, -0.9863548278808594, -1.6697369813919067, 0.0747404545545578, -0.14691875874996185, 0.8510463833808899, -1.573813557624817, -0.09517471492290497, 1.2450107336044312, 0.8159777522087097, -0.7125148177146912, 1.0630117654800415, 0.2204224318265915, 1.0046664476394653, 0.7620702385902405, -0.3698278069496155, 0.3223881125450134, -0.026747284457087517, -1.4179519414901733, 0.6275753974914551, 1.1509536504745483, 0.14692872762680054, 1.3606209754943848, -0.5818654894828796, -0.07394549250602722, 0.33117830753326416, -0.3237055242061615, -0.44699665904045105, -0.46275004744529724, 0.7646603584289551, 0.13854733109474182, -0.8041666746139526, 0.12191777676343918, -0.2058805376291275, -0.3371559977531433, 0.14795975387096405, -1.538068413734436, -0.24398808181285858, -0.5419571399688721, -0.7141717672348022, -1.1499059200286865, 0.022565579041838646, 1.4253326654434204, -0.6735626459121704, -0.24625186622142792, 0.5642759203910828, 0.5237619280815125, 0.5324205756187439, 0.6733726263046265, -0.6678759455680847, -0.34433770179748535, -0.12723545730113983, -0.2858723998069763, 0.34665408730506897, 1.3454482555389404, -0.25561127066612244, -0.9427064657211304, 0.8295639753341675, -0.2851705551147461, -0.0015790462493896484, 1.9630206823349, 0.17245732247829437, -0.9260579943656921, 0.2691360414028168, -0.7525020241737366, 2.107490062713623, 1.571324110031128, 1.4680120944976807, -0.17095907032489777, -0.9615190029144287, 0.6350064277648926, -0.0259432103484869, -0.3302845060825348, 0.8687840104103088, 0.4771583378314972, -0.2346120923757553, -1.4401084184646606, 0.7195660471916199, 1.1592051982879639, -0.7934886813163757, -0.8083735108375549, 0.05439849570393562, -0.8109914064407349, 0.9847548604011536, 0.6723609566688538, 0.44707560539245605, 0.2130165696144104, 1.5690014362335205, 0.6433725953102112, -0.5534771084785461, 0.40738415718078613, 0.5018491148948669, -0.1677151620388031, -2.078903913497925, -1.077288031578064, 0.3987198770046234, -0.43417826294898987, -1.5985167026519775, 1.2968415021896362, -1.2039055824279785, -0.820400595664978, 0.5408503413200378, 0.24945127964019775, 1.6211507320404053, 0.28936606645584106, 1.499833106994629, 2.019261121749878, 1.0022616386413574, 0.3394691050052643, 1.3767027854919434, -0.13811972737312317, -0.3778165876865387, 1.8295167684555054, -0.34574973583221436, 0.35282012820243835, 1.092669129371643, -0.5478967428207397, -1.080198049545288, -0.579525351524353, -1.0835012197494507, -0.5281757116317749, 1.1082013845443726, 0.15874533355236053, -1.067624568939209, 0.15713828802108765, 1.4720228910446167, 0.18436351418495178, -0.32765236496925354, 0.5039326548576355, 0.47026726603507996, -0.774178683757782, 0.06005244702100754, -0.8689239621162415, 0.5284073948860168, -0.1746562123298645, -0.3532729148864746, 0.5098282694816589, 0.42658987641334534, 1.2318201065063477, -0.04773841053247452, 0.1660277098417282, 1.2116773128509521, -1.4982833862304688, 1.4170955419540405, -0.6176180839538574, 0.14721716940402985, -2.3608205318450928, 1.4874628782272339, -0.6285098195075989, 1.8471388816833496, -2.607271671295166, 0.4397535026073456, -0.8366725444793701, -0.4115062952041626, 0.3558078706264496, -0.2985495328903198, 0.10177185386419296, -0.2489812821149826, -1.177051305770874, -0.05908488109707832, -0.6750575304031372, 0.5474246144294739, 1.1420341730117798, 1.1700210571289062, -1.0046641826629639, -0.22603921592235565, -1.6941986083984375, -0.17077605426311493, -0.7059342265129089, 0.31514236330986023, -2.1167421340942383, -0.3216477930545807, -1.8731826543807983, -2.3335862159729004, -1.3269648551940918, -0.731423020362854, 1.2137770652770996, 0.3468174934387207, -0.8828116059303284, 1.2998608350753784, -0.4418275058269501, -1.769611120223999, 1.0653510093688965, -2.184553861618042 ]
https://github.com/huggingface/datasets/issues/5945
Failing to upload dataset to the hub
Alternatively you can save your dataset in parquet files locally and upload them to the hub manually ```python from tqdm import tqdm num_shards = 60 for index in tqdm(range(num_shards)): ds.shard(num_shards=num_shards, index=index, contiguous=True).to_parquet(f"{index:05d}.parquet") ````
### Describe the bug Trying to upload a dataset of hundreds of thousands of audio samples (the total volume is not very large, 60 gb) to the hub with push_to_hub, it doesn't work. From time to time one piece of the data (parquet) gets pushed and then I get RemoteDisconnected even though my internet is stable. Please help. I'm trying to upload the dataset for almost a week. Thanks ### Steps to reproduce the bug not relevant ### Expected behavior Be able to upload thedataset ### Environment info python: 3.9
103
33
Failing to upload dataset to the hub ### Describe the bug Trying to upload a dataset of hundreds of thousands of audio samples (the total volume is not very large, 60 gb) to the hub with push_to_hub, it doesn't work. From time to time one piece of the data (parquet) gets pushed and then I get RemoteDisconnected even though my internet is stable. Please help. I'm trying to upload the dataset for almost a week. Thanks ### Steps to reproduce the bug not relevant ### Expected behavior Be able to upload thedataset ### Environment info python: 3.9 Alternatively you can save your dataset in parquet files locally and upload them to the hub manually ```python from tqdm import tqdm num_shards = 60 for index in tqdm(range(num_shards)): ds.shard(num_shards=num_shards, index=index, contiguous=True).to_parquet(f"{index:05d}.parquet") ````
[ -1.177137017250061, -1.0190166234970093, -0.8515946269035339, 1.5512192249298096, -0.15509049594402313, -1.2829962968826294, 0.11301140487194061, -1.0518345832824707, 1.5453767776489258, -0.8601767420768738, 0.4678318500518799, -1.6691434383392334, 0.08537034690380096, -0.6075124144554138, -0.7332109212875366, -0.9129444360733032, -0.46646612882614136, -0.6951006650924683, 1.0634373426437378, 2.5269858837127686, 1.1586518287658691, -1.3432722091674805, 2.6819908618927, 0.7693946361541748, -0.21114075183868408, -1.0471398830413818, 0.5688983798027039, 0.060130152851343155, -1.2312984466552734, -0.5456067323684692, -0.8926095366477966, -0.09341283142566681, -0.48125678300857544, -0.5521740317344666, -0.005154087208211422, 0.4949982166290283, -0.2528791129589081, -0.5176020264625549, -0.5880675315856934, -0.8004007935523987, 0.41713666915893555, -0.3938893675804138, 1.0013881921768188, -0.42198196053504944, 1.9069737195968628, -0.5192779302597046, 0.4491806924343109, 0.6608979105949402, 1.453321099281311, 0.15334159135818481, -0.10022994875907898, 0.3339284062385559, 0.421186238527298, -0.08565279841423035, 0.44836321473121643, 1.0169116258621216, 0.616982638835907, 0.5746152997016907, 0.7427835464477539, -2.161468029022217, 1.4388269186019897, -1.1176152229309082, 0.31860122084617615, 1.3553646802902222, -0.9984357357025146, 0.39325693249702454, -1.6704108715057373, -0.06720469892024994, 0.5408374667167664, -2.1926658153533936, 0.21513457596302032, -1.2397390604019165, -0.5102872252464294, 1.0279102325439453, 0.5212191343307495, -1.2961013317108154, 0.008352327160537243, -0.4634467661380768, 1.0587610006332397, 0.41993677616119385, 1.0816805362701416, -1.654288411140442, -0.06173885613679886, -0.373064249753952, -0.08708672225475311, -1.4444947242736816, -1.4013149738311768, 0.4914681017398834, 0.6049360632896423, 0.5741084218025208, -0.06819351017475128, 1.0251353979110718, -1.071863055229187, 0.7184802889823914, -0.8785170912742615, -1.587241768836975, -1.368375301361084, -2.3155152797698975, -2.293219566345215, 0.7505231499671936, -0.409541517496109, -0.5981954336166382, 2.0373005867004395, -1.0922918319702148, -1.7876032590866089, 1.2218538522720337, 0.25058048963546753, -0.011299599893391132, 2.408487319946289, 0.1371564269065857, -0.6002854704856873, 0.35702455043792725, -0.6518632769584656, 0.8318970799446106, -0.6353994011878967, 1.4256659746170044, 0.34851622581481934, -1.1569801568984985, 1.6043621301651, -0.37902161478996277, 0.6214169263839722, -0.7005269527435303, -0.5134747624397278, -0.871806263923645, 0.36698079109191895, 1.8841379880905151, -0.2870655655860901, 1.5183734893798828, -0.35523298382759094, -1.5230668783187866, -1.6572355031967163, 0.9073986411094666, 0.4763689339160919, -0.8125287294387817, 0.20914439857006073, -0.35318002104759216, 0.0749545618891716, -0.12166985124349594, 1.1256777048110962, 1.2751754522323608, 0.5951006412506104, -0.35659778118133545, -0.897352933883667, 0.3083880841732025, -0.07080212980508804, -0.6933314800262451, -1.8123106956481934, -0.3898836672306061, 0.09858548641204834, 0.6413719058036804, -1.1231234073638916, 1.7162071466445923, 0.8802494406700134, 1.8786588907241821, 1.0621377229690552, -0.2688293755054474, 1.3533084392547607, 0.05685952678322792, 1.848892092704773, -0.5497816801071167, 0.7872949838638306, -0.3866974115371704, -1.1076223850250244, 0.7414263486862183, -0.4383777976036072, -2.0556139945983887, -0.8443279266357422, -0.6742026805877686, -0.2904348075389862, -0.7739347815513611, 1.0273969173431396, -0.4245457947254181, -1.2689324617385864, 0.2881917357444763, -0.7501011490821838, 0.2171316295862198, -1.1826459169387817, 0.4481647312641144, 0.6853954195976257, -0.5833818316459656, 0.005723212845623493, -0.25998321175575256, -1.184450626373291, -0.4061530828475952, 0.2559405565261841, 1.8662346601486206, -0.8558220267295837, 0.894463837146759, 0.9608945250511169, -0.6471847295761108, -0.0003135818988084793, 0.3528299033641815, -0.24191182851791382, 0.8792479038238525, -1.0465648174285889, -0.4106499254703522, 1.317285180091858, -0.2747463583946228, -0.5777490735054016, 1.5972849130630493, 0.7959827184677124, -0.9336674213409424, -0.12443681061267853, -0.11805931478738785, -0.8800309896469116, 0.06991410255432129, -1.6795002222061157, -0.024256255477666855, 0.38369834423065186, -1.4860749244689941, -0.42852917313575745, -0.13555437326431274, 1.2625411748886108, -0.1486564725637436, 1.509249210357666, -0.43613165616989136, -0.2576664686203003, -0.3100081980228424, -0.3633641004562378, 0.16361883282661438, -0.08311496675014496, -0.5781164765357971, 0.2019781768321991, -0.7047275304794312, 0.3936524987220764, 1.3830841779708862, 0.38993117213249207, 0.11442393809556961, 0.6676145792007446, 1.0105937719345093, 0.25625550746917725, -0.0479973629117012, -0.8373875021934509, -1.6232141256332397, 1.9790323972702026, -1.427769422531128, 2.0845947265625, 0.7880700826644897, -0.04572364315390587, -1.716881513595581, -1.7902708053588867, 1.36503267288208, 1.1743136644363403, 2.270918130874634, 0.6674993634223938, 0.3958791196346283, -0.9615987539291382, -0.6457535624504089, 0.32266345620155334, -1.076850175857544, -0.7079218626022339, 0.058174017816782, 2.3128392696380615, 1.7948700189590454, -0.4545137882232666, -0.11955513060092926, -1.1747868061065674, 1.3294756412506104, -0.12900710105895996, 0.19859819114208221, 1.973930835723877, -0.308922678232193, -1.071836233139038, 1.1574668884277344, -2.3447494506835938, 0.04082508012652397, 1.994211196899414, 0.2857930064201355, 0.10168169438838959, -1.4736641645431519, -0.6353947520256042, -0.23378099501132965, -0.24164429306983948, -1.2409265041351318, 0.5336439609527588, -0.3384377658367157, -0.761203408241272, -1.3830232620239258, 0.12110147625207901, -1.1114671230316162, -1.513301968574524, 0.3104889392852783, 1.7677147388458252, 1.97174870967865, -0.6741827130317688, 1.6644970178604126, -0.21263597905635834, 0.13648204505443573, 1.2545939683914185, 1.2650206089019775, 3.150050640106201, 1.9347838163375854, -1.3311539888381958, 0.7006300687789917, -0.06812717765569687, -0.5009749531745911, 1.217193365097046, -1.1745870113372803, 1.3966907262802124, -0.05468500405550003, -1.1768262386322021, -1.3074746131896973, 0.909838080406189, 0.47010841965675354, 0.06086423620581627, -0.4803193509578705, 1.2948495149612427, -0.003284068312495947, 1.3164371252059937, 0.505394697189331, -0.3873608708381653, 0.6382725238800049, -0.45845186710357666, -0.4854988157749176, 1.5988982915878296, 0.2845492660999298, -1.404415488243103, -2.2775893211364746, -0.1973164975643158, -0.7726696133613586, 0.01077068317681551, -0.6556394696235657, -0.9719324111938477, 1.689644694328308, 0.36519744992256165, -1.3216726779937744, -0.35503050684928894, -0.3424907922744751, -0.6398366093635559, 2.724484443664551, -1.4923700094223022, -0.33006739616394043, -1.0716955661773682, -0.624705970287323, 1.6117664575576782, -1.305486798286438, -0.21347789466381073, -1.0026503801345825, -0.5479834675788879, -1.2468481063842773, -0.5800620317459106, 0.011548674665391445, -1.0267481803894043, 0.8512601256370544, 0.12477121502161026, -1.1281709671020508, -0.26022931933403015, -0.8039275407791138, 0.8465883135795593, -0.06734216958284378, 0.3526248037815094, 1.8499294519424438, 0.5147820711135864, -0.38183391094207764, 0.7232272028923035, 1.143744707107544, 0.6188291907310486, -0.6937130689620972, 0.21825550496578217, -0.6502891778945923, 0.1976168006658554, -1.2224228382110596, 0.30612078309059143, -2.84999680519104, 0.5886937379837036, -0.10220638662576675, -0.10676882416009903, 0.02798468992114067, -1.2820590734481812, 1.0376002788543701, 2.6240274906158447, -1.2104263305664062, 0.4759276509284973, 0.21082419157028198, 1.215743064880371, -1.641592025756836, 0.42238080501556396, -0.4364837408065796, 2.051257848739624, 0.2676919102668762, 1.1102901697158813, -0.41469061374664307, -2.25537371635437, 0.66774582862854, -1.2777721881866455, -1.2051541805267334, 0.7425739765167236, -0.8725594282150269, -0.041396643966436386, -1.3877655267715454, -0.2181052565574646, -0.7741491794586182, -1.207558512687683, 0.7008493542671204, 0.19420242309570312, 0.3580913245677948, -0.4837196171283722, 0.2873809039592743, -2.223459482192993, -1.2504500150680542, -0.2680375576019287, -0.9391159415245056, 0.33744439482688904, -0.38067421317100525, 0.7150974273681641, -0.21997633576393127, 0.11189890652894974, 0.335100382566452, 1.418337106704712, 3.4584813117980957, 0.24946200847625732, 0.44990381598472595, -0.20342126488685608, -0.883989691734314, 1.4309055805206299, 0.9023690819740295, -0.029250245541334152, -0.6875507831573486, -0.9853856563568115, 1.2491203546524048, 1.90364408493042, 0.950513482093811, 0.0419296957552433, -0.8069873452186584, -0.6797866225242615, -0.2287389636039734, 0.11453429609537125, 0.42773979902267456, 0.8064994812011719, 0.04827232286334038, 0.06861479580402374, 1.4152129888534546, 1.3136316537857056, -0.5517750978469849, 0.3370817303657532, -0.7770206928253174, -0.37548166513442993, 0.5255004167556763, 0.29527875781059265, -0.04997292906045914, 0.27493610978126526, -0.9047636389732361, -0.1646030694246292, -0.4664260447025299, -1.0328012704849243, -0.7733817100524902, -0.4579896926879883, -0.36915308237075806, 1.6925101280212402, 0.1599966138601303, -0.5725253820419312, -0.1663341075181961, -0.85020512342453, -0.1431283950805664, -1.138033151626587, 0.24829959869384766, -0.04416888579726219, -0.13955655694007874, 0.018315166234970093, 1.8538709878921509, -1.0081740617752075, -2.1698317527770996, 0.3011241853237152, 0.175834521651268, -0.30179715156555176, 0.22601228952407837, 1.5275999307632446, 0.5020158290863037, 1.4057999849319458, 1.382643222808838, 0.9655572175979614, -0.7564256191253662, -1.369277834892273, 0.6646668910980225, 1.0069888830184937, -1.6136717796325684, 0.8619674444198608, 0.08484737575054169, -0.513343095779419, 0.7194824814796448, 1.2293542623519897, 0.6092072129249573, -1.9551756381988525, 0.7154998779296875, -0.9882280826568604, 0.8029730319976807, 0.7253473997116089, 0.5483841896057129, 0.3070991039276123, 0.8154135346412659, -1.2396513223648071, -1.1382042169570923, -0.7684911489486694, -0.6851969361305237, 1.933955192565918, -0.2849007844924927, 0.6375405788421631, -0.13813820481300354, -1.3391441106796265, -0.07876133173704147, 0.7095689177513123, 0.2990927994251251, -0.3545285761356354, 0.8329213857650757, -0.6318060159683228, -1.2282499074935913, -1.474863052368164, -0.415086030960083, -1.0511860847473145, -0.9142172932624817, 1.1792398691177368, 0.8521331548690796, 0.14035119116306305, 1.7942101955413818, 0.5889691114425659, 0.23725886642932892, -2.6112608909606934, 0.8715562224388123, 0.19161181151866913, 0.011682526208460331, 0.920697808265686, 0.3477582037448883, 1.0089809894561768, 0.052831653505563736, 0.47371551394462585, -2.423788547515869, 2.3274714946746826, -0.33474159240722656, 0.5930154919624329, -0.057986754924058914, -0.12931600213050842, 1.1325236558914185, 0.49781274795532227, 0.5444487929344177, -1.0394963026046753, 0.6574012637138367, -0.5411210656166077, 1.228268027305603, 0.9028740525245667, -0.8448113799095154, -0.04443339630961418, 1.4073899984359741, 0.4976983666419983, -0.5418498516082764, -0.8771602511405945, -1.0517009496688843, 0.8982467651367188, 1.7674891948699951, -0.041412387043237686, 0.07144477963447571, 0.8440737128257751, 0.5982812643051147, -1.2664713859558105, 0.14258338510990143, -0.8077826499938965, -0.7095600962638855, 1.612464189529419, 2.007735013961792, -0.08444014936685562, -0.1365852952003479, -0.7492814660072327, -1.2141199111938477, 0.7787067890167236, -0.029422666877508163, 0.12873226404190063, 0.6034610867500305, -0.6629381775856018, 0.9861875772476196, 0.9421830177307129, 0.9131297469139099, 0.21488812565803528, 0.22977110743522644, 0.42115259170532227, -0.3000377416610718, -1.0602437257766724, -0.1509312242269516, -1.1282747983932495, -2.5832433700561523, 0.46275264024734497, -0.22315266728401184, -1.432286262512207, 0.03129345551133156, -1.0990705490112305, 0.9445500373840332, -0.5447822213172913, -0.9991579651832581, -1.6503022909164429, 0.08207174390554428, -0.07672550529241562, 0.9311298727989197, -1.5594815015792847, -0.07535332441329956, 1.1965219974517822, 0.8358401656150818, -0.6540942788124084, 1.079842209815979, 0.2729990482330322, 1.0874242782592773, 0.7751282453536987, -0.3639204502105713, 0.4308241307735443, -0.03573181480169296, -1.3696250915527344, 0.5814051032066345, 1.1202034950256348, 0.12485983222723007, 1.4666920900344849, -0.5546094179153442, 0.05106876417994499, 0.3429734408855438, -0.553510308265686, -0.42754653096199036, -0.4316558837890625, 0.7697937488555908, 0.15737119317054749, -0.8211215138435364, 0.07352613657712936, -0.11323913931846619, -0.29669061303138733, 0.1292063444852829, -1.4915919303894043, -0.20469598472118378, -0.416599839925766, -0.7056983113288879, -1.192094087600708, -0.04539824649691582, 1.42424738407135, -0.7240882515907288, -0.21917390823364258, 0.515941858291626, 0.4544709324836731, 0.5219742059707642, 0.6648949384689331, -0.6883814930915833, -0.33136186003685, -0.16549478471279144, -0.32133960723876953, 0.32306739687919617, 1.315709114074707, -0.2139798104763031, -0.8499047160148621, 0.857843816280365, -0.25833049416542053, 0.001806202344596386, 1.89784836769104, 0.1774885356426239, -0.8355920910835266, 0.22233685851097107, -0.726578414440155, 2.054335594177246, 1.64946711063385, 1.4342732429504395, -0.12559714913368225, -0.9957759380340576, 0.6516659259796143, -0.19562634825706482, -0.3272381126880646, 0.820059597492218, 0.4939470887184143, -0.1801484078168869, -1.376070261001587, 0.7701486349105835, 1.2172341346740723, -0.8404791355133057, -0.7929283380508423, 0.04659371078014374, -0.8011135458946228, 0.9897385835647583, 0.5932444930076599, 0.47617003321647644, 0.23808971047401428, 1.5764228105545044, 0.6397096514701843, -0.4974566400051117, 0.44638028740882874, 0.4687609374523163, -0.1860780119895935, -2.1132092475891113, -1.0866698026657104, 0.3567303419113159, -0.4643489122390747, -1.645166039466858, 1.2910935878753662, -1.1843751668930054, -0.8291038870811462, 0.5693204998970032, 0.17791025340557098, 1.562146544456482, 0.3288811445236206, 1.5392471551895142, 1.9638398885726929, 0.9187870621681213, 0.2902190387248993, 1.3477606773376465, -0.04406069964170456, -0.4384596049785614, 1.8469078540802002, -0.34714657068252563, 0.3718513548374176, 1.1612893342971802, -0.3689514994621277, -1.0583009719848633, -0.6332429647445679, -1.1091326475143433, -0.6398321986198425, 1.1547908782958984, 0.15358483791351318, -1.0744105577468872, 0.12879051268100739, 1.475504755973816, 0.21406905353069305, -0.29444268345832825, 0.5451688766479492, 0.3906794488430023, -0.7829023003578186, 0.04800134897232056, -0.8321889042854309, 0.5685036182403564, -0.22258414328098297, -0.3795080780982971, 0.43487733602523804, 0.41421058773994446, 1.3046088218688965, -0.08035240322351456, 0.17585104703903198, 1.1721854209899902, -1.512481451034546, 1.4958090782165527, -0.603498101234436, 0.23833441734313965, -2.3366260528564453, 1.42661452293396, -0.726010799407959, 1.9198753833770752, -2.6751015186309814, 0.4612315595149994, -0.7479234933853149, -0.48129621148109436, 0.3383599817752838, -0.3651779890060425, 0.07592255622148514, -0.23251812160015106, -1.1772198677062988, -0.07662325352430344, -0.6709486246109009, 0.5658732652664185, 1.1640511751174927, 1.2742279767990112, -1.124395489692688, -0.2630133628845215, -1.7307844161987305, -0.17969563603401184, -0.7180720567703247, 0.39279571175575256, -2.103391170501709, -0.19451627135276794, -1.9147796630859375, -2.3578803539276123, -1.3318569660186768, -0.7574502825737, 1.0920268297195435, 0.28318101167678833, -0.8272159099578857, 1.1724178791046143, -0.4248197674751282, -1.7826712131500244, 1.0317418575286865, -2.143373966217041 ]
https://github.com/huggingface/datasets/issues/5941
Load Data Sets Too Slow In Train Seq2seq Model
already did,but not useful for step Generating train split,it works in step "Resolving data files" & "Downloading data files"
### Describe the bug step 'Generating train split' in load_dataset is too slow: ![image](https://github.com/huggingface/datasets/assets/19569322/d9b08eee-95fe-4741-a346-b70416c948f8) ### Steps to reproduce the bug Data: own data,16K16B Mono wav Oficial Script:[ run_speech_recognition_seq2seq.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py) Add Code: if data_args.data_path is not None: print(data_args.data_path) raw_datasets = load_dataset("audiofolder", data_dir=data_args.data_path, cache_dir=model_args.cache_dir) raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000)) raw_datasets = raw_datasets["train"].train_test_split(test_size=0.005, shuffle=True) (change cache_dir to other path ,ex:/DATA/cache) ### Expected behavior load data fast,at least 1000+ `Generating train split: 387875 examples [32:24:45, 1154.83 examples/s]` ### Environment info - `transformers` version: 4.28.0.dev0 - Platform: Linux-5.4.0-149-generic-x86_64-with-debian-bullseye-sid - Python version: 3.7.16 - Huggingface_hub version: 0.13.2 - PyTorch version (GPU?): 1.13.1+cu116 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in>
104
19
Load Data Sets Too Slow In Train Seq2seq Model ### Describe the bug step 'Generating train split' in load_dataset is too slow: ![image](https://github.com/huggingface/datasets/assets/19569322/d9b08eee-95fe-4741-a346-b70416c948f8) ### Steps to reproduce the bug Data: own data,16K16B Mono wav Oficial Script:[ run_speech_recognition_seq2seq.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py) Add Code: if data_args.data_path is not None: print(data_args.data_path) raw_datasets = load_dataset("audiofolder", data_dir=data_args.data_path, cache_dir=model_args.cache_dir) raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000)) raw_datasets = raw_datasets["train"].train_test_split(test_size=0.005, shuffle=True) (change cache_dir to other path ,ex:/DATA/cache) ### Expected behavior load data fast,at least 1000+ `Generating train split: 387875 examples [32:24:45, 1154.83 examples/s]` ### Environment info - `transformers` version: 4.28.0.dev0 - Platform: Linux-5.4.0-149-generic-x86_64-with-debian-bullseye-sid - Python version: 3.7.16 - Huggingface_hub version: 0.13.2 - PyTorch version (GPU?): 1.13.1+cu116 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in> already did,but not useful for step Generating train split,it works in step "Resolving data files" & "Downloading data files"
[ -1.2872120141983032, -0.934897780418396, -0.618711531162262, 1.4699480533599854, -0.1538279503583908, -1.258852481842041, 0.13311150670051575, -0.9876823425292969, 1.557150959968567, -0.7559544444084167, 0.30356916785240173, -1.6126487255096436, -0.007835671305656433, -0.5946030616760254, -0.7224470376968384, -0.8036127090454102, -0.4451872408390045, -0.751458466053009, 1.0766406059265137, 2.506357192993164, 1.298253059387207, -1.35751211643219, 2.7459075450897217, 0.7358030676841736, -0.2499530166387558, -1.0330251455307007, 0.4788162112236023, 0.027637585997581482, -1.356276273727417, -0.38808590173721313, -0.9371278882026672, -0.09059043973684311, -0.5551401972770691, -0.47826167941093445, 0.04492080584168434, 0.4280957579612732, -0.24613972008228302, -0.3964453339576721, -0.5383574962615967, -0.7278078198432922, 0.49722984433174133, -0.3273123800754547, 0.8614057898521423, -0.25429949164390564, 1.7351034879684448, -0.6277558207511902, 0.5511161684989929, 0.7325748205184937, 1.3400793075561523, 0.1659657061100006, -0.022624172270298004, 0.40900740027427673, 0.3381764590740204, -0.03631346672773361, 0.5365176200866699, 1.231553554534912, 0.6713613867759705, 0.38896867632865906, 0.6574504375457764, -2.2290449142456055, 1.3333550691604614, -0.9010791778564453, 0.3188537061214447, 1.340482234954834, -0.9799560308456421, 0.3778601288795471, -1.7530080080032349, -0.12558051943778992, 0.5456269383430481, -2.2014360427856445, 0.309049129486084, -1.306250810623169, -0.5524742603302002, 1.0180416107177734, 0.36117246747016907, -1.2329950332641602, 0.06177675351500511, -0.533235490322113, 1.0897166728973389, 0.4048464596271515, 1.115334391593933, -1.6903787851333618, -0.08375146239995956, -0.24446624517440796, 0.08478009700775146, -1.2230615615844727, -1.617281198501587, 0.5351966023445129, 0.6322427988052368, 0.6873016953468323, -0.09203643351793289, 0.9827402234077454, -1.0795621871948242, 0.8397896885871887, -1.0537524223327637, -1.6464333534240723, -1.4621483087539673, -2.4177632331848145, -2.241490364074707, 0.7035589218139648, -0.46107617020606995, -0.5071345567703247, 2.141282558441162, -1.115308165550232, -1.7730975151062012, 1.1500152349472046, 0.2529502809047699, 0.024306338280439377, 2.3427987098693848, 0.2519780993461609, -0.7513156533241272, 0.539297878742218, -0.756851077079773, 0.712759256362915, -0.3132137060165405, 1.247327446937561, 0.44622594118118286, -1.0873507261276245, 1.518027424812317, -0.40157362818717957, 0.5572117567062378, -0.6421674489974976, -0.4570657014846802, -0.6832543015480042, 0.2655077576637268, 1.8695377111434937, -0.29444023966789246, 1.5335545539855957, -0.32622644305229187, -1.522836446762085, -1.5319945812225342, 0.8293558359146118, 0.5523529052734375, -0.7567470669746399, 0.11674744635820389, -0.4815731644630432, 0.14204850792884827, -0.0021813507191836834, 1.073354721069336, 1.2695101499557495, 0.6910464763641357, -0.41281163692474365, -0.9182060360908508, 0.16207516193389893, -0.05606662109494209, -0.6467106938362122, -1.808284044265747, -0.31694498658180237, 0.14827202260494232, 0.5966644883155823, -1.2189419269561768, 1.7835744619369507, 0.9355493783950806, 1.9322295188903809, 1.042578935623169, -0.34869471192359924, 1.4665626287460327, 0.04222877696156502, 1.8453904390335083, -0.49158963561058044, 0.6939458847045898, -0.33058542013168335, -1.2017351388931274, 0.8546613454818726, -0.33500754833221436, -2.097384452819824, -0.7102355360984802, -0.7061119675636292, -0.22033925354480743, -0.8588461875915527, 0.982944130897522, -0.2647269368171692, -1.414860486984253, 0.21725937724113464, -0.7979022264480591, 0.21575330197811127, -1.241072177886963, 0.23771630227565765, 0.7001640796661377, -0.5958285927772522, 0.05393492057919502, -0.25475940108299255, -1.2902265787124634, -0.4462575316429138, 0.3509780466556549, 1.821889042854309, -0.7401387691497803, 0.9771834015846252, 1.0655884742736816, -0.6455702781677246, 0.06551440805196762, 0.27586811780929565, -0.3172324299812317, 0.9108444452285767, -1.0995924472808838, -0.3951275646686554, 1.2007660865783691, -0.22187289595603943, -0.6305274963378906, 1.4019650220870972, 0.7733228802680969, -0.9963134527206421, -0.24082215130329132, -0.15408357977867126, -0.8651998043060303, 0.03650109842419624, -1.6193078756332397, -0.14205385744571686, 0.4308934807777405, -1.4628814458847046, -0.441550612449646, -0.18408186733722687, 1.4051357507705688, -0.12958049774169922, 1.4526461362838745, -0.3478196859359741, -0.11219616234302521, -0.38734138011932373, -0.4332624673843384, 0.19493259489536285, -0.19951887428760529, -0.5701998472213745, 0.18460504710674286, -0.8237733244895935, 0.28774064779281616, 1.44077467918396, 0.3668900728225708, 0.13458369672298431, 0.511610209941864, 1.0608348846435547, 0.3653579652309418, -0.1286575347185135, -0.8739575147628784, -1.6697571277618408, 2.036593198776245, -1.4582490921020508, 2.0776023864746094, 0.8077100515365601, -0.09151873737573624, -1.8080843687057495, -1.8892881870269775, 1.244550108909607, 1.1371558904647827, 2.410642623901367, 0.4423946142196655, 0.44863712787628174, -0.8218027949333191, -0.7151139378547668, 0.3298894762992859, -1.028464436531067, -0.7132699489593506, 0.13957396149635315, 2.411414384841919, 1.7495441436767578, -0.341147243976593, -0.18292810022830963, -0.950364351272583, 1.3317688703536987, -0.2218419462442398, 0.2628255784511566, 2.0026607513427734, -0.2205435037612915, -0.9981479048728943, 1.3636054992675781, -2.393894672393799, 0.2705218195915222, 2.0022189617156982, 0.26143044233322144, 0.1222347840666771, -1.328712821006775, -0.6434502601623535, -0.32092732191085815, -0.47212839126586914, -1.2475742101669312, 0.6181700229644775, -0.2960161864757538, -0.884361743927002, -1.3635181188583374, 0.07217762619256973, -1.1432594060897827, -1.7604541778564453, 0.37281009554862976, 1.8448877334594727, 2.109304189682007, -0.8062878251075745, 1.4664877653121948, -0.27903610467910767, 0.18845608830451965, 1.148047924041748, 1.320603370666504, 3.115849018096924, 1.888176441192627, -1.358797311782837, 0.6914328336715698, -0.14161153137683868, -0.4554130434989929, 1.1428085565567017, -1.1894395351409912, 1.2701696157455444, -0.20392553508281708, -1.320220947265625, -1.232358694076538, 1.1162396669387817, 0.4741016924381256, 0.01422239001840353, -0.5078913569450378, 1.1664997339248657, 0.08078660815954208, 1.3636425733566284, 0.6434032320976257, -0.3168923258781433, 0.5705358386039734, -0.3818224370479584, -0.5370059609413147, 1.522160291671753, 0.10308872163295746, -1.5674781799316406, -2.317593812942505, -0.24361519515514374, -0.9137371778488159, -0.026656709611415863, -0.7176522612571716, -0.9651708006858826, 1.5902878046035767, 0.4016948342323303, -1.2643356323242188, -0.2890323996543884, -0.269729346036911, -0.5242224335670471, 2.7116270065307617, -1.3659950494766235, -0.1582638919353485, -0.9811223149299622, -0.5946539044380188, 1.6086562871932983, -1.1920539140701294, -0.282564640045166, -1.0514103174209595, -0.6298952102661133, -1.2216284275054932, -0.5039239525794983, 0.022182468324899673, -0.9573028087615967, 0.7798750996589661, 0.09949013590812683, -1.1888304948806763, -0.3076121509075165, -0.9239320755004883, 0.9679144620895386, -0.16221456229686737, 0.1660352200269699, 1.7839388847351074, 0.3592170178890228, -0.38427895307540894, 0.7482476830482483, 1.2024353742599487, 0.635219156742096, -0.6147665977478027, 0.05804242566227913, -0.6549218893051147, 0.32167449593544006, -1.2931931018829346, 0.26791712641716003, -2.9150915145874023, 0.7157313823699951, 0.002610132098197937, -0.11477707326412201, -0.07625491172075272, -1.328197956085205, 1.1222269535064697, 2.5481932163238525, -1.1824932098388672, 0.5511454343795776, 0.36942657828330994, 1.0543224811553955, -1.6180154085159302, 0.19417697191238403, -0.5253562927246094, 2.090566873550415, 0.193594828248024, 1.3086751699447632, -0.4780731201171875, -2.258925199508667, 0.6884936690330505, -1.2474913597106934, -1.0702916383743286, 0.7913569211959839, -0.8694380521774292, 0.2477782815694809, -1.3713926076889038, -0.22826336324214935, -0.9198428988456726, -1.1733677387237549, 0.5642306208610535, 0.11994718760251999, 0.4966524541378021, -0.5813882350921631, 0.2817838191986084, -2.194220781326294, -1.310469627380371, -0.1399165540933609, -0.953426718711853, 0.5058435201644897, -0.36711251735687256, 0.6489760875701904, -0.10392186045646667, -0.012583348900079727, 0.3200773298740387, 1.425062894821167, 3.348902940750122, 0.17867997288703918, 0.2607749104499817, -0.14565399289131165, -0.9828121066093445, 1.4243673086166382, 0.919276773929596, -0.15808933973312378, -0.6199792623519897, -0.9899749159812927, 1.2616958618164062, 1.9720720052719116, 1.0648143291473389, 0.011357919313013554, -0.9281324148178101, -0.7610322833061218, 0.058475006371736526, 0.24010302126407623, 0.5570154190063477, 0.9580496549606323, 0.03924066200852394, 0.07550767809152603, 1.5346007347106934, 1.1892962455749512, -0.43093469738960266, 0.32836124300956726, -0.8890161514282227, -0.497100830078125, 0.40168747305870056, 0.3191007971763611, 0.02503298595547676, 0.3814679682254791, -1.0660029649734497, -0.27259647846221924, -0.3951101005077362, -0.870603621006012, -0.7669193148612976, -0.3943912386894226, -0.4414426386356354, 1.5976999998092651, 0.054374102503061295, -0.414689302444458, 0.008726210333406925, -0.7858542203903198, -0.1634073555469513, -1.0641639232635498, 0.3790653645992279, -0.16116963326931, -0.015127855353057384, -0.19577671587467194, 1.683121681213379, -0.9443024396896362, -2.146357774734497, 0.24180860817432404, 0.2364765703678131, -0.34849637746810913, 0.15678222477436066, 1.6982247829437256, 0.59450364112854, 1.3568195104599, 1.347369909286499, 0.9591823220252991, -0.6092302203178406, -1.2142114639282227, 0.7601722478866577, 0.9713688492774963, -1.451036810874939, 0.8226678967475891, -0.16836580634117126, -0.5706167817115784, 0.6747806072235107, 1.3219503164291382, 0.4895559847354889, -1.9963947534561157, 0.8853014707565308, -0.9692763090133667, 0.8293445706367493, 0.7204437255859375, 0.7075962424278259, 0.22014036774635315, 0.8482838869094849, -1.3107045888900757, -1.1027963161468506, -0.6345177888870239, -0.6905134320259094, 1.9257999658584595, -0.35937726497650146, 0.5690427422523499, -0.21731410920619965, -1.2679177522659302, -0.02208375558257103, 0.7179283499717712, 0.24819765985012054, -0.5069178342819214, 0.8375647068023682, -0.5723982453346252, -1.0881880521774292, -1.2874131202697754, -0.3522525727748871, -0.984049379825592, -0.9052618741989136, 0.9778151512145996, 0.7396761178970337, 0.4218214154243469, 1.8622539043426514, 0.6477028727531433, 0.287272185087204, -2.6411144733428955, 0.9047034978866577, 0.25647053122520447, -0.04837382957339287, 0.8421645760536194, 0.22246654331684113, 1.0553324222564697, 0.010959315113723278, 0.5621150135993958, -2.4150478839874268, 2.256239891052246, -0.17720988392829895, 0.6745415329933167, -0.06294335424900055, -0.1052854061126709, 1.1101744174957275, 0.5835867524147034, 0.5926541686058044, -1.1273044347763062, 0.79466712474823, -0.5272727608680725, 1.2184139490127563, 0.8426498174667358, -0.8943607211112976, 0.021112583577632904, 1.3564770221710205, 0.4069463610649109, -0.5115596055984497, -0.9262232780456543, -0.9514636993408203, 0.9552031755447388, 1.750400424003601, -0.055354733020067215, 0.04015573114156723, 0.839515745639801, 0.7362446784973145, -1.2835205793380737, 0.027859505265951157, -0.6180985569953918, -0.6659460663795471, 1.6711968183517456, 2.088031053543091, -0.12964141368865967, -0.18194450438022614, -0.6338878870010376, -1.303842544555664, 0.8384582996368408, -0.07390040159225464, 0.10101436823606491, 0.6645351052284241, -0.6242982149124146, 1.1197348833084106, 0.720546305179596, 0.985681414604187, 0.11160033196210861, 0.18774697184562683, 0.3229367136955261, -0.3201107382774353, -1.2474414110183716, -0.3361547887325287, -1.068857192993164, -2.462062120437622, 0.35195037722587585, -0.21624042093753815, -1.4356273412704468, 0.04545198753476143, -1.0675846338272095, 0.8355642557144165, -0.5662575960159302, -1.0827149152755737, -1.4654148817062378, 0.23507878184318542, -0.12570935487747192, 0.8570670485496521, -1.616750717163086, -0.10963122546672821, 1.1908551454544067, 0.8322780728340149, -0.552435576915741, 0.9907278418540955, 0.19606879353523254, 0.911194920539856, 0.8608183860778809, -0.36574119329452515, 0.5596340894699097, 0.21595346927642822, -1.4133007526397705, 0.48768100142478943, 1.296494960784912, 0.19464798271656036, 1.4918811321258545, -0.5050410628318787, -0.0009373901411890984, 0.3932974934577942, -0.6112101674079895, -0.49537643790245056, -0.49018993973731995, 0.7130861878395081, 0.010087917558848858, -1.0040627717971802, -0.0870518609881401, -0.14472851157188416, -0.29615601897239685, 0.21554584801197052, -1.5063111782073975, -0.1225946769118309, -0.3797614276409149, -0.5858409404754639, -1.2487471103668213, -0.02359587699174881, 1.3584866523742676, -0.8413022756576538, -0.2122504562139511, 0.48302698135375977, 0.277019202709198, 0.6231387853622437, 0.6862241625785828, -0.6726707816123962, -0.28922203183174133, -0.25697898864746094, -0.2943766415119171, 0.37848010659217834, 1.25226891040802, -0.03824818506836891, -0.908857524394989, 0.7058500647544861, -0.412082701921463, 0.1703542023897171, 1.9537134170532227, 0.05204477906227112, -0.7835883498191833, 0.3991135358810425, -0.7513418197631836, 1.8918005228042603, 1.6185253858566284, 1.3226326704025269, -0.16307327151298523, -0.9269968867301941, 0.6172177791595459, -0.3113428056240082, -0.35030731558799744, 0.8916686177253723, 0.427514910697937, -0.27795422077178955, -1.3714396953582764, 0.7054325938224792, 1.2032501697540283, -0.8793314695358276, -0.755281925201416, 0.16099748015403748, -0.8412758708000183, 1.139266848564148, 0.643791675567627, 0.3771499991416931, 0.24466539919376373, 1.642500400543213, 0.7761121988296509, -0.4631098210811615, 0.44386494159698486, 0.5068184733390808, -0.1787623167037964, -2.0877280235290527, -1.0795713663101196, 0.3605521619319916, -0.4688393175601959, -1.5406941175460815, 1.3425967693328857, -1.169690728187561, -1.0482368469238281, 0.5753853917121887, 0.035653989762067795, 1.3534783124923706, 0.30949974060058594, 1.6445715427398682, 2.0891430377960205, 0.954274594783783, 0.4405197203159332, 1.3286888599395752, -0.10133171826601028, -0.35758349299430847, 1.7728519439697266, -0.4587424397468567, 0.5045870542526245, 1.095271348953247, -0.4354233145713806, -1.1891127824783325, -0.8102422952651978, -1.1874364614486694, -0.6912310123443604, 1.225663185119629, 0.09401773661375046, -1.0392258167266846, 0.27620241045951843, 1.6092325448989868, 0.1181623563170433, -0.24663794040679932, 0.6570674180984497, 0.33755844831466675, -0.7103000283241272, -0.10840459913015366, -0.9282754063606262, 0.49690452218055725, -0.2263166755437851, -0.2846582233905792, 0.22717909514904022, 0.4588930606842041, 1.2823318243026733, -0.022292714565992355, 0.10855512320995331, 1.1573810577392578, -1.4789661169052124, 1.4594098329544067, -0.6445765495300293, 0.2763710916042328, -2.3680098056793213, 1.409946084022522, -0.7900159955024719, 1.8975828886032104, -2.6445202827453613, 0.4382450580596924, -0.5067245960235596, -0.5477603077888489, 0.20744144916534424, -0.30914106965065, 0.08392877876758575, -0.15899541974067688, -1.08758544921875, -0.1024589091539383, -0.7053123116493225, 0.5595977902412415, 1.236999273300171, 1.3592338562011719, -1.1339322328567505, -0.2616780698299408, -1.6866376399993896, -0.16819417476654053, -0.7978431582450867, 0.36082255840301514, -1.944466233253479, -0.12408651411533356, -1.958878755569458, -2.3654675483703613, -1.1927094459533691, -0.8504844307899475, 1.0936832427978516, 0.20184460282325745, -0.8458044528961182, 1.1904102563858032, -0.3986593186855316, -1.7553163766860962, 1.1039726734161377, -2.156024694442749 ]
https://github.com/huggingface/datasets/issues/5941
Load Data Sets Too Slow In Train Seq2seq Model
We need more info about the issue to provide help. Can you interrupt the process (with `num_proc=None`) after the `load_dataset` call when the slowdown occurs? So we can know what part of the code is causing it. The `audiofolder` \ `imagefolder` with metadata is not performant for large datasets. Luckily, we can make them much faster if drop the nested metadata files feature (not that useful). I plan to work on this soon. In the meantime, it's better to use `Dataset.from_generator` (requires replacing the `load_dataset` calls in the transformers script with `Dataset.from_generator`) or write a dataset loading script for large datasets.
### Describe the bug step 'Generating train split' in load_dataset is too slow: ![image](https://github.com/huggingface/datasets/assets/19569322/d9b08eee-95fe-4741-a346-b70416c948f8) ### Steps to reproduce the bug Data: own data,16K16B Mono wav Oficial Script:[ run_speech_recognition_seq2seq.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py) Add Code: if data_args.data_path is not None: print(data_args.data_path) raw_datasets = load_dataset("audiofolder", data_dir=data_args.data_path, cache_dir=model_args.cache_dir) raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000)) raw_datasets = raw_datasets["train"].train_test_split(test_size=0.005, shuffle=True) (change cache_dir to other path ,ex:/DATA/cache) ### Expected behavior load data fast,at least 1000+ `Generating train split: 387875 examples [32:24:45, 1154.83 examples/s]` ### Environment info - `transformers` version: 4.28.0.dev0 - Platform: Linux-5.4.0-149-generic-x86_64-with-debian-bullseye-sid - Python version: 3.7.16 - Huggingface_hub version: 0.13.2 - PyTorch version (GPU?): 1.13.1+cu116 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in>
104
101
Load Data Sets Too Slow In Train Seq2seq Model ### Describe the bug step 'Generating train split' in load_dataset is too slow: ![image](https://github.com/huggingface/datasets/assets/19569322/d9b08eee-95fe-4741-a346-b70416c948f8) ### Steps to reproduce the bug Data: own data,16K16B Mono wav Oficial Script:[ run_speech_recognition_seq2seq.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py) Add Code: if data_args.data_path is not None: print(data_args.data_path) raw_datasets = load_dataset("audiofolder", data_dir=data_args.data_path, cache_dir=model_args.cache_dir) raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000)) raw_datasets = raw_datasets["train"].train_test_split(test_size=0.005, shuffle=True) (change cache_dir to other path ,ex:/DATA/cache) ### Expected behavior load data fast,at least 1000+ `Generating train split: 387875 examples [32:24:45, 1154.83 examples/s]` ### Environment info - `transformers` version: 4.28.0.dev0 - Platform: Linux-5.4.0-149-generic-x86_64-with-debian-bullseye-sid - Python version: 3.7.16 - Huggingface_hub version: 0.13.2 - PyTorch version (GPU?): 1.13.1+cu116 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in> We need more info about the issue to provide help. Can you interrupt the process (with `num_proc=None`) after the `load_dataset` call when the slowdown occurs? So we can know what part of the code is causing it. The `audiofolder` \ `imagefolder` with metadata is not performant for large datasets. Luckily, we can make them much faster if drop the nested metadata files feature (not that useful). I plan to work on this soon. In the meantime, it's better to use `Dataset.from_generator` (requires replacing the `load_dataset` calls in the transformers script with `Dataset.from_generator`) or write a dataset loading script for large datasets.
[ -1.2872120141983032, -0.934897780418396, -0.618711531162262, 1.4699480533599854, -0.1538279503583908, -1.258852481842041, 0.13311150670051575, -0.9876823425292969, 1.557150959968567, -0.7559544444084167, 0.30356916785240173, -1.6126487255096436, -0.007835671305656433, -0.5946030616760254, -0.7224470376968384, -0.8036127090454102, -0.4451872408390045, -0.751458466053009, 1.0766406059265137, 2.506357192993164, 1.298253059387207, -1.35751211643219, 2.7459075450897217, 0.7358030676841736, -0.2499530166387558, -1.0330251455307007, 0.4788162112236023, 0.027637585997581482, -1.356276273727417, -0.38808590173721313, -0.9371278882026672, -0.09059043973684311, -0.5551401972770691, -0.47826167941093445, 0.04492080584168434, 0.4280957579612732, -0.24613972008228302, -0.3964453339576721, -0.5383574962615967, -0.7278078198432922, 0.49722984433174133, -0.3273123800754547, 0.8614057898521423, -0.25429949164390564, 1.7351034879684448, -0.6277558207511902, 0.5511161684989929, 0.7325748205184937, 1.3400793075561523, 0.1659657061100006, -0.022624172270298004, 0.40900740027427673, 0.3381764590740204, -0.03631346672773361, 0.5365176200866699, 1.231553554534912, 0.6713613867759705, 0.38896867632865906, 0.6574504375457764, -2.2290449142456055, 1.3333550691604614, -0.9010791778564453, 0.3188537061214447, 1.340482234954834, -0.9799560308456421, 0.3778601288795471, -1.7530080080032349, -0.12558051943778992, 0.5456269383430481, -2.2014360427856445, 0.309049129486084, -1.306250810623169, -0.5524742603302002, 1.0180416107177734, 0.36117246747016907, -1.2329950332641602, 0.06177675351500511, -0.533235490322113, 1.0897166728973389, 0.4048464596271515, 1.115334391593933, -1.6903787851333618, -0.08375146239995956, -0.24446624517440796, 0.08478009700775146, -1.2230615615844727, -1.617281198501587, 0.5351966023445129, 0.6322427988052368, 0.6873016953468323, -0.09203643351793289, 0.9827402234077454, -1.0795621871948242, 0.8397896885871887, -1.0537524223327637, -1.6464333534240723, -1.4621483087539673, -2.4177632331848145, -2.241490364074707, 0.7035589218139648, -0.46107617020606995, -0.5071345567703247, 2.141282558441162, -1.115308165550232, -1.7730975151062012, 1.1500152349472046, 0.2529502809047699, 0.024306338280439377, 2.3427987098693848, 0.2519780993461609, -0.7513156533241272, 0.539297878742218, -0.756851077079773, 0.712759256362915, -0.3132137060165405, 1.247327446937561, 0.44622594118118286, -1.0873507261276245, 1.518027424812317, -0.40157362818717957, 0.5572117567062378, -0.6421674489974976, -0.4570657014846802, -0.6832543015480042, 0.2655077576637268, 1.8695377111434937, -0.29444023966789246, 1.5335545539855957, -0.32622644305229187, -1.522836446762085, -1.5319945812225342, 0.8293558359146118, 0.5523529052734375, -0.7567470669746399, 0.11674744635820389, -0.4815731644630432, 0.14204850792884827, -0.0021813507191836834, 1.073354721069336, 1.2695101499557495, 0.6910464763641357, -0.41281163692474365, -0.9182060360908508, 0.16207516193389893, -0.05606662109494209, -0.6467106938362122, -1.808284044265747, -0.31694498658180237, 0.14827202260494232, 0.5966644883155823, -1.2189419269561768, 1.7835744619369507, 0.9355493783950806, 1.9322295188903809, 1.042578935623169, -0.34869471192359924, 1.4665626287460327, 0.04222877696156502, 1.8453904390335083, -0.49158963561058044, 0.6939458847045898, -0.33058542013168335, -1.2017351388931274, 0.8546613454818726, -0.33500754833221436, -2.097384452819824, -0.7102355360984802, -0.7061119675636292, -0.22033925354480743, -0.8588461875915527, 0.982944130897522, -0.2647269368171692, -1.414860486984253, 0.21725937724113464, -0.7979022264480591, 0.21575330197811127, -1.241072177886963, 0.23771630227565765, 0.7001640796661377, -0.5958285927772522, 0.05393492057919502, -0.25475940108299255, -1.2902265787124634, -0.4462575316429138, 0.3509780466556549, 1.821889042854309, -0.7401387691497803, 0.9771834015846252, 1.0655884742736816, -0.6455702781677246, 0.06551440805196762, 0.27586811780929565, -0.3172324299812317, 0.9108444452285767, -1.0995924472808838, -0.3951275646686554, 1.2007660865783691, -0.22187289595603943, -0.6305274963378906, 1.4019650220870972, 0.7733228802680969, -0.9963134527206421, -0.24082215130329132, -0.15408357977867126, -0.8651998043060303, 0.03650109842419624, -1.6193078756332397, -0.14205385744571686, 0.4308934807777405, -1.4628814458847046, -0.441550612449646, -0.18408186733722687, 1.4051357507705688, -0.12958049774169922, 1.4526461362838745, -0.3478196859359741, -0.11219616234302521, -0.38734138011932373, -0.4332624673843384, 0.19493259489536285, -0.19951887428760529, -0.5701998472213745, 0.18460504710674286, -0.8237733244895935, 0.28774064779281616, 1.44077467918396, 0.3668900728225708, 0.13458369672298431, 0.511610209941864, 1.0608348846435547, 0.3653579652309418, -0.1286575347185135, -0.8739575147628784, -1.6697571277618408, 2.036593198776245, -1.4582490921020508, 2.0776023864746094, 0.8077100515365601, -0.09151873737573624, -1.8080843687057495, -1.8892881870269775, 1.244550108909607, 1.1371558904647827, 2.410642623901367, 0.4423946142196655, 0.44863712787628174, -0.8218027949333191, -0.7151139378547668, 0.3298894762992859, -1.028464436531067, -0.7132699489593506, 0.13957396149635315, 2.411414384841919, 1.7495441436767578, -0.341147243976593, -0.18292810022830963, -0.950364351272583, 1.3317688703536987, -0.2218419462442398, 0.2628255784511566, 2.0026607513427734, -0.2205435037612915, -0.9981479048728943, 1.3636054992675781, -2.393894672393799, 0.2705218195915222, 2.0022189617156982, 0.26143044233322144, 0.1222347840666771, -1.328712821006775, -0.6434502601623535, -0.32092732191085815, -0.47212839126586914, -1.2475742101669312, 0.6181700229644775, -0.2960161864757538, -0.884361743927002, -1.3635181188583374, 0.07217762619256973, -1.1432594060897827, -1.7604541778564453, 0.37281009554862976, 1.8448877334594727, 2.109304189682007, -0.8062878251075745, 1.4664877653121948, -0.27903610467910767, 0.18845608830451965, 1.148047924041748, 1.320603370666504, 3.115849018096924, 1.888176441192627, -1.358797311782837, 0.6914328336715698, -0.14161153137683868, -0.4554130434989929, 1.1428085565567017, -1.1894395351409912, 1.2701696157455444, -0.20392553508281708, -1.320220947265625, -1.232358694076538, 1.1162396669387817, 0.4741016924381256, 0.01422239001840353, -0.5078913569450378, 1.1664997339248657, 0.08078660815954208, 1.3636425733566284, 0.6434032320976257, -0.3168923258781433, 0.5705358386039734, -0.3818224370479584, -0.5370059609413147, 1.522160291671753, 0.10308872163295746, -1.5674781799316406, -2.317593812942505, -0.24361519515514374, -0.9137371778488159, -0.026656709611415863, -0.7176522612571716, -0.9651708006858826, 1.5902878046035767, 0.4016948342323303, -1.2643356323242188, -0.2890323996543884, -0.269729346036911, -0.5242224335670471, 2.7116270065307617, -1.3659950494766235, -0.1582638919353485, -0.9811223149299622, -0.5946539044380188, 1.6086562871932983, -1.1920539140701294, -0.282564640045166, -1.0514103174209595, -0.6298952102661133, -1.2216284275054932, -0.5039239525794983, 0.022182468324899673, -0.9573028087615967, 0.7798750996589661, 0.09949013590812683, -1.1888304948806763, -0.3076121509075165, -0.9239320755004883, 0.9679144620895386, -0.16221456229686737, 0.1660352200269699, 1.7839388847351074, 0.3592170178890228, -0.38427895307540894, 0.7482476830482483, 1.2024353742599487, 0.635219156742096, -0.6147665977478027, 0.05804242566227913, -0.6549218893051147, 0.32167449593544006, -1.2931931018829346, 0.26791712641716003, -2.9150915145874023, 0.7157313823699951, 0.002610132098197937, -0.11477707326412201, -0.07625491172075272, -1.328197956085205, 1.1222269535064697, 2.5481932163238525, -1.1824932098388672, 0.5511454343795776, 0.36942657828330994, 1.0543224811553955, -1.6180154085159302, 0.19417697191238403, -0.5253562927246094, 2.090566873550415, 0.193594828248024, 1.3086751699447632, -0.4780731201171875, -2.258925199508667, 0.6884936690330505, -1.2474913597106934, -1.0702916383743286, 0.7913569211959839, -0.8694380521774292, 0.2477782815694809, -1.3713926076889038, -0.22826336324214935, -0.9198428988456726, -1.1733677387237549, 0.5642306208610535, 0.11994718760251999, 0.4966524541378021, -0.5813882350921631, 0.2817838191986084, -2.194220781326294, -1.310469627380371, -0.1399165540933609, -0.953426718711853, 0.5058435201644897, -0.36711251735687256, 0.6489760875701904, -0.10392186045646667, -0.012583348900079727, 0.3200773298740387, 1.425062894821167, 3.348902940750122, 0.17867997288703918, 0.2607749104499817, -0.14565399289131165, -0.9828121066093445, 1.4243673086166382, 0.919276773929596, -0.15808933973312378, -0.6199792623519897, -0.9899749159812927, 1.2616958618164062, 1.9720720052719116, 1.0648143291473389, 0.011357919313013554, -0.9281324148178101, -0.7610322833061218, 0.058475006371736526, 0.24010302126407623, 0.5570154190063477, 0.9580496549606323, 0.03924066200852394, 0.07550767809152603, 1.5346007347106934, 1.1892962455749512, -0.43093469738960266, 0.32836124300956726, -0.8890161514282227, -0.497100830078125, 0.40168747305870056, 0.3191007971763611, 0.02503298595547676, 0.3814679682254791, -1.0660029649734497, -0.27259647846221924, -0.3951101005077362, -0.870603621006012, -0.7669193148612976, -0.3943912386894226, -0.4414426386356354, 1.5976999998092651, 0.054374102503061295, -0.414689302444458, 0.008726210333406925, -0.7858542203903198, -0.1634073555469513, -1.0641639232635498, 0.3790653645992279, -0.16116963326931, -0.015127855353057384, -0.19577671587467194, 1.683121681213379, -0.9443024396896362, -2.146357774734497, 0.24180860817432404, 0.2364765703678131, -0.34849637746810913, 0.15678222477436066, 1.6982247829437256, 0.59450364112854, 1.3568195104599, 1.347369909286499, 0.9591823220252991, -0.6092302203178406, -1.2142114639282227, 0.7601722478866577, 0.9713688492774963, -1.451036810874939, 0.8226678967475891, -0.16836580634117126, -0.5706167817115784, 0.6747806072235107, 1.3219503164291382, 0.4895559847354889, -1.9963947534561157, 0.8853014707565308, -0.9692763090133667, 0.8293445706367493, 0.7204437255859375, 0.7075962424278259, 0.22014036774635315, 0.8482838869094849, -1.3107045888900757, -1.1027963161468506, -0.6345177888870239, -0.6905134320259094, 1.9257999658584595, -0.35937726497650146, 0.5690427422523499, -0.21731410920619965, -1.2679177522659302, -0.02208375558257103, 0.7179283499717712, 0.24819765985012054, -0.5069178342819214, 0.8375647068023682, -0.5723982453346252, -1.0881880521774292, -1.2874131202697754, -0.3522525727748871, -0.984049379825592, -0.9052618741989136, 0.9778151512145996, 0.7396761178970337, 0.4218214154243469, 1.8622539043426514, 0.6477028727531433, 0.287272185087204, -2.6411144733428955, 0.9047034978866577, 0.25647053122520447, -0.04837382957339287, 0.8421645760536194, 0.22246654331684113, 1.0553324222564697, 0.010959315113723278, 0.5621150135993958, -2.4150478839874268, 2.256239891052246, -0.17720988392829895, 0.6745415329933167, -0.06294335424900055, -0.1052854061126709, 1.1101744174957275, 0.5835867524147034, 0.5926541686058044, -1.1273044347763062, 0.79466712474823, -0.5272727608680725, 1.2184139490127563, 0.8426498174667358, -0.8943607211112976, 0.021112583577632904, 1.3564770221710205, 0.4069463610649109, -0.5115596055984497, -0.9262232780456543, -0.9514636993408203, 0.9552031755447388, 1.750400424003601, -0.055354733020067215, 0.04015573114156723, 0.839515745639801, 0.7362446784973145, -1.2835205793380737, 0.027859505265951157, -0.6180985569953918, -0.6659460663795471, 1.6711968183517456, 2.088031053543091, -0.12964141368865967, -0.18194450438022614, -0.6338878870010376, -1.303842544555664, 0.8384582996368408, -0.07390040159225464, 0.10101436823606491, 0.6645351052284241, -0.6242982149124146, 1.1197348833084106, 0.720546305179596, 0.985681414604187, 0.11160033196210861, 0.18774697184562683, 0.3229367136955261, -0.3201107382774353, -1.2474414110183716, -0.3361547887325287, -1.068857192993164, -2.462062120437622, 0.35195037722587585, -0.21624042093753815, -1.4356273412704468, 0.04545198753476143, -1.0675846338272095, 0.8355642557144165, -0.5662575960159302, -1.0827149152755737, -1.4654148817062378, 0.23507878184318542, -0.12570935487747192, 0.8570670485496521, -1.616750717163086, -0.10963122546672821, 1.1908551454544067, 0.8322780728340149, -0.552435576915741, 0.9907278418540955, 0.19606879353523254, 0.911194920539856, 0.8608183860778809, -0.36574119329452515, 0.5596340894699097, 0.21595346927642822, -1.4133007526397705, 0.48768100142478943, 1.296494960784912, 0.19464798271656036, 1.4918811321258545, -0.5050410628318787, -0.0009373901411890984, 0.3932974934577942, -0.6112101674079895, -0.49537643790245056, -0.49018993973731995, 0.7130861878395081, 0.010087917558848858, -1.0040627717971802, -0.0870518609881401, -0.14472851157188416, -0.29615601897239685, 0.21554584801197052, -1.5063111782073975, -0.1225946769118309, -0.3797614276409149, -0.5858409404754639, -1.2487471103668213, -0.02359587699174881, 1.3584866523742676, -0.8413022756576538, -0.2122504562139511, 0.48302698135375977, 0.277019202709198, 0.6231387853622437, 0.6862241625785828, -0.6726707816123962, -0.28922203183174133, -0.25697898864746094, -0.2943766415119171, 0.37848010659217834, 1.25226891040802, -0.03824818506836891, -0.908857524394989, 0.7058500647544861, -0.412082701921463, 0.1703542023897171, 1.9537134170532227, 0.05204477906227112, -0.7835883498191833, 0.3991135358810425, -0.7513418197631836, 1.8918005228042603, 1.6185253858566284, 1.3226326704025269, -0.16307327151298523, -0.9269968867301941, 0.6172177791595459, -0.3113428056240082, -0.35030731558799744, 0.8916686177253723, 0.427514910697937, -0.27795422077178955, -1.3714396953582764, 0.7054325938224792, 1.2032501697540283, -0.8793314695358276, -0.755281925201416, 0.16099748015403748, -0.8412758708000183, 1.139266848564148, 0.643791675567627, 0.3771499991416931, 0.24466539919376373, 1.642500400543213, 0.7761121988296509, -0.4631098210811615, 0.44386494159698486, 0.5068184733390808, -0.1787623167037964, -2.0877280235290527, -1.0795713663101196, 0.3605521619319916, -0.4688393175601959, -1.5406941175460815, 1.3425967693328857, -1.169690728187561, -1.0482368469238281, 0.5753853917121887, 0.035653989762067795, 1.3534783124923706, 0.30949974060058594, 1.6445715427398682, 2.0891430377960205, 0.954274594783783, 0.4405197203159332, 1.3286888599395752, -0.10133171826601028, -0.35758349299430847, 1.7728519439697266, -0.4587424397468567, 0.5045870542526245, 1.095271348953247, -0.4354233145713806, -1.1891127824783325, -0.8102422952651978, -1.1874364614486694, -0.6912310123443604, 1.225663185119629, 0.09401773661375046, -1.0392258167266846, 0.27620241045951843, 1.6092325448989868, 0.1181623563170433, -0.24663794040679932, 0.6570674180984497, 0.33755844831466675, -0.7103000283241272, -0.10840459913015366, -0.9282754063606262, 0.49690452218055725, -0.2263166755437851, -0.2846582233905792, 0.22717909514904022, 0.4588930606842041, 1.2823318243026733, -0.022292714565992355, 0.10855512320995331, 1.1573810577392578, -1.4789661169052124, 1.4594098329544067, -0.6445765495300293, 0.2763710916042328, -2.3680098056793213, 1.409946084022522, -0.7900159955024719, 1.8975828886032104, -2.6445202827453613, 0.4382450580596924, -0.5067245960235596, -0.5477603077888489, 0.20744144916534424, -0.30914106965065, 0.08392877876758575, -0.15899541974067688, -1.08758544921875, -0.1024589091539383, -0.7053123116493225, 0.5595977902412415, 1.236999273300171, 1.3592338562011719, -1.1339322328567505, -0.2616780698299408, -1.6866376399993896, -0.16819417476654053, -0.7978431582450867, 0.36082255840301514, -1.944466233253479, -0.12408651411533356, -1.958878755569458, -2.3654675483703613, -1.1927094459533691, -0.8504844307899475, 1.0936832427978516, 0.20184460282325745, -0.8458044528961182, 1.1904102563858032, -0.3986593186855316, -1.7553163766860962, 1.1039726734161377, -2.156024694442749 ]
https://github.com/huggingface/datasets/issues/5941
Load Data Sets Too Slow In Train Seq2seq Model
Can you interrupt the process (with num_proc=None) after the load_dataset call when the slowdown occurs? So we can know what part of the code is causing it. (I'll try this operation) The audiofolder \ imagefolder with metadata is not performant for large datasets. Luckily, we can make them much faster if drop the nested metadata files feature (not that useful). I plan to work on this soon. (My data is indeed a bit large, exceeding 10000 hours of audio data. Looking forward to your improvement work very much) In the meantime, it's better to use Dataset.from_generator (requires replacing the load_dataset calls in the transformers script with Dataset.from_generator) or write a dataset loading script for large datasets. (I want to use Dataset.from_generator instead of load_dataset ,where can i found sample code to load audio&label dataset, I was to do asr task)
### Describe the bug step 'Generating train split' in load_dataset is too slow: ![image](https://github.com/huggingface/datasets/assets/19569322/d9b08eee-95fe-4741-a346-b70416c948f8) ### Steps to reproduce the bug Data: own data,16K16B Mono wav Oficial Script:[ run_speech_recognition_seq2seq.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py) Add Code: if data_args.data_path is not None: print(data_args.data_path) raw_datasets = load_dataset("audiofolder", data_dir=data_args.data_path, cache_dir=model_args.cache_dir) raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000)) raw_datasets = raw_datasets["train"].train_test_split(test_size=0.005, shuffle=True) (change cache_dir to other path ,ex:/DATA/cache) ### Expected behavior load data fast,at least 1000+ `Generating train split: 387875 examples [32:24:45, 1154.83 examples/s]` ### Environment info - `transformers` version: 4.28.0.dev0 - Platform: Linux-5.4.0-149-generic-x86_64-with-debian-bullseye-sid - Python version: 3.7.16 - Huggingface_hub version: 0.13.2 - PyTorch version (GPU?): 1.13.1+cu116 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in>
104
140
Load Data Sets Too Slow In Train Seq2seq Model ### Describe the bug step 'Generating train split' in load_dataset is too slow: ![image](https://github.com/huggingface/datasets/assets/19569322/d9b08eee-95fe-4741-a346-b70416c948f8) ### Steps to reproduce the bug Data: own data,16K16B Mono wav Oficial Script:[ run_speech_recognition_seq2seq.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py) Add Code: if data_args.data_path is not None: print(data_args.data_path) raw_datasets = load_dataset("audiofolder", data_dir=data_args.data_path, cache_dir=model_args.cache_dir) raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000)) raw_datasets = raw_datasets["train"].train_test_split(test_size=0.005, shuffle=True) (change cache_dir to other path ,ex:/DATA/cache) ### Expected behavior load data fast,at least 1000+ `Generating train split: 387875 examples [32:24:45, 1154.83 examples/s]` ### Environment info - `transformers` version: 4.28.0.dev0 - Platform: Linux-5.4.0-149-generic-x86_64-with-debian-bullseye-sid - Python version: 3.7.16 - Huggingface_hub version: 0.13.2 - PyTorch version (GPU?): 1.13.1+cu116 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in> Can you interrupt the process (with num_proc=None) after the load_dataset call when the slowdown occurs? So we can know what part of the code is causing it. (I'll try this operation) The audiofolder \ imagefolder with metadata is not performant for large datasets. Luckily, we can make them much faster if drop the nested metadata files feature (not that useful). I plan to work on this soon. (My data is indeed a bit large, exceeding 10000 hours of audio data. Looking forward to your improvement work very much) In the meantime, it's better to use Dataset.from_generator (requires replacing the load_dataset calls in the transformers script with Dataset.from_generator) or write a dataset loading script for large datasets. (I want to use Dataset.from_generator instead of load_dataset ,where can i found sample code to load audio&label dataset, I was to do asr task)
[ -1.2872120141983032, -0.934897780418396, -0.618711531162262, 1.4699480533599854, -0.1538279503583908, -1.258852481842041, 0.13311150670051575, -0.9876823425292969, 1.557150959968567, -0.7559544444084167, 0.30356916785240173, -1.6126487255096436, -0.007835671305656433, -0.5946030616760254, -0.7224470376968384, -0.8036127090454102, -0.4451872408390045, -0.751458466053009, 1.0766406059265137, 2.506357192993164, 1.298253059387207, -1.35751211643219, 2.7459075450897217, 0.7358030676841736, -0.2499530166387558, -1.0330251455307007, 0.4788162112236023, 0.027637585997581482, -1.356276273727417, -0.38808590173721313, -0.9371278882026672, -0.09059043973684311, -0.5551401972770691, -0.47826167941093445, 0.04492080584168434, 0.4280957579612732, -0.24613972008228302, -0.3964453339576721, -0.5383574962615967, -0.7278078198432922, 0.49722984433174133, -0.3273123800754547, 0.8614057898521423, -0.25429949164390564, 1.7351034879684448, -0.6277558207511902, 0.5511161684989929, 0.7325748205184937, 1.3400793075561523, 0.1659657061100006, -0.022624172270298004, 0.40900740027427673, 0.3381764590740204, -0.03631346672773361, 0.5365176200866699, 1.231553554534912, 0.6713613867759705, 0.38896867632865906, 0.6574504375457764, -2.2290449142456055, 1.3333550691604614, -0.9010791778564453, 0.3188537061214447, 1.340482234954834, -0.9799560308456421, 0.3778601288795471, -1.7530080080032349, -0.12558051943778992, 0.5456269383430481, -2.2014360427856445, 0.309049129486084, -1.306250810623169, -0.5524742603302002, 1.0180416107177734, 0.36117246747016907, -1.2329950332641602, 0.06177675351500511, -0.533235490322113, 1.0897166728973389, 0.4048464596271515, 1.115334391593933, -1.6903787851333618, -0.08375146239995956, -0.24446624517440796, 0.08478009700775146, -1.2230615615844727, -1.617281198501587, 0.5351966023445129, 0.6322427988052368, 0.6873016953468323, -0.09203643351793289, 0.9827402234077454, -1.0795621871948242, 0.8397896885871887, -1.0537524223327637, -1.6464333534240723, -1.4621483087539673, -2.4177632331848145, -2.241490364074707, 0.7035589218139648, -0.46107617020606995, -0.5071345567703247, 2.141282558441162, -1.115308165550232, -1.7730975151062012, 1.1500152349472046, 0.2529502809047699, 0.024306338280439377, 2.3427987098693848, 0.2519780993461609, -0.7513156533241272, 0.539297878742218, -0.756851077079773, 0.712759256362915, -0.3132137060165405, 1.247327446937561, 0.44622594118118286, -1.0873507261276245, 1.518027424812317, -0.40157362818717957, 0.5572117567062378, -0.6421674489974976, -0.4570657014846802, -0.6832543015480042, 0.2655077576637268, 1.8695377111434937, -0.29444023966789246, 1.5335545539855957, -0.32622644305229187, -1.522836446762085, -1.5319945812225342, 0.8293558359146118, 0.5523529052734375, -0.7567470669746399, 0.11674744635820389, -0.4815731644630432, 0.14204850792884827, -0.0021813507191836834, 1.073354721069336, 1.2695101499557495, 0.6910464763641357, -0.41281163692474365, -0.9182060360908508, 0.16207516193389893, -0.05606662109494209, -0.6467106938362122, -1.808284044265747, -0.31694498658180237, 0.14827202260494232, 0.5966644883155823, -1.2189419269561768, 1.7835744619369507, 0.9355493783950806, 1.9322295188903809, 1.042578935623169, -0.34869471192359924, 1.4665626287460327, 0.04222877696156502, 1.8453904390335083, -0.49158963561058044, 0.6939458847045898, -0.33058542013168335, -1.2017351388931274, 0.8546613454818726, -0.33500754833221436, -2.097384452819824, -0.7102355360984802, -0.7061119675636292, -0.22033925354480743, -0.8588461875915527, 0.982944130897522, -0.2647269368171692, -1.414860486984253, 0.21725937724113464, -0.7979022264480591, 0.21575330197811127, -1.241072177886963, 0.23771630227565765, 0.7001640796661377, -0.5958285927772522, 0.05393492057919502, -0.25475940108299255, -1.2902265787124634, -0.4462575316429138, 0.3509780466556549, 1.821889042854309, -0.7401387691497803, 0.9771834015846252, 1.0655884742736816, -0.6455702781677246, 0.06551440805196762, 0.27586811780929565, -0.3172324299812317, 0.9108444452285767, -1.0995924472808838, -0.3951275646686554, 1.2007660865783691, -0.22187289595603943, -0.6305274963378906, 1.4019650220870972, 0.7733228802680969, -0.9963134527206421, -0.24082215130329132, -0.15408357977867126, -0.8651998043060303, 0.03650109842419624, -1.6193078756332397, -0.14205385744571686, 0.4308934807777405, -1.4628814458847046, -0.441550612449646, -0.18408186733722687, 1.4051357507705688, -0.12958049774169922, 1.4526461362838745, -0.3478196859359741, -0.11219616234302521, -0.38734138011932373, -0.4332624673843384, 0.19493259489536285, -0.19951887428760529, -0.5701998472213745, 0.18460504710674286, -0.8237733244895935, 0.28774064779281616, 1.44077467918396, 0.3668900728225708, 0.13458369672298431, 0.511610209941864, 1.0608348846435547, 0.3653579652309418, -0.1286575347185135, -0.8739575147628784, -1.6697571277618408, 2.036593198776245, -1.4582490921020508, 2.0776023864746094, 0.8077100515365601, -0.09151873737573624, -1.8080843687057495, -1.8892881870269775, 1.244550108909607, 1.1371558904647827, 2.410642623901367, 0.4423946142196655, 0.44863712787628174, -0.8218027949333191, -0.7151139378547668, 0.3298894762992859, -1.028464436531067, -0.7132699489593506, 0.13957396149635315, 2.411414384841919, 1.7495441436767578, -0.341147243976593, -0.18292810022830963, -0.950364351272583, 1.3317688703536987, -0.2218419462442398, 0.2628255784511566, 2.0026607513427734, -0.2205435037612915, -0.9981479048728943, 1.3636054992675781, -2.393894672393799, 0.2705218195915222, 2.0022189617156982, 0.26143044233322144, 0.1222347840666771, -1.328712821006775, -0.6434502601623535, -0.32092732191085815, -0.47212839126586914, -1.2475742101669312, 0.6181700229644775, -0.2960161864757538, -0.884361743927002, -1.3635181188583374, 0.07217762619256973, -1.1432594060897827, -1.7604541778564453, 0.37281009554862976, 1.8448877334594727, 2.109304189682007, -0.8062878251075745, 1.4664877653121948, -0.27903610467910767, 0.18845608830451965, 1.148047924041748, 1.320603370666504, 3.115849018096924, 1.888176441192627, -1.358797311782837, 0.6914328336715698, -0.14161153137683868, -0.4554130434989929, 1.1428085565567017, -1.1894395351409912, 1.2701696157455444, -0.20392553508281708, -1.320220947265625, -1.232358694076538, 1.1162396669387817, 0.4741016924381256, 0.01422239001840353, -0.5078913569450378, 1.1664997339248657, 0.08078660815954208, 1.3636425733566284, 0.6434032320976257, -0.3168923258781433, 0.5705358386039734, -0.3818224370479584, -0.5370059609413147, 1.522160291671753, 0.10308872163295746, -1.5674781799316406, -2.317593812942505, -0.24361519515514374, -0.9137371778488159, -0.026656709611415863, -0.7176522612571716, -0.9651708006858826, 1.5902878046035767, 0.4016948342323303, -1.2643356323242188, -0.2890323996543884, -0.269729346036911, -0.5242224335670471, 2.7116270065307617, -1.3659950494766235, -0.1582638919353485, -0.9811223149299622, -0.5946539044380188, 1.6086562871932983, -1.1920539140701294, -0.282564640045166, -1.0514103174209595, -0.6298952102661133, -1.2216284275054932, -0.5039239525794983, 0.022182468324899673, -0.9573028087615967, 0.7798750996589661, 0.09949013590812683, -1.1888304948806763, -0.3076121509075165, -0.9239320755004883, 0.9679144620895386, -0.16221456229686737, 0.1660352200269699, 1.7839388847351074, 0.3592170178890228, -0.38427895307540894, 0.7482476830482483, 1.2024353742599487, 0.635219156742096, -0.6147665977478027, 0.05804242566227913, -0.6549218893051147, 0.32167449593544006, -1.2931931018829346, 0.26791712641716003, -2.9150915145874023, 0.7157313823699951, 0.002610132098197937, -0.11477707326412201, -0.07625491172075272, -1.328197956085205, 1.1222269535064697, 2.5481932163238525, -1.1824932098388672, 0.5511454343795776, 0.36942657828330994, 1.0543224811553955, -1.6180154085159302, 0.19417697191238403, -0.5253562927246094, 2.090566873550415, 0.193594828248024, 1.3086751699447632, -0.4780731201171875, -2.258925199508667, 0.6884936690330505, -1.2474913597106934, -1.0702916383743286, 0.7913569211959839, -0.8694380521774292, 0.2477782815694809, -1.3713926076889038, -0.22826336324214935, -0.9198428988456726, -1.1733677387237549, 0.5642306208610535, 0.11994718760251999, 0.4966524541378021, -0.5813882350921631, 0.2817838191986084, -2.194220781326294, -1.310469627380371, -0.1399165540933609, -0.953426718711853, 0.5058435201644897, -0.36711251735687256, 0.6489760875701904, -0.10392186045646667, -0.012583348900079727, 0.3200773298740387, 1.425062894821167, 3.348902940750122, 0.17867997288703918, 0.2607749104499817, -0.14565399289131165, -0.9828121066093445, 1.4243673086166382, 0.919276773929596, -0.15808933973312378, -0.6199792623519897, -0.9899749159812927, 1.2616958618164062, 1.9720720052719116, 1.0648143291473389, 0.011357919313013554, -0.9281324148178101, -0.7610322833061218, 0.058475006371736526, 0.24010302126407623, 0.5570154190063477, 0.9580496549606323, 0.03924066200852394, 0.07550767809152603, 1.5346007347106934, 1.1892962455749512, -0.43093469738960266, 0.32836124300956726, -0.8890161514282227, -0.497100830078125, 0.40168747305870056, 0.3191007971763611, 0.02503298595547676, 0.3814679682254791, -1.0660029649734497, -0.27259647846221924, -0.3951101005077362, -0.870603621006012, -0.7669193148612976, -0.3943912386894226, -0.4414426386356354, 1.5976999998092651, 0.054374102503061295, -0.414689302444458, 0.008726210333406925, -0.7858542203903198, -0.1634073555469513, -1.0641639232635498, 0.3790653645992279, -0.16116963326931, -0.015127855353057384, -0.19577671587467194, 1.683121681213379, -0.9443024396896362, -2.146357774734497, 0.24180860817432404, 0.2364765703678131, -0.34849637746810913, 0.15678222477436066, 1.6982247829437256, 0.59450364112854, 1.3568195104599, 1.347369909286499, 0.9591823220252991, -0.6092302203178406, -1.2142114639282227, 0.7601722478866577, 0.9713688492774963, -1.451036810874939, 0.8226678967475891, -0.16836580634117126, -0.5706167817115784, 0.6747806072235107, 1.3219503164291382, 0.4895559847354889, -1.9963947534561157, 0.8853014707565308, -0.9692763090133667, 0.8293445706367493, 0.7204437255859375, 0.7075962424278259, 0.22014036774635315, 0.8482838869094849, -1.3107045888900757, -1.1027963161468506, -0.6345177888870239, -0.6905134320259094, 1.9257999658584595, -0.35937726497650146, 0.5690427422523499, -0.21731410920619965, -1.2679177522659302, -0.02208375558257103, 0.7179283499717712, 0.24819765985012054, -0.5069178342819214, 0.8375647068023682, -0.5723982453346252, -1.0881880521774292, -1.2874131202697754, -0.3522525727748871, -0.984049379825592, -0.9052618741989136, 0.9778151512145996, 0.7396761178970337, 0.4218214154243469, 1.8622539043426514, 0.6477028727531433, 0.287272185087204, -2.6411144733428955, 0.9047034978866577, 0.25647053122520447, -0.04837382957339287, 0.8421645760536194, 0.22246654331684113, 1.0553324222564697, 0.010959315113723278, 0.5621150135993958, -2.4150478839874268, 2.256239891052246, -0.17720988392829895, 0.6745415329933167, -0.06294335424900055, -0.1052854061126709, 1.1101744174957275, 0.5835867524147034, 0.5926541686058044, -1.1273044347763062, 0.79466712474823, -0.5272727608680725, 1.2184139490127563, 0.8426498174667358, -0.8943607211112976, 0.021112583577632904, 1.3564770221710205, 0.4069463610649109, -0.5115596055984497, -0.9262232780456543, -0.9514636993408203, 0.9552031755447388, 1.750400424003601, -0.055354733020067215, 0.04015573114156723, 0.839515745639801, 0.7362446784973145, -1.2835205793380737, 0.027859505265951157, -0.6180985569953918, -0.6659460663795471, 1.6711968183517456, 2.088031053543091, -0.12964141368865967, -0.18194450438022614, -0.6338878870010376, -1.303842544555664, 0.8384582996368408, -0.07390040159225464, 0.10101436823606491, 0.6645351052284241, -0.6242982149124146, 1.1197348833084106, 0.720546305179596, 0.985681414604187, 0.11160033196210861, 0.18774697184562683, 0.3229367136955261, -0.3201107382774353, -1.2474414110183716, -0.3361547887325287, -1.068857192993164, -2.462062120437622, 0.35195037722587585, -0.21624042093753815, -1.4356273412704468, 0.04545198753476143, -1.0675846338272095, 0.8355642557144165, -0.5662575960159302, -1.0827149152755737, -1.4654148817062378, 0.23507878184318542, -0.12570935487747192, 0.8570670485496521, -1.616750717163086, -0.10963122546672821, 1.1908551454544067, 0.8322780728340149, -0.552435576915741, 0.9907278418540955, 0.19606879353523254, 0.911194920539856, 0.8608183860778809, -0.36574119329452515, 0.5596340894699097, 0.21595346927642822, -1.4133007526397705, 0.48768100142478943, 1.296494960784912, 0.19464798271656036, 1.4918811321258545, -0.5050410628318787, -0.0009373901411890984, 0.3932974934577942, -0.6112101674079895, -0.49537643790245056, -0.49018993973731995, 0.7130861878395081, 0.010087917558848858, -1.0040627717971802, -0.0870518609881401, -0.14472851157188416, -0.29615601897239685, 0.21554584801197052, -1.5063111782073975, -0.1225946769118309, -0.3797614276409149, -0.5858409404754639, -1.2487471103668213, -0.02359587699174881, 1.3584866523742676, -0.8413022756576538, -0.2122504562139511, 0.48302698135375977, 0.277019202709198, 0.6231387853622437, 0.6862241625785828, -0.6726707816123962, -0.28922203183174133, -0.25697898864746094, -0.2943766415119171, 0.37848010659217834, 1.25226891040802, -0.03824818506836891, -0.908857524394989, 0.7058500647544861, -0.412082701921463, 0.1703542023897171, 1.9537134170532227, 0.05204477906227112, -0.7835883498191833, 0.3991135358810425, -0.7513418197631836, 1.8918005228042603, 1.6185253858566284, 1.3226326704025269, -0.16307327151298523, -0.9269968867301941, 0.6172177791595459, -0.3113428056240082, -0.35030731558799744, 0.8916686177253723, 0.427514910697937, -0.27795422077178955, -1.3714396953582764, 0.7054325938224792, 1.2032501697540283, -0.8793314695358276, -0.755281925201416, 0.16099748015403748, -0.8412758708000183, 1.139266848564148, 0.643791675567627, 0.3771499991416931, 0.24466539919376373, 1.642500400543213, 0.7761121988296509, -0.4631098210811615, 0.44386494159698486, 0.5068184733390808, -0.1787623167037964, -2.0877280235290527, -1.0795713663101196, 0.3605521619319916, -0.4688393175601959, -1.5406941175460815, 1.3425967693328857, -1.169690728187561, -1.0482368469238281, 0.5753853917121887, 0.035653989762067795, 1.3534783124923706, 0.30949974060058594, 1.6445715427398682, 2.0891430377960205, 0.954274594783783, 0.4405197203159332, 1.3286888599395752, -0.10133171826601028, -0.35758349299430847, 1.7728519439697266, -0.4587424397468567, 0.5045870542526245, 1.095271348953247, -0.4354233145713806, -1.1891127824783325, -0.8102422952651978, -1.1874364614486694, -0.6912310123443604, 1.225663185119629, 0.09401773661375046, -1.0392258167266846, 0.27620241045951843, 1.6092325448989868, 0.1181623563170433, -0.24663794040679932, 0.6570674180984497, 0.33755844831466675, -0.7103000283241272, -0.10840459913015366, -0.9282754063606262, 0.49690452218055725, -0.2263166755437851, -0.2846582233905792, 0.22717909514904022, 0.4588930606842041, 1.2823318243026733, -0.022292714565992355, 0.10855512320995331, 1.1573810577392578, -1.4789661169052124, 1.4594098329544067, -0.6445765495300293, 0.2763710916042328, -2.3680098056793213, 1.409946084022522, -0.7900159955024719, 1.8975828886032104, -2.6445202827453613, 0.4382450580596924, -0.5067245960235596, -0.5477603077888489, 0.20744144916534424, -0.30914106965065, 0.08392877876758575, -0.15899541974067688, -1.08758544921875, -0.1024589091539383, -0.7053123116493225, 0.5595977902412415, 1.236999273300171, 1.3592338562011719, -1.1339322328567505, -0.2616780698299408, -1.6866376399993896, -0.16819417476654053, -0.7978431582450867, 0.36082255840301514, -1.944466233253479, -0.12408651411533356, -1.958878755569458, -2.3654675483703613, -1.1927094459533691, -0.8504844307899475, 1.0936832427978516, 0.20184460282325745, -0.8458044528961182, 1.1904102563858032, -0.3986593186855316, -1.7553163766860962, 1.1039726734161377, -2.156024694442749 ]
https://github.com/huggingface/datasets/issues/5941
Load Data Sets Too Slow In Train Seq2seq Model
Can you interrupt the process (with num_proc=None) after the load_dataset call when the slowdown occurs? So we can know what part of the code is causing it. ================================================================================ Here is the log: [load_dataset.log](https://github.com/huggingface/datasets/files/12169362/load_dataset.log) (The larger my training data, the slower it loads) ![image](https://github.com/huggingface/datasets/assets/19569322/381b73e4-0a54-4240-b95e-cb8164584047)
### Describe the bug step 'Generating train split' in load_dataset is too slow: ![image](https://github.com/huggingface/datasets/assets/19569322/d9b08eee-95fe-4741-a346-b70416c948f8) ### Steps to reproduce the bug Data: own data,16K16B Mono wav Oficial Script:[ run_speech_recognition_seq2seq.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py) Add Code: if data_args.data_path is not None: print(data_args.data_path) raw_datasets = load_dataset("audiofolder", data_dir=data_args.data_path, cache_dir=model_args.cache_dir) raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000)) raw_datasets = raw_datasets["train"].train_test_split(test_size=0.005, shuffle=True) (change cache_dir to other path ,ex:/DATA/cache) ### Expected behavior load data fast,at least 1000+ `Generating train split: 387875 examples [32:24:45, 1154.83 examples/s]` ### Environment info - `transformers` version: 4.28.0.dev0 - Platform: Linux-5.4.0-149-generic-x86_64-with-debian-bullseye-sid - Python version: 3.7.16 - Huggingface_hub version: 0.13.2 - PyTorch version (GPU?): 1.13.1+cu116 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in>
104
43
Load Data Sets Too Slow In Train Seq2seq Model ### Describe the bug step 'Generating train split' in load_dataset is too slow: ![image](https://github.com/huggingface/datasets/assets/19569322/d9b08eee-95fe-4741-a346-b70416c948f8) ### Steps to reproduce the bug Data: own data,16K16B Mono wav Oficial Script:[ run_speech_recognition_seq2seq.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py) Add Code: if data_args.data_path is not None: print(data_args.data_path) raw_datasets = load_dataset("audiofolder", data_dir=data_args.data_path, cache_dir=model_args.cache_dir) raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000)) raw_datasets = raw_datasets["train"].train_test_split(test_size=0.005, shuffle=True) (change cache_dir to other path ,ex:/DATA/cache) ### Expected behavior load data fast,at least 1000+ `Generating train split: 387875 examples [32:24:45, 1154.83 examples/s]` ### Environment info - `transformers` version: 4.28.0.dev0 - Platform: Linux-5.4.0-149-generic-x86_64-with-debian-bullseye-sid - Python version: 3.7.16 - Huggingface_hub version: 0.13.2 - PyTorch version (GPU?): 1.13.1+cu116 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in> Can you interrupt the process (with num_proc=None) after the load_dataset call when the slowdown occurs? So we can know what part of the code is causing it. ================================================================================ Here is the log: [load_dataset.log](https://github.com/huggingface/datasets/files/12169362/load_dataset.log) (The larger my training data, the slower it loads) ![image](https://github.com/huggingface/datasets/assets/19569322/381b73e4-0a54-4240-b95e-cb8164584047)
[ -1.2872120141983032, -0.934897780418396, -0.618711531162262, 1.4699480533599854, -0.1538279503583908, -1.258852481842041, 0.13311150670051575, -0.9876823425292969, 1.557150959968567, -0.7559544444084167, 0.30356916785240173, -1.6126487255096436, -0.007835671305656433, -0.5946030616760254, -0.7224470376968384, -0.8036127090454102, -0.4451872408390045, -0.751458466053009, 1.0766406059265137, 2.506357192993164, 1.298253059387207, -1.35751211643219, 2.7459075450897217, 0.7358030676841736, -0.2499530166387558, -1.0330251455307007, 0.4788162112236023, 0.027637585997581482, -1.356276273727417, -0.38808590173721313, -0.9371278882026672, -0.09059043973684311, -0.5551401972770691, -0.47826167941093445, 0.04492080584168434, 0.4280957579612732, -0.24613972008228302, -0.3964453339576721, -0.5383574962615967, -0.7278078198432922, 0.49722984433174133, -0.3273123800754547, 0.8614057898521423, -0.25429949164390564, 1.7351034879684448, -0.6277558207511902, 0.5511161684989929, 0.7325748205184937, 1.3400793075561523, 0.1659657061100006, -0.022624172270298004, 0.40900740027427673, 0.3381764590740204, -0.03631346672773361, 0.5365176200866699, 1.231553554534912, 0.6713613867759705, 0.38896867632865906, 0.6574504375457764, -2.2290449142456055, 1.3333550691604614, -0.9010791778564453, 0.3188537061214447, 1.340482234954834, -0.9799560308456421, 0.3778601288795471, -1.7530080080032349, -0.12558051943778992, 0.5456269383430481, -2.2014360427856445, 0.309049129486084, -1.306250810623169, -0.5524742603302002, 1.0180416107177734, 0.36117246747016907, -1.2329950332641602, 0.06177675351500511, -0.533235490322113, 1.0897166728973389, 0.4048464596271515, 1.115334391593933, -1.6903787851333618, -0.08375146239995956, -0.24446624517440796, 0.08478009700775146, -1.2230615615844727, -1.617281198501587, 0.5351966023445129, 0.6322427988052368, 0.6873016953468323, -0.09203643351793289, 0.9827402234077454, -1.0795621871948242, 0.8397896885871887, -1.0537524223327637, -1.6464333534240723, -1.4621483087539673, -2.4177632331848145, -2.241490364074707, 0.7035589218139648, -0.46107617020606995, -0.5071345567703247, 2.141282558441162, -1.115308165550232, -1.7730975151062012, 1.1500152349472046, 0.2529502809047699, 0.024306338280439377, 2.3427987098693848, 0.2519780993461609, -0.7513156533241272, 0.539297878742218, -0.756851077079773, 0.712759256362915, -0.3132137060165405, 1.247327446937561, 0.44622594118118286, -1.0873507261276245, 1.518027424812317, -0.40157362818717957, 0.5572117567062378, -0.6421674489974976, -0.4570657014846802, -0.6832543015480042, 0.2655077576637268, 1.8695377111434937, -0.29444023966789246, 1.5335545539855957, -0.32622644305229187, -1.522836446762085, -1.5319945812225342, 0.8293558359146118, 0.5523529052734375, -0.7567470669746399, 0.11674744635820389, -0.4815731644630432, 0.14204850792884827, -0.0021813507191836834, 1.073354721069336, 1.2695101499557495, 0.6910464763641357, -0.41281163692474365, -0.9182060360908508, 0.16207516193389893, -0.05606662109494209, -0.6467106938362122, -1.808284044265747, -0.31694498658180237, 0.14827202260494232, 0.5966644883155823, -1.2189419269561768, 1.7835744619369507, 0.9355493783950806, 1.9322295188903809, 1.042578935623169, -0.34869471192359924, 1.4665626287460327, 0.04222877696156502, 1.8453904390335083, -0.49158963561058044, 0.6939458847045898, -0.33058542013168335, -1.2017351388931274, 0.8546613454818726, -0.33500754833221436, -2.097384452819824, -0.7102355360984802, -0.7061119675636292, -0.22033925354480743, -0.8588461875915527, 0.982944130897522, -0.2647269368171692, -1.414860486984253, 0.21725937724113464, -0.7979022264480591, 0.21575330197811127, -1.241072177886963, 0.23771630227565765, 0.7001640796661377, -0.5958285927772522, 0.05393492057919502, -0.25475940108299255, -1.2902265787124634, -0.4462575316429138, 0.3509780466556549, 1.821889042854309, -0.7401387691497803, 0.9771834015846252, 1.0655884742736816, -0.6455702781677246, 0.06551440805196762, 0.27586811780929565, -0.3172324299812317, 0.9108444452285767, -1.0995924472808838, -0.3951275646686554, 1.2007660865783691, -0.22187289595603943, -0.6305274963378906, 1.4019650220870972, 0.7733228802680969, -0.9963134527206421, -0.24082215130329132, -0.15408357977867126, -0.8651998043060303, 0.03650109842419624, -1.6193078756332397, -0.14205385744571686, 0.4308934807777405, -1.4628814458847046, -0.441550612449646, -0.18408186733722687, 1.4051357507705688, -0.12958049774169922, 1.4526461362838745, -0.3478196859359741, -0.11219616234302521, -0.38734138011932373, -0.4332624673843384, 0.19493259489536285, -0.19951887428760529, -0.5701998472213745, 0.18460504710674286, -0.8237733244895935, 0.28774064779281616, 1.44077467918396, 0.3668900728225708, 0.13458369672298431, 0.511610209941864, 1.0608348846435547, 0.3653579652309418, -0.1286575347185135, -0.8739575147628784, -1.6697571277618408, 2.036593198776245, -1.4582490921020508, 2.0776023864746094, 0.8077100515365601, -0.09151873737573624, -1.8080843687057495, -1.8892881870269775, 1.244550108909607, 1.1371558904647827, 2.410642623901367, 0.4423946142196655, 0.44863712787628174, -0.8218027949333191, -0.7151139378547668, 0.3298894762992859, -1.028464436531067, -0.7132699489593506, 0.13957396149635315, 2.411414384841919, 1.7495441436767578, -0.341147243976593, -0.18292810022830963, -0.950364351272583, 1.3317688703536987, -0.2218419462442398, 0.2628255784511566, 2.0026607513427734, -0.2205435037612915, -0.9981479048728943, 1.3636054992675781, -2.393894672393799, 0.2705218195915222, 2.0022189617156982, 0.26143044233322144, 0.1222347840666771, -1.328712821006775, -0.6434502601623535, -0.32092732191085815, -0.47212839126586914, -1.2475742101669312, 0.6181700229644775, -0.2960161864757538, -0.884361743927002, -1.3635181188583374, 0.07217762619256973, -1.1432594060897827, -1.7604541778564453, 0.37281009554862976, 1.8448877334594727, 2.109304189682007, -0.8062878251075745, 1.4664877653121948, -0.27903610467910767, 0.18845608830451965, 1.148047924041748, 1.320603370666504, 3.115849018096924, 1.888176441192627, -1.358797311782837, 0.6914328336715698, -0.14161153137683868, -0.4554130434989929, 1.1428085565567017, -1.1894395351409912, 1.2701696157455444, -0.20392553508281708, -1.320220947265625, -1.232358694076538, 1.1162396669387817, 0.4741016924381256, 0.01422239001840353, -0.5078913569450378, 1.1664997339248657, 0.08078660815954208, 1.3636425733566284, 0.6434032320976257, -0.3168923258781433, 0.5705358386039734, -0.3818224370479584, -0.5370059609413147, 1.522160291671753, 0.10308872163295746, -1.5674781799316406, -2.317593812942505, -0.24361519515514374, -0.9137371778488159, -0.026656709611415863, -0.7176522612571716, -0.9651708006858826, 1.5902878046035767, 0.4016948342323303, -1.2643356323242188, -0.2890323996543884, -0.269729346036911, -0.5242224335670471, 2.7116270065307617, -1.3659950494766235, -0.1582638919353485, -0.9811223149299622, -0.5946539044380188, 1.6086562871932983, -1.1920539140701294, -0.282564640045166, -1.0514103174209595, -0.6298952102661133, -1.2216284275054932, -0.5039239525794983, 0.022182468324899673, -0.9573028087615967, 0.7798750996589661, 0.09949013590812683, -1.1888304948806763, -0.3076121509075165, -0.9239320755004883, 0.9679144620895386, -0.16221456229686737, 0.1660352200269699, 1.7839388847351074, 0.3592170178890228, -0.38427895307540894, 0.7482476830482483, 1.2024353742599487, 0.635219156742096, -0.6147665977478027, 0.05804242566227913, -0.6549218893051147, 0.32167449593544006, -1.2931931018829346, 0.26791712641716003, -2.9150915145874023, 0.7157313823699951, 0.002610132098197937, -0.11477707326412201, -0.07625491172075272, -1.328197956085205, 1.1222269535064697, 2.5481932163238525, -1.1824932098388672, 0.5511454343795776, 0.36942657828330994, 1.0543224811553955, -1.6180154085159302, 0.19417697191238403, -0.5253562927246094, 2.090566873550415, 0.193594828248024, 1.3086751699447632, -0.4780731201171875, -2.258925199508667, 0.6884936690330505, -1.2474913597106934, -1.0702916383743286, 0.7913569211959839, -0.8694380521774292, 0.2477782815694809, -1.3713926076889038, -0.22826336324214935, -0.9198428988456726, -1.1733677387237549, 0.5642306208610535, 0.11994718760251999, 0.4966524541378021, -0.5813882350921631, 0.2817838191986084, -2.194220781326294, -1.310469627380371, -0.1399165540933609, -0.953426718711853, 0.5058435201644897, -0.36711251735687256, 0.6489760875701904, -0.10392186045646667, -0.012583348900079727, 0.3200773298740387, 1.425062894821167, 3.348902940750122, 0.17867997288703918, 0.2607749104499817, -0.14565399289131165, -0.9828121066093445, 1.4243673086166382, 0.919276773929596, -0.15808933973312378, -0.6199792623519897, -0.9899749159812927, 1.2616958618164062, 1.9720720052719116, 1.0648143291473389, 0.011357919313013554, -0.9281324148178101, -0.7610322833061218, 0.058475006371736526, 0.24010302126407623, 0.5570154190063477, 0.9580496549606323, 0.03924066200852394, 0.07550767809152603, 1.5346007347106934, 1.1892962455749512, -0.43093469738960266, 0.32836124300956726, -0.8890161514282227, -0.497100830078125, 0.40168747305870056, 0.3191007971763611, 0.02503298595547676, 0.3814679682254791, -1.0660029649734497, -0.27259647846221924, -0.3951101005077362, -0.870603621006012, -0.7669193148612976, -0.3943912386894226, -0.4414426386356354, 1.5976999998092651, 0.054374102503061295, -0.414689302444458, 0.008726210333406925, -0.7858542203903198, -0.1634073555469513, -1.0641639232635498, 0.3790653645992279, -0.16116963326931, -0.015127855353057384, -0.19577671587467194, 1.683121681213379, -0.9443024396896362, -2.146357774734497, 0.24180860817432404, 0.2364765703678131, -0.34849637746810913, 0.15678222477436066, 1.6982247829437256, 0.59450364112854, 1.3568195104599, 1.347369909286499, 0.9591823220252991, -0.6092302203178406, -1.2142114639282227, 0.7601722478866577, 0.9713688492774963, -1.451036810874939, 0.8226678967475891, -0.16836580634117126, -0.5706167817115784, 0.6747806072235107, 1.3219503164291382, 0.4895559847354889, -1.9963947534561157, 0.8853014707565308, -0.9692763090133667, 0.8293445706367493, 0.7204437255859375, 0.7075962424278259, 0.22014036774635315, 0.8482838869094849, -1.3107045888900757, -1.1027963161468506, -0.6345177888870239, -0.6905134320259094, 1.9257999658584595, -0.35937726497650146, 0.5690427422523499, -0.21731410920619965, -1.2679177522659302, -0.02208375558257103, 0.7179283499717712, 0.24819765985012054, -0.5069178342819214, 0.8375647068023682, -0.5723982453346252, -1.0881880521774292, -1.2874131202697754, -0.3522525727748871, -0.984049379825592, -0.9052618741989136, 0.9778151512145996, 0.7396761178970337, 0.4218214154243469, 1.8622539043426514, 0.6477028727531433, 0.287272185087204, -2.6411144733428955, 0.9047034978866577, 0.25647053122520447, -0.04837382957339287, 0.8421645760536194, 0.22246654331684113, 1.0553324222564697, 0.010959315113723278, 0.5621150135993958, -2.4150478839874268, 2.256239891052246, -0.17720988392829895, 0.6745415329933167, -0.06294335424900055, -0.1052854061126709, 1.1101744174957275, 0.5835867524147034, 0.5926541686058044, -1.1273044347763062, 0.79466712474823, -0.5272727608680725, 1.2184139490127563, 0.8426498174667358, -0.8943607211112976, 0.021112583577632904, 1.3564770221710205, 0.4069463610649109, -0.5115596055984497, -0.9262232780456543, -0.9514636993408203, 0.9552031755447388, 1.750400424003601, -0.055354733020067215, 0.04015573114156723, 0.839515745639801, 0.7362446784973145, -1.2835205793380737, 0.027859505265951157, -0.6180985569953918, -0.6659460663795471, 1.6711968183517456, 2.088031053543091, -0.12964141368865967, -0.18194450438022614, -0.6338878870010376, -1.303842544555664, 0.8384582996368408, -0.07390040159225464, 0.10101436823606491, 0.6645351052284241, -0.6242982149124146, 1.1197348833084106, 0.720546305179596, 0.985681414604187, 0.11160033196210861, 0.18774697184562683, 0.3229367136955261, -0.3201107382774353, -1.2474414110183716, -0.3361547887325287, -1.068857192993164, -2.462062120437622, 0.35195037722587585, -0.21624042093753815, -1.4356273412704468, 0.04545198753476143, -1.0675846338272095, 0.8355642557144165, -0.5662575960159302, -1.0827149152755737, -1.4654148817062378, 0.23507878184318542, -0.12570935487747192, 0.8570670485496521, -1.616750717163086, -0.10963122546672821, 1.1908551454544067, 0.8322780728340149, -0.552435576915741, 0.9907278418540955, 0.19606879353523254, 0.911194920539856, 0.8608183860778809, -0.36574119329452515, 0.5596340894699097, 0.21595346927642822, -1.4133007526397705, 0.48768100142478943, 1.296494960784912, 0.19464798271656036, 1.4918811321258545, -0.5050410628318787, -0.0009373901411890984, 0.3932974934577942, -0.6112101674079895, -0.49537643790245056, -0.49018993973731995, 0.7130861878395081, 0.010087917558848858, -1.0040627717971802, -0.0870518609881401, -0.14472851157188416, -0.29615601897239685, 0.21554584801197052, -1.5063111782073975, -0.1225946769118309, -0.3797614276409149, -0.5858409404754639, -1.2487471103668213, -0.02359587699174881, 1.3584866523742676, -0.8413022756576538, -0.2122504562139511, 0.48302698135375977, 0.277019202709198, 0.6231387853622437, 0.6862241625785828, -0.6726707816123962, -0.28922203183174133, -0.25697898864746094, -0.2943766415119171, 0.37848010659217834, 1.25226891040802, -0.03824818506836891, -0.908857524394989, 0.7058500647544861, -0.412082701921463, 0.1703542023897171, 1.9537134170532227, 0.05204477906227112, -0.7835883498191833, 0.3991135358810425, -0.7513418197631836, 1.8918005228042603, 1.6185253858566284, 1.3226326704025269, -0.16307327151298523, -0.9269968867301941, 0.6172177791595459, -0.3113428056240082, -0.35030731558799744, 0.8916686177253723, 0.427514910697937, -0.27795422077178955, -1.3714396953582764, 0.7054325938224792, 1.2032501697540283, -0.8793314695358276, -0.755281925201416, 0.16099748015403748, -0.8412758708000183, 1.139266848564148, 0.643791675567627, 0.3771499991416931, 0.24466539919376373, 1.642500400543213, 0.7761121988296509, -0.4631098210811615, 0.44386494159698486, 0.5068184733390808, -0.1787623167037964, -2.0877280235290527, -1.0795713663101196, 0.3605521619319916, -0.4688393175601959, -1.5406941175460815, 1.3425967693328857, -1.169690728187561, -1.0482368469238281, 0.5753853917121887, 0.035653989762067795, 1.3534783124923706, 0.30949974060058594, 1.6445715427398682, 2.0891430377960205, 0.954274594783783, 0.4405197203159332, 1.3286888599395752, -0.10133171826601028, -0.35758349299430847, 1.7728519439697266, -0.4587424397468567, 0.5045870542526245, 1.095271348953247, -0.4354233145713806, -1.1891127824783325, -0.8102422952651978, -1.1874364614486694, -0.6912310123443604, 1.225663185119629, 0.09401773661375046, -1.0392258167266846, 0.27620241045951843, 1.6092325448989868, 0.1181623563170433, -0.24663794040679932, 0.6570674180984497, 0.33755844831466675, -0.7103000283241272, -0.10840459913015366, -0.9282754063606262, 0.49690452218055725, -0.2263166755437851, -0.2846582233905792, 0.22717909514904022, 0.4588930606842041, 1.2823318243026733, -0.022292714565992355, 0.10855512320995331, 1.1573810577392578, -1.4789661169052124, 1.4594098329544067, -0.6445765495300293, 0.2763710916042328, -2.3680098056793213, 1.409946084022522, -0.7900159955024719, 1.8975828886032104, -2.6445202827453613, 0.4382450580596924, -0.5067245960235596, -0.5477603077888489, 0.20744144916534424, -0.30914106965065, 0.08392877876758575, -0.15899541974067688, -1.08758544921875, -0.1024589091539383, -0.7053123116493225, 0.5595977902412415, 1.236999273300171, 1.3592338562011719, -1.1339322328567505, -0.2616780698299408, -1.6866376399993896, -0.16819417476654053, -0.7978431582450867, 0.36082255840301514, -1.944466233253479, -0.12408651411533356, -1.958878755569458, -2.3654675483703613, -1.1927094459533691, -0.8504844307899475, 1.0936832427978516, 0.20184460282325745, -0.8458044528961182, 1.1904102563858032, -0.3986593186855316, -1.7553163766860962, 1.1039726734161377, -2.156024694442749 ]
https://github.com/huggingface/datasets/issues/5941
Load Data Sets Too Slow In Train Seq2seq Model
In the meantime, it's better to use Dataset.from_generator (requires replacing the load_dataset calls in the transformers script with Dataset.from_generator) or write a dataset loading script for large datasets. ================================================================================ I tried ‘Dataset. from_generator’ implements data loading, but the testing results show no improvement
### Describe the bug step 'Generating train split' in load_dataset is too slow: ![image](https://github.com/huggingface/datasets/assets/19569322/d9b08eee-95fe-4741-a346-b70416c948f8) ### Steps to reproduce the bug Data: own data,16K16B Mono wav Oficial Script:[ run_speech_recognition_seq2seq.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py) Add Code: if data_args.data_path is not None: print(data_args.data_path) raw_datasets = load_dataset("audiofolder", data_dir=data_args.data_path, cache_dir=model_args.cache_dir) raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000)) raw_datasets = raw_datasets["train"].train_test_split(test_size=0.005, shuffle=True) (change cache_dir to other path ,ex:/DATA/cache) ### Expected behavior load data fast,at least 1000+ `Generating train split: 387875 examples [32:24:45, 1154.83 examples/s]` ### Environment info - `transformers` version: 4.28.0.dev0 - Platform: Linux-5.4.0-149-generic-x86_64-with-debian-bullseye-sid - Python version: 3.7.16 - Huggingface_hub version: 0.13.2 - PyTorch version (GPU?): 1.13.1+cu116 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in>
104
43
Load Data Sets Too Slow In Train Seq2seq Model ### Describe the bug step 'Generating train split' in load_dataset is too slow: ![image](https://github.com/huggingface/datasets/assets/19569322/d9b08eee-95fe-4741-a346-b70416c948f8) ### Steps to reproduce the bug Data: own data,16K16B Mono wav Oficial Script:[ run_speech_recognition_seq2seq.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py) Add Code: if data_args.data_path is not None: print(data_args.data_path) raw_datasets = load_dataset("audiofolder", data_dir=data_args.data_path, cache_dir=model_args.cache_dir) raw_datasets = raw_datasets.cast_column("audio", Audio(sampling_rate=16000)) raw_datasets = raw_datasets["train"].train_test_split(test_size=0.005, shuffle=True) (change cache_dir to other path ,ex:/DATA/cache) ### Expected behavior load data fast,at least 1000+ `Generating train split: 387875 examples [32:24:45, 1154.83 examples/s]` ### Environment info - `transformers` version: 4.28.0.dev0 - Platform: Linux-5.4.0-149-generic-x86_64-with-debian-bullseye-sid - Python version: 3.7.16 - Huggingface_hub version: 0.13.2 - PyTorch version (GPU?): 1.13.1+cu116 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in> In the meantime, it's better to use Dataset.from_generator (requires replacing the load_dataset calls in the transformers script with Dataset.from_generator) or write a dataset loading script for large datasets. ================================================================================ I tried ‘Dataset. from_generator’ implements data loading, but the testing results show no improvement
[ -1.2872120141983032, -0.934897780418396, -0.618711531162262, 1.4699480533599854, -0.1538279503583908, -1.258852481842041, 0.13311150670051575, -0.9876823425292969, 1.557150959968567, -0.7559544444084167, 0.30356916785240173, -1.6126487255096436, -0.007835671305656433, -0.5946030616760254, -0.7224470376968384, -0.8036127090454102, -0.4451872408390045, -0.751458466053009, 1.0766406059265137, 2.506357192993164, 1.298253059387207, -1.35751211643219, 2.7459075450897217, 0.7358030676841736, -0.2499530166387558, -1.0330251455307007, 0.4788162112236023, 0.027637585997581482, -1.356276273727417, -0.38808590173721313, -0.9371278882026672, -0.09059043973684311, -0.5551401972770691, -0.47826167941093445, 0.04492080584168434, 0.4280957579612732, -0.24613972008228302, -0.3964453339576721, -0.5383574962615967, -0.7278078198432922, 0.49722984433174133, -0.3273123800754547, 0.8614057898521423, -0.25429949164390564, 1.7351034879684448, -0.6277558207511902, 0.5511161684989929, 0.7325748205184937, 1.3400793075561523, 0.1659657061100006, -0.022624172270298004, 0.40900740027427673, 0.3381764590740204, -0.03631346672773361, 0.5365176200866699, 1.231553554534912, 0.6713613867759705, 0.38896867632865906, 0.6574504375457764, -2.2290449142456055, 1.3333550691604614, -0.9010791778564453, 0.3188537061214447, 1.340482234954834, -0.9799560308456421, 0.3778601288795471, -1.7530080080032349, -0.12558051943778992, 0.5456269383430481, -2.2014360427856445, 0.309049129486084, -1.306250810623169, -0.5524742603302002, 1.0180416107177734, 0.36117246747016907, -1.2329950332641602, 0.06177675351500511, -0.533235490322113, 1.0897166728973389, 0.4048464596271515, 1.115334391593933, -1.6903787851333618, -0.08375146239995956, -0.24446624517440796, 0.08478009700775146, -1.2230615615844727, -1.617281198501587, 0.5351966023445129, 0.6322427988052368, 0.6873016953468323, -0.09203643351793289, 0.9827402234077454, -1.0795621871948242, 0.8397896885871887, -1.0537524223327637, -1.6464333534240723, -1.4621483087539673, -2.4177632331848145, -2.241490364074707, 0.7035589218139648, -0.46107617020606995, -0.5071345567703247, 2.141282558441162, -1.115308165550232, -1.7730975151062012, 1.1500152349472046, 0.2529502809047699, 0.024306338280439377, 2.3427987098693848, 0.2519780993461609, -0.7513156533241272, 0.539297878742218, -0.756851077079773, 0.712759256362915, -0.3132137060165405, 1.247327446937561, 0.44622594118118286, -1.0873507261276245, 1.518027424812317, -0.40157362818717957, 0.5572117567062378, -0.6421674489974976, -0.4570657014846802, -0.6832543015480042, 0.2655077576637268, 1.8695377111434937, -0.29444023966789246, 1.5335545539855957, -0.32622644305229187, -1.522836446762085, -1.5319945812225342, 0.8293558359146118, 0.5523529052734375, -0.7567470669746399, 0.11674744635820389, -0.4815731644630432, 0.14204850792884827, -0.0021813507191836834, 1.073354721069336, 1.2695101499557495, 0.6910464763641357, -0.41281163692474365, -0.9182060360908508, 0.16207516193389893, -0.05606662109494209, -0.6467106938362122, -1.808284044265747, -0.31694498658180237, 0.14827202260494232, 0.5966644883155823, -1.2189419269561768, 1.7835744619369507, 0.9355493783950806, 1.9322295188903809, 1.042578935623169, -0.34869471192359924, 1.4665626287460327, 0.04222877696156502, 1.8453904390335083, -0.49158963561058044, 0.6939458847045898, -0.33058542013168335, -1.2017351388931274, 0.8546613454818726, -0.33500754833221436, -2.097384452819824, -0.7102355360984802, -0.7061119675636292, -0.22033925354480743, -0.8588461875915527, 0.982944130897522, -0.2647269368171692, -1.414860486984253, 0.21725937724113464, -0.7979022264480591, 0.21575330197811127, -1.241072177886963, 0.23771630227565765, 0.7001640796661377, -0.5958285927772522, 0.05393492057919502, -0.25475940108299255, -1.2902265787124634, -0.4462575316429138, 0.3509780466556549, 1.821889042854309, -0.7401387691497803, 0.9771834015846252, 1.0655884742736816, -0.6455702781677246, 0.06551440805196762, 0.27586811780929565, -0.3172324299812317, 0.9108444452285767, -1.0995924472808838, -0.3951275646686554, 1.2007660865783691, -0.22187289595603943, -0.6305274963378906, 1.4019650220870972, 0.7733228802680969, -0.9963134527206421, -0.24082215130329132, -0.15408357977867126, -0.8651998043060303, 0.03650109842419624, -1.6193078756332397, -0.14205385744571686, 0.4308934807777405, -1.4628814458847046, -0.441550612449646, -0.18408186733722687, 1.4051357507705688, -0.12958049774169922, 1.4526461362838745, -0.3478196859359741, -0.11219616234302521, -0.38734138011932373, -0.4332624673843384, 0.19493259489536285, -0.19951887428760529, -0.5701998472213745, 0.18460504710674286, -0.8237733244895935, 0.28774064779281616, 1.44077467918396, 0.3668900728225708, 0.13458369672298431, 0.511610209941864, 1.0608348846435547, 0.3653579652309418, -0.1286575347185135, -0.8739575147628784, -1.6697571277618408, 2.036593198776245, -1.4582490921020508, 2.0776023864746094, 0.8077100515365601, -0.09151873737573624, -1.8080843687057495, -1.8892881870269775, 1.244550108909607, 1.1371558904647827, 2.410642623901367, 0.4423946142196655, 0.44863712787628174, -0.8218027949333191, -0.7151139378547668, 0.3298894762992859, -1.028464436531067, -0.7132699489593506, 0.13957396149635315, 2.411414384841919, 1.7495441436767578, -0.341147243976593, -0.18292810022830963, -0.950364351272583, 1.3317688703536987, -0.2218419462442398, 0.2628255784511566, 2.0026607513427734, -0.2205435037612915, -0.9981479048728943, 1.3636054992675781, -2.393894672393799, 0.2705218195915222, 2.0022189617156982, 0.26143044233322144, 0.1222347840666771, -1.328712821006775, -0.6434502601623535, -0.32092732191085815, -0.47212839126586914, -1.2475742101669312, 0.6181700229644775, -0.2960161864757538, -0.884361743927002, -1.3635181188583374, 0.07217762619256973, -1.1432594060897827, -1.7604541778564453, 0.37281009554862976, 1.8448877334594727, 2.109304189682007, -0.8062878251075745, 1.4664877653121948, -0.27903610467910767, 0.18845608830451965, 1.148047924041748, 1.320603370666504, 3.115849018096924, 1.888176441192627, -1.358797311782837, 0.6914328336715698, -0.14161153137683868, -0.4554130434989929, 1.1428085565567017, -1.1894395351409912, 1.2701696157455444, -0.20392553508281708, -1.320220947265625, -1.232358694076538, 1.1162396669387817, 0.4741016924381256, 0.01422239001840353, -0.5078913569450378, 1.1664997339248657, 0.08078660815954208, 1.3636425733566284, 0.6434032320976257, -0.3168923258781433, 0.5705358386039734, -0.3818224370479584, -0.5370059609413147, 1.522160291671753, 0.10308872163295746, -1.5674781799316406, -2.317593812942505, -0.24361519515514374, -0.9137371778488159, -0.026656709611415863, -0.7176522612571716, -0.9651708006858826, 1.5902878046035767, 0.4016948342323303, -1.2643356323242188, -0.2890323996543884, -0.269729346036911, -0.5242224335670471, 2.7116270065307617, -1.3659950494766235, -0.1582638919353485, -0.9811223149299622, -0.5946539044380188, 1.6086562871932983, -1.1920539140701294, -0.282564640045166, -1.0514103174209595, -0.6298952102661133, -1.2216284275054932, -0.5039239525794983, 0.022182468324899673, -0.9573028087615967, 0.7798750996589661, 0.09949013590812683, -1.1888304948806763, -0.3076121509075165, -0.9239320755004883, 0.9679144620895386, -0.16221456229686737, 0.1660352200269699, 1.7839388847351074, 0.3592170178890228, -0.38427895307540894, 0.7482476830482483, 1.2024353742599487, 0.635219156742096, -0.6147665977478027, 0.05804242566227913, -0.6549218893051147, 0.32167449593544006, -1.2931931018829346, 0.26791712641716003, -2.9150915145874023, 0.7157313823699951, 0.002610132098197937, -0.11477707326412201, -0.07625491172075272, -1.328197956085205, 1.1222269535064697, 2.5481932163238525, -1.1824932098388672, 0.5511454343795776, 0.36942657828330994, 1.0543224811553955, -1.6180154085159302, 0.19417697191238403, -0.5253562927246094, 2.090566873550415, 0.193594828248024, 1.3086751699447632, -0.4780731201171875, -2.258925199508667, 0.6884936690330505, -1.2474913597106934, -1.0702916383743286, 0.7913569211959839, -0.8694380521774292, 0.2477782815694809, -1.3713926076889038, -0.22826336324214935, -0.9198428988456726, -1.1733677387237549, 0.5642306208610535, 0.11994718760251999, 0.4966524541378021, -0.5813882350921631, 0.2817838191986084, -2.194220781326294, -1.310469627380371, -0.1399165540933609, -0.953426718711853, 0.5058435201644897, -0.36711251735687256, 0.6489760875701904, -0.10392186045646667, -0.012583348900079727, 0.3200773298740387, 1.425062894821167, 3.348902940750122, 0.17867997288703918, 0.2607749104499817, -0.14565399289131165, -0.9828121066093445, 1.4243673086166382, 0.919276773929596, -0.15808933973312378, -0.6199792623519897, -0.9899749159812927, 1.2616958618164062, 1.9720720052719116, 1.0648143291473389, 0.011357919313013554, -0.9281324148178101, -0.7610322833061218, 0.058475006371736526, 0.24010302126407623, 0.5570154190063477, 0.9580496549606323, 0.03924066200852394, 0.07550767809152603, 1.5346007347106934, 1.1892962455749512, -0.43093469738960266, 0.32836124300956726, -0.8890161514282227, -0.497100830078125, 0.40168747305870056, 0.3191007971763611, 0.02503298595547676, 0.3814679682254791, -1.0660029649734497, -0.27259647846221924, -0.3951101005077362, -0.870603621006012, -0.7669193148612976, -0.3943912386894226, -0.4414426386356354, 1.5976999998092651, 0.054374102503061295, -0.414689302444458, 0.008726210333406925, -0.7858542203903198, -0.1634073555469513, -1.0641639232635498, 0.3790653645992279, -0.16116963326931, -0.015127855353057384, -0.19577671587467194, 1.683121681213379, -0.9443024396896362, -2.146357774734497, 0.24180860817432404, 0.2364765703678131, -0.34849637746810913, 0.15678222477436066, 1.6982247829437256, 0.59450364112854, 1.3568195104599, 1.347369909286499, 0.9591823220252991, -0.6092302203178406, -1.2142114639282227, 0.7601722478866577, 0.9713688492774963, -1.451036810874939, 0.8226678967475891, -0.16836580634117126, -0.5706167817115784, 0.6747806072235107, 1.3219503164291382, 0.4895559847354889, -1.9963947534561157, 0.8853014707565308, -0.9692763090133667, 0.8293445706367493, 0.7204437255859375, 0.7075962424278259, 0.22014036774635315, 0.8482838869094849, -1.3107045888900757, -1.1027963161468506, -0.6345177888870239, -0.6905134320259094, 1.9257999658584595, -0.35937726497650146, 0.5690427422523499, -0.21731410920619965, -1.2679177522659302, -0.02208375558257103, 0.7179283499717712, 0.24819765985012054, -0.5069178342819214, 0.8375647068023682, -0.5723982453346252, -1.0881880521774292, -1.2874131202697754, -0.3522525727748871, -0.984049379825592, -0.9052618741989136, 0.9778151512145996, 0.7396761178970337, 0.4218214154243469, 1.8622539043426514, 0.6477028727531433, 0.287272185087204, -2.6411144733428955, 0.9047034978866577, 0.25647053122520447, -0.04837382957339287, 0.8421645760536194, 0.22246654331684113, 1.0553324222564697, 0.010959315113723278, 0.5621150135993958, -2.4150478839874268, 2.256239891052246, -0.17720988392829895, 0.6745415329933167, -0.06294335424900055, -0.1052854061126709, 1.1101744174957275, 0.5835867524147034, 0.5926541686058044, -1.1273044347763062, 0.79466712474823, -0.5272727608680725, 1.2184139490127563, 0.8426498174667358, -0.8943607211112976, 0.021112583577632904, 1.3564770221710205, 0.4069463610649109, -0.5115596055984497, -0.9262232780456543, -0.9514636993408203, 0.9552031755447388, 1.750400424003601, -0.055354733020067215, 0.04015573114156723, 0.839515745639801, 0.7362446784973145, -1.2835205793380737, 0.027859505265951157, -0.6180985569953918, -0.6659460663795471, 1.6711968183517456, 2.088031053543091, -0.12964141368865967, -0.18194450438022614, -0.6338878870010376, -1.303842544555664, 0.8384582996368408, -0.07390040159225464, 0.10101436823606491, 0.6645351052284241, -0.6242982149124146, 1.1197348833084106, 0.720546305179596, 0.985681414604187, 0.11160033196210861, 0.18774697184562683, 0.3229367136955261, -0.3201107382774353, -1.2474414110183716, -0.3361547887325287, -1.068857192993164, -2.462062120437622, 0.35195037722587585, -0.21624042093753815, -1.4356273412704468, 0.04545198753476143, -1.0675846338272095, 0.8355642557144165, -0.5662575960159302, -1.0827149152755737, -1.4654148817062378, 0.23507878184318542, -0.12570935487747192, 0.8570670485496521, -1.616750717163086, -0.10963122546672821, 1.1908551454544067, 0.8322780728340149, -0.552435576915741, 0.9907278418540955, 0.19606879353523254, 0.911194920539856, 0.8608183860778809, -0.36574119329452515, 0.5596340894699097, 0.21595346927642822, -1.4133007526397705, 0.48768100142478943, 1.296494960784912, 0.19464798271656036, 1.4918811321258545, -0.5050410628318787, -0.0009373901411890984, 0.3932974934577942, -0.6112101674079895, -0.49537643790245056, -0.49018993973731995, 0.7130861878395081, 0.010087917558848858, -1.0040627717971802, -0.0870518609881401, -0.14472851157188416, -0.29615601897239685, 0.21554584801197052, -1.5063111782073975, -0.1225946769118309, -0.3797614276409149, -0.5858409404754639, -1.2487471103668213, -0.02359587699174881, 1.3584866523742676, -0.8413022756576538, -0.2122504562139511, 0.48302698135375977, 0.277019202709198, 0.6231387853622437, 0.6862241625785828, -0.6726707816123962, -0.28922203183174133, -0.25697898864746094, -0.2943766415119171, 0.37848010659217834, 1.25226891040802, -0.03824818506836891, -0.908857524394989, 0.7058500647544861, -0.412082701921463, 0.1703542023897171, 1.9537134170532227, 0.05204477906227112, -0.7835883498191833, 0.3991135358810425, -0.7513418197631836, 1.8918005228042603, 1.6185253858566284, 1.3226326704025269, -0.16307327151298523, -0.9269968867301941, 0.6172177791595459, -0.3113428056240082, -0.35030731558799744, 0.8916686177253723, 0.427514910697937, -0.27795422077178955, -1.3714396953582764, 0.7054325938224792, 1.2032501697540283, -0.8793314695358276, -0.755281925201416, 0.16099748015403748, -0.8412758708000183, 1.139266848564148, 0.643791675567627, 0.3771499991416931, 0.24466539919376373, 1.642500400543213, 0.7761121988296509, -0.4631098210811615, 0.44386494159698486, 0.5068184733390808, -0.1787623167037964, -2.0877280235290527, -1.0795713663101196, 0.3605521619319916, -0.4688393175601959, -1.5406941175460815, 1.3425967693328857, -1.169690728187561, -1.0482368469238281, 0.5753853917121887, 0.035653989762067795, 1.3534783124923706, 0.30949974060058594, 1.6445715427398682, 2.0891430377960205, 0.954274594783783, 0.4405197203159332, 1.3286888599395752, -0.10133171826601028, -0.35758349299430847, 1.7728519439697266, -0.4587424397468567, 0.5045870542526245, 1.095271348953247, -0.4354233145713806, -1.1891127824783325, -0.8102422952651978, -1.1874364614486694, -0.6912310123443604, 1.225663185119629, 0.09401773661375046, -1.0392258167266846, 0.27620241045951843, 1.6092325448989868, 0.1181623563170433, -0.24663794040679932, 0.6570674180984497, 0.33755844831466675, -0.7103000283241272, -0.10840459913015366, -0.9282754063606262, 0.49690452218055725, -0.2263166755437851, -0.2846582233905792, 0.22717909514904022, 0.4588930606842041, 1.2823318243026733, -0.022292714565992355, 0.10855512320995331, 1.1573810577392578, -1.4789661169052124, 1.4594098329544067, -0.6445765495300293, 0.2763710916042328, -2.3680098056793213, 1.409946084022522, -0.7900159955024719, 1.8975828886032104, -2.6445202827453613, 0.4382450580596924, -0.5067245960235596, -0.5477603077888489, 0.20744144916534424, -0.30914106965065, 0.08392877876758575, -0.15899541974067688, -1.08758544921875, -0.1024589091539383, -0.7053123116493225, 0.5595977902412415, 1.236999273300171, 1.3592338562011719, -1.1339322328567505, -0.2616780698299408, -1.6866376399993896, -0.16819417476654053, -0.7978431582450867, 0.36082255840301514, -1.944466233253479, -0.12408651411533356, -1.958878755569458, -2.3654675483703613, -1.1927094459533691, -0.8504844307899475, 1.0936832427978516, 0.20184460282325745, -0.8458044528961182, 1.1904102563858032, -0.3986593186855316, -1.7553163766860962, 1.1039726734161377, -2.156024694442749 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
Hi @AntreasAntoniou , sorry to know you are facing this issue. To help debugging it, could you tell me: - What is the total dataset size? - Is it always failing on the same shard or is the hanging problem happening randomly? - Were you able to save the dataset as parquet locally? This would help us determine if the problem comes from the upload or the file generation. I'm cc-ing @lhoestq who might have some insights from a `datasets` perspective.
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
81
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` Hi @AntreasAntoniou , sorry to know you are facing this issue. To help debugging it, could you tell me: - What is the total dataset size? - Is it always failing on the same shard or is the hanging problem happening randomly? - Were you able to save the dataset as parquet locally? This would help us determine if the problem comes from the upload or the file generation. I'm cc-ing @lhoestq who might have some insights from a `datasets` perspective.
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
One trick that can also help is to check the traceback when you kill your python process: it will show where in the code it was hanging
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
27
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` One trick that can also help is to check the traceback when you kill your python process: it will show where in the code it was hanging
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
Right. So I did the trick @lhoestq suggested. Here is where things seem to hang ``` Error while uploading 'data/train-00120-of-00195-466c2dbab2eb9989.parquet' to the Hub. Pushing split train to the Hub. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.15s/ba] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:52<00:00, 52.12s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.08s/ba] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:45<00:00, 45.54s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.08s/ba] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.03s/ba^Upload 1 LFS files: 0%| | 0/1 [ 21:27:35<?, ?it/s] Pushing dataset shards to the dataset hub: 63%|█████████████████████████████████████████████████████████████▎ | 122/195 [23:37:11<14:07:59, 696.98s/it] ^CError in sys.excepthook: Traceback (most recent call last): File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1699, in print extend(render(renderable, render_options)) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1335, in render yield from self.render(render_output, _options) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1331, in render for render_output in iter_render: File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/constrain.py", line 29, in __rich_console__ yield from console.render(self.renderable, child_options) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1331, in render for render_output in iter_render: File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/panel.py", line 220, in __rich_console__ lines = console.render_lines(renderable, child_options, style=style) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1371, in render_lines lines = list( File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/segment.py", line 292, in split_and_crop_lines for segment in segments: File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1331, in render for render_output in iter_render: File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/padding.py", line 97, in __rich_console__ lines = console.render_lines( File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1371, in render_lines lines = list( File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/segment.py", line 292, in split_and_crop_lines for segment in segments: File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1335, in render yield from self.render(render_output, _options) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1331, in render for render_output in iter_render: File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/syntax.py", line 611, in __rich_console__ segments = Segments(self._get_syntax(console, options)) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/segment.py", line 668, in __init__ self.segments = list(segments) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/syntax.py", line 674, in _get_syntax lines: Union[List[Text], Lines] = text.split("\n", allow_blank=ends_on_nl) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/text.py", line 1042, in split lines = Lines( File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/containers.py", line 70, in __init__ self._lines: List["Text"] = list(lines) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/text.py", line 1043, in <genexpr> line for line in self.divide(flatten_spans()) if line.plain != separator File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/text.py", line 385, in plain if len(self._text) != 1: KeyboardInterrupt Original exception was: Traceback (most recent call last): File "/opt/conda/envs/main/lib/python3.10/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs)) File "/opt/conda/envs/main/lib/python3.10/site-packages/tqdm/std.py", line 1178, in __iter__ for obj in iterable: File "/opt/conda/envs/main/lib/python3.10/concurrent/futures/_base.py", line 621, in result_iterator yield _result_or_cancel(fs.pop()) File "/opt/conda/envs/main/lib/python3.10/concurrent/futures/_base.py", line 319, in _result_or_cancel return fut.result(timeout) File "/opt/conda/envs/main/lib/python3.10/concurrent/futures/_base.py", line 453, in result self._condition.wait(timeout) File "/opt/conda/envs/main/lib/python3.10/threading.py", line 320, in wait waiter.acquire() KeyboardInterrupt During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/TALI/tali/scripts/validate_dataset.py", line 127, in <module> train_dataset.push_to_hub(repo_id="Antreas/TALI-base", max_shard_size="5GB") File "/opt/conda/envs/main/lib/python3.10/site-packages/datasets/dataset_dict.py", line 1583, in push_to_hub repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parquet_shards_to_hub( File "/opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 5275, in _push_parquet_shards_to_hub _retry( File "/opt/conda/envs/main/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 282, in _retry return func(*func_args, **func_kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 826, in _inner return fn(self, *args, **kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 3205, in upload_file commit_info = self.create_commit( File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 826, in _inner return fn(self, *args, **kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2680, in create_commit upload_lfs_files( File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/_commit_api.py", line 353, in upload_lfs_files thread_map( File "/opt/conda/envs/main/lib/python3.10/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/tqdm/contrib/concurrent.py", line 49, in _executor_map with PoolExecutor(max_workers=max_workers, initializer=tqdm_class.set_lock, File "/opt/conda/envs/main/lib/python3.10/concurrent/futures/_base.py", line 649, in __exit__ self.shutdown(wait=True) File "/opt/conda/envs/main/lib/python3.10/concurrent/futures/thread.py", line 235, in shutdown t.join() File "/opt/conda/envs/main/lib/python3.10/threading.py", line 1096, in join self._wait_for_tstate_lock() File "/opt/conda/envs/main/lib/python3.10/threading.py", line 1116, in _wait_for_tstate_lock if lock.acquire(block, timeout): KeyboardInterrupt ```
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
556
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` Right. So I did the trick @lhoestq suggested. Here is where things seem to hang ``` Error while uploading 'data/train-00120-of-00195-466c2dbab2eb9989.parquet' to the Hub. Pushing split train to the Hub. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.15s/ba] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:52<00:00, 52.12s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.08s/ba] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:45<00:00, 45.54s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.08s/ba] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:03<00:00, 1.03s/ba^Upload 1 LFS files: 0%| | 0/1 [ 21:27:35<?, ?it/s] Pushing dataset shards to the dataset hub: 63%|█████████████████████████████████████████████████████████████▎ | 122/195 [23:37:11<14:07:59, 696.98s/it] ^CError in sys.excepthook: Traceback (most recent call last): File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1699, in print extend(render(renderable, render_options)) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1335, in render yield from self.render(render_output, _options) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1331, in render for render_output in iter_render: File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/constrain.py", line 29, in __rich_console__ yield from console.render(self.renderable, child_options) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1331, in render for render_output in iter_render: File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/panel.py", line 220, in __rich_console__ lines = console.render_lines(renderable, child_options, style=style) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1371, in render_lines lines = list( File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/segment.py", line 292, in split_and_crop_lines for segment in segments: File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1331, in render for render_output in iter_render: File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/padding.py", line 97, in __rich_console__ lines = console.render_lines( File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1371, in render_lines lines = list( File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/segment.py", line 292, in split_and_crop_lines for segment in segments: File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1335, in render yield from self.render(render_output, _options) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/console.py", line 1331, in render for render_output in iter_render: File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/syntax.py", line 611, in __rich_console__ segments = Segments(self._get_syntax(console, options)) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/segment.py", line 668, in __init__ self.segments = list(segments) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/syntax.py", line 674, in _get_syntax lines: Union[List[Text], Lines] = text.split("\n", allow_blank=ends_on_nl) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/text.py", line 1042, in split lines = Lines( File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/containers.py", line 70, in __init__ self._lines: List["Text"] = list(lines) File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/text.py", line 1043, in <genexpr> line for line in self.divide(flatten_spans()) if line.plain != separator File "/opt/conda/envs/main/lib/python3.10/site-packages/rich/text.py", line 385, in plain if len(self._text) != 1: KeyboardInterrupt Original exception was: Traceback (most recent call last): File "/opt/conda/envs/main/lib/python3.10/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs)) File "/opt/conda/envs/main/lib/python3.10/site-packages/tqdm/std.py", line 1178, in __iter__ for obj in iterable: File "/opt/conda/envs/main/lib/python3.10/concurrent/futures/_base.py", line 621, in result_iterator yield _result_or_cancel(fs.pop()) File "/opt/conda/envs/main/lib/python3.10/concurrent/futures/_base.py", line 319, in _result_or_cancel return fut.result(timeout) File "/opt/conda/envs/main/lib/python3.10/concurrent/futures/_base.py", line 453, in result self._condition.wait(timeout) File "/opt/conda/envs/main/lib/python3.10/threading.py", line 320, in wait waiter.acquire() KeyboardInterrupt During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/TALI/tali/scripts/validate_dataset.py", line 127, in <module> train_dataset.push_to_hub(repo_id="Antreas/TALI-base", max_shard_size="5GB") File "/opt/conda/envs/main/lib/python3.10/site-packages/datasets/dataset_dict.py", line 1583, in push_to_hub repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parquet_shards_to_hub( File "/opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 5275, in _push_parquet_shards_to_hub _retry( File "/opt/conda/envs/main/lib/python3.10/site-packages/datasets/utils/file_utils.py", line 282, in _retry return func(*func_args, **func_kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 826, in _inner return fn(self, *args, **kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 3205, in upload_file commit_info = self.create_commit( File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 826, in _inner return fn(self, *args, **kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2680, in create_commit upload_lfs_files( File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/_commit_api.py", line 353, in upload_lfs_files thread_map( File "/opt/conda/envs/main/lib/python3.10/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs) File "/opt/conda/envs/main/lib/python3.10/site-packages/tqdm/contrib/concurrent.py", line 49, in _executor_map with PoolExecutor(max_workers=max_workers, initializer=tqdm_class.set_lock, File "/opt/conda/envs/main/lib/python3.10/concurrent/futures/_base.py", line 649, in __exit__ self.shutdown(wait=True) File "/opt/conda/envs/main/lib/python3.10/concurrent/futures/thread.py", line 235, in shutdown t.join() File "/opt/conda/envs/main/lib/python3.10/threading.py", line 1096, in join self._wait_for_tstate_lock() File "/opt/conda/envs/main/lib/python3.10/threading.py", line 1116, in _wait_for_tstate_lock if lock.acquire(block, timeout): KeyboardInterrupt ```
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
@Wauplin >What is the total dataset size? There are three variants, and the random hanging happens on all three. The sizes are 2TB, 1TB, and 200GB. >Is it always failing on the same shard or is the hanging problem happening randomly? It seems to be very much random, as restarting can help move past the previous hang, only to find a new one, or not. >Were you able to save the dataset as parquet locally? This would help us determine if the problem comes from the upload or the file generation. Yes. The dataset seems to be locally stored as parquet.
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
101
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` @Wauplin >What is the total dataset size? There are three variants, and the random hanging happens on all three. The sizes are 2TB, 1TB, and 200GB. >Is it always failing on the same shard or is the hanging problem happening randomly? It seems to be very much random, as restarting can help move past the previous hang, only to find a new one, or not. >Were you able to save the dataset as parquet locally? This would help us determine if the problem comes from the upload or the file generation. Yes. The dataset seems to be locally stored as parquet.
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
Hmm it looks like an issue with TQDM lock. Maybe you can try updating TQDM ?
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
16
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` Hmm it looks like an issue with TQDM lock. Maybe you can try updating TQDM ?
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
I am using the latest version of tqdm ``` ⬢ [Docker] ❯ pip install tqdm --upgrade Requirement already satisfied: tqdm in /opt/conda/envs/main/lib/python3.10/site-packages (4.65.0) WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv ```
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
54
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` I am using the latest version of tqdm ``` ⬢ [Docker] ❯ pip install tqdm --upgrade Requirement already satisfied: tqdm in /opt/conda/envs/main/lib/python3.10/site-packages (4.65.0) WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv ```
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
I tried trying to catch the hanging issue in action again ``` Pushing dataset shards to the dataset hub: 65%|█████████████████████████████████████████████████████████████████▊ | 127/195 [2:28:02<1:19:15, 69.94s/it] Error while uploading 'data/train-00127-of-00195-3f8d036ade107c27.parquet' to the Hub. Pushing split train to the Hub. Pushing dataset shards to the dataset hub: 64%|████████████████████████████████████████████████████████████████▏ | 124/195 [2:06:10<1:12:14, 61.05s/it]C^[^C^C^C ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ /TALI/tali/scripts/validate_dataset.py:127 in <module> │ │ │ │ 124 │ │ │ 125 │ while not succesful_competion: │ │ 126 │ │ try: │ │ ❱ 127 │ │ │ train_dataset.push_to_hub(repo_id="Antreas/TALI-base", max_shard_size="5GB") │ │ 128 │ │ │ succesful_competion = True │ │ 129 │ │ except Exception as e: │ │ 130 │ │ │ print(e) │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/dataset_dict.py:1583 in push_to_hub │ │ │ │ 1580 │ │ for split in self.keys(): │ │ 1581 │ │ │ logger.warning(f"Pushing split {split} to the Hub.") │ │ 1582 │ │ │ # The split=key needs to be removed before merging │ │ ❱ 1583 │ │ │ repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parq │ │ 1584 │ │ │ │ repo_id, │ │ 1585 │ │ │ │ split=split, │ │ 1586 │ │ │ │ private=private, │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:5263 in │ │ _push_parquet_shards_to_hub │ │ │ │ 5260 │ │ │ │ 5261 │ │ uploaded_size = 0 │ │ 5262 │ │ shards_path_in_repo = [] │ │ ❱ 5263 │ │ for index, shard in logging.tqdm( │ │ 5264 │ │ │ enumerate(itertools.chain([first_shard], shards_iter)), │ │ 5265 │ │ │ desc="Pushing dataset shards to the dataset hub", │ │ 5266 │ │ │ total=num_shards, │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/tqdm/std.py:1178 in __iter__ │ │ │ │ 1175 │ │ time = self._time │ │ 1176 │ │ │ │ 1177 │ │ try: │ │ ❱ 1178 │ │ │ for obj in iterable: │ │ 1179 │ │ │ │ yield obj │ │ 1180 │ │ │ │ # Update and possibly print the progressbar. │ │ 1181 │ │ │ │ # Note: does not call self.update(1) for speed optimisation. │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:5238 in │ │ shards_with_embedded_external_files │ │ │ │ 5235 │ │ │ │ for shard in shards: │ │ 5236 │ │ │ │ │ format = shard.format │ │ 5237 │ │ │ │ │ shard = shard.with_format("arrow") │ │ ❱ 5238 │ │ │ │ │ shard = shard.map( │ │ 5239 │ │ │ │ │ │ embed_table_storage, │ │ 5240 │ │ │ │ │ │ batched=True, │ │ 5241 │ │ │ │ │ │ batch_size=1000, │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:578 in wrapper │ │ │ │ 575 │ │ else: │ │ 576 │ │ │ self: "Dataset" = kwargs.pop("self") │ │ 577 │ │ # apply actual function │ │ ❱ 578 │ │ out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) │ │ 579 │ │ datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [ou │ │ 580 │ │ for dataset in datasets: │ │ 581 │ │ │ # Remove task templates if a column mapping of the template is no longer val │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:543 in wrapper │ │ │ │ 540 │ │ │ "output_all_columns": self._output_all_columns, │ │ 541 │ │ } │ │ 542 │ │ # apply actual function │ │ ❱ 543 │ │ out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) │ │ 544 │ │ datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [ou │ │ 545 │ │ # re-apply format to the output │ │ 546 │ │ for dataset in datasets: │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:3073 in map │ │ │ │ 3070 │ │ │ │ │ leave=False, │ │ 3071 │ │ │ │ │ desc=desc or "Map", │ │ 3072 │ │ │ │ ) as pbar: │ │ ❱ 3073 │ │ │ │ │ for rank, done, content in Dataset._map_single(**dataset_kwargs): │ │ 3074 │ │ │ │ │ │ if done: │ │ 3075 │ │ │ │ │ │ │ shards_done += 1 │ │ 3076 │ │ │ │ │ │ │ logger.debug(f"Finished processing shard number {rank} of {n │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:3464 in _map_single │ │ │ │ 3461 │ │ │ │ │ │ │ │ buf_writer, writer, tmp_file = init_buffer_and_writer() │ │ 3462 │ │ │ │ │ │ │ │ stack.enter_context(writer) │ │ 3463 │ │ │ │ │ │ │ if isinstance(batch, pa.Table): │ │ ❱ 3464 │ │ │ │ │ │ │ │ writer.write_table(batch) │ │ 3465 │ │ │ │ │ │ │ else: │ │ 3466 │ │ │ │ │ │ │ │ writer.write_batch(batch) │ │ 3467 │ │ │ │ │ │ num_examples_progress_update += num_examples_in_batch │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_writer.py:567 in write_table │ │ │ │ 564 │ │ │ writer_batch_size = self.writer_batch_size │ │ 565 │ │ if self.pa_writer is None: │ │ 566 │ │ │ self._build_writer(inferred_schema=pa_table.schema) │ │ ❱ 567 │ │ pa_table = pa_table.combine_chunks() │ │ 568 │ │ pa_table = table_cast(pa_table, self._schema) │ │ 569 │ │ if self.embed_local_files: │ │ 570 │ │ │ pa_table = embed_table_storage(pa_table) │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ KeyboardInterrupt ```
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
867
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` I tried trying to catch the hanging issue in action again ``` Pushing dataset shards to the dataset hub: 65%|█████████████████████████████████████████████████████████████████▊ | 127/195 [2:28:02<1:19:15, 69.94s/it] Error while uploading 'data/train-00127-of-00195-3f8d036ade107c27.parquet' to the Hub. Pushing split train to the Hub. Pushing dataset shards to the dataset hub: 64%|████████████████████████████████████████████████████████████████▏ | 124/195 [2:06:10<1:12:14, 61.05s/it]C^[^C^C^C ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ /TALI/tali/scripts/validate_dataset.py:127 in <module> │ │ │ │ 124 │ │ │ 125 │ while not succesful_competion: │ │ 126 │ │ try: │ │ ❱ 127 │ │ │ train_dataset.push_to_hub(repo_id="Antreas/TALI-base", max_shard_size="5GB") │ │ 128 │ │ │ succesful_competion = True │ │ 129 │ │ except Exception as e: │ │ 130 │ │ │ print(e) │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/dataset_dict.py:1583 in push_to_hub │ │ │ │ 1580 │ │ for split in self.keys(): │ │ 1581 │ │ │ logger.warning(f"Pushing split {split} to the Hub.") │ │ 1582 │ │ │ # The split=key needs to be removed before merging │ │ ❱ 1583 │ │ │ repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parq │ │ 1584 │ │ │ │ repo_id, │ │ 1585 │ │ │ │ split=split, │ │ 1586 │ │ │ │ private=private, │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:5263 in │ │ _push_parquet_shards_to_hub │ │ │ │ 5260 │ │ │ │ 5261 │ │ uploaded_size = 0 │ │ 5262 │ │ shards_path_in_repo = [] │ │ ❱ 5263 │ │ for index, shard in logging.tqdm( │ │ 5264 │ │ │ enumerate(itertools.chain([first_shard], shards_iter)), │ │ 5265 │ │ │ desc="Pushing dataset shards to the dataset hub", │ │ 5266 │ │ │ total=num_shards, │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/tqdm/std.py:1178 in __iter__ │ │ │ │ 1175 │ │ time = self._time │ │ 1176 │ │ │ │ 1177 │ │ try: │ │ ❱ 1178 │ │ │ for obj in iterable: │ │ 1179 │ │ │ │ yield obj │ │ 1180 │ │ │ │ # Update and possibly print the progressbar. │ │ 1181 │ │ │ │ # Note: does not call self.update(1) for speed optimisation. │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:5238 in │ │ shards_with_embedded_external_files │ │ │ │ 5235 │ │ │ │ for shard in shards: │ │ 5236 │ │ │ │ │ format = shard.format │ │ 5237 │ │ │ │ │ shard = shard.with_format("arrow") │ │ ❱ 5238 │ │ │ │ │ shard = shard.map( │ │ 5239 │ │ │ │ │ │ embed_table_storage, │ │ 5240 │ │ │ │ │ │ batched=True, │ │ 5241 │ │ │ │ │ │ batch_size=1000, │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:578 in wrapper │ │ │ │ 575 │ │ else: │ │ 576 │ │ │ self: "Dataset" = kwargs.pop("self") │ │ 577 │ │ # apply actual function │ │ ❱ 578 │ │ out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) │ │ 579 │ │ datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [ou │ │ 580 │ │ for dataset in datasets: │ │ 581 │ │ │ # Remove task templates if a column mapping of the template is no longer val │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:543 in wrapper │ │ │ │ 540 │ │ │ "output_all_columns": self._output_all_columns, │ │ 541 │ │ } │ │ 542 │ │ # apply actual function │ │ ❱ 543 │ │ out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) │ │ 544 │ │ datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [ou │ │ 545 │ │ # re-apply format to the output │ │ 546 │ │ for dataset in datasets: │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:3073 in map │ │ │ │ 3070 │ │ │ │ │ leave=False, │ │ 3071 │ │ │ │ │ desc=desc or "Map", │ │ 3072 │ │ │ │ ) as pbar: │ │ ❱ 3073 │ │ │ │ │ for rank, done, content in Dataset._map_single(**dataset_kwargs): │ │ 3074 │ │ │ │ │ │ if done: │ │ 3075 │ │ │ │ │ │ │ shards_done += 1 │ │ 3076 │ │ │ │ │ │ │ logger.debug(f"Finished processing shard number {rank} of {n │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_dataset.py:3464 in _map_single │ │ │ │ 3461 │ │ │ │ │ │ │ │ buf_writer, writer, tmp_file = init_buffer_and_writer() │ │ 3462 │ │ │ │ │ │ │ │ stack.enter_context(writer) │ │ 3463 │ │ │ │ │ │ │ if isinstance(batch, pa.Table): │ │ ❱ 3464 │ │ │ │ │ │ │ │ writer.write_table(batch) │ │ 3465 │ │ │ │ │ │ │ else: │ │ 3466 │ │ │ │ │ │ │ │ writer.write_batch(batch) │ │ 3467 │ │ │ │ │ │ num_examples_progress_update += num_examples_in_batch │ │ │ │ /opt/conda/envs/main/lib/python3.10/site-packages/datasets/arrow_writer.py:567 in write_table │ │ │ │ 564 │ │ │ writer_batch_size = self.writer_batch_size │ │ 565 │ │ if self.pa_writer is None: │ │ 566 │ │ │ self._build_writer(inferred_schema=pa_table.schema) │ │ ❱ 567 │ │ pa_table = pa_table.combine_chunks() │ │ 568 │ │ pa_table = table_cast(pa_table, self._schema) │ │ 569 │ │ if self.embed_local_files: │ │ 570 │ │ │ pa_table = embed_table_storage(pa_table) │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ KeyboardInterrupt ```
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
I'm on my phone so can't help that much. What I'd advice to do is to [save_to_disk](https://huggingface.co/docs/datasets/package_reference/main_classes#save_to_disk) if it's not already done and then upload the files/folder to the Hub separately. You can find what you need in the [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload). It might not help finding the exact issue for now but at least it can unblock you.
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
58
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` I'm on my phone so can't help that much. What I'd advice to do is to [save_to_disk](https://huggingface.co/docs/datasets/package_reference/main_classes#save_to_disk) if it's not already done and then upload the files/folder to the Hub separately. You can find what you need in the [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload). It might not help finding the exact issue for now but at least it can unblock you.
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
In your last stacktrace it interrupted while embedding external content - in case your dataset in made of images or audio files that live on your disk. Is it the case ?
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
32
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` In your last stacktrace it interrupted while embedding external content - in case your dataset in made of images or audio files that live on your disk. Is it the case ?
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
It's maybe related to https://github.com/apache/arrow/issues/34455: are you using ArrayND features ? Also what's your `pyarrow` version ? Could you try updating to >= 12.0.1 ?
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
25
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` It's maybe related to https://github.com/apache/arrow/issues/34455: are you using ArrayND features ? Also what's your `pyarrow` version ? Could you try updating to >= 12.0.1 ?
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
I was using pyarrow == 12.0.0 I am not explicitly using ArrayND features, unless the hub API automatically converts my files to such.
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
23
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` I was using pyarrow == 12.0.0 I am not explicitly using ArrayND features, unless the hub API automatically converts my files to such.
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
You can also try to reduce the `max_shard_size` - Sometimes parquet has a hard time working with data bigger than 2GB
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
21
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` You can also try to reduce the `max_shard_size` - Sometimes parquet has a hard time working with data bigger than 2GB
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
So, updating the pyarrow seems to help. It can still throw errors here and there but I can retry when that happens. It's better than hanging. However, I am a bit confused about something. I have uploaded my datasets, but while earlier I could see all three sets, now I can only see 1. What's going on? https://huggingface.co/datasets/Antreas/TALI-base I have seen this happen before as well, so I deleted and reuploaded, but this dataset is way too large for me to do this.
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
83
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` So, updating the pyarrow seems to help. It can still throw errors here and there but I can retry when that happens. It's better than hanging. However, I am a bit confused about something. I have uploaded my datasets, but while earlier I could see all three sets, now I can only see 1. What's going on? https://huggingface.co/datasets/Antreas/TALI-base I have seen this happen before as well, so I deleted and reuploaded, but this dataset is way too large for me to do this.
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
It's a bug on our side, I'll update the dataset viewer ;) Thanks for reporting !
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
16
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` It's a bug on our side, I'll update the dataset viewer ;) Thanks for reporting !
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
Apparently this happened because of bad modifications in the README.md split metadata. I fixed them in this PR: https://huggingface.co/datasets/Antreas/TALI-base/discussions/1
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
19
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` Apparently this happened because of bad modifications in the README.md split metadata. I fixed them in this PR: https://huggingface.co/datasets/Antreas/TALI-base/discussions/1
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
@lhoestq It's a bit odd that when uploading a dataset, one set at a time "train", "val", "test", the push_to_hub function overwrites the readme and removes differently named sets from previous commits. i.e., you push "val", all is well. Then you push "test", and the "val" entry disappears from the readme, while the data remain intact.
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
56
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` @lhoestq It's a bit odd that when uploading a dataset, one set at a time "train", "val", "test", the push_to_hub function overwrites the readme and removes differently named sets from previous commits. i.e., you push "val", all is well. Then you push "test", and the "val" entry disappears from the readme, while the data remain intact.
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
Also, just found another related issue. One of the many that make things hang or fail when pushing to hub. In the following code: ```python train_generator = lambda: data_generator("train", percentage=1.0) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) print(f"Pushing TALI-large to hub") dataset = datasets.DatasetDict( {"train": train_data, "val": val_data, "test": test_data} ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-large", max_shard_size="2GB") succesful_competion = True except Exception as e: print(e) ``` Things keep failing in the push_to_repo step, at random places, with the following error: ```bash Pushing dataset shards to the dataset hub: 7%|██████████▋ | 67/950 [42:41<9:22:37, 38.23s/it] Error while uploading 'data/train-00067-of-00950-a4d179ed5a593486.parquet' to the Hub. Pushing split train to the Hub. Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00, 1.81ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.20s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.48ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:15<00:00, 15.30s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.39ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.52s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.47ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.39s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.26ba/s] Upload 1 LFS files: 0%| | 0/1 [16:38<?, ?it/s] Pushing dataset shards to the dataset hub: 7%|███████████▎ | 71/950 [44:37<9:12:28, 37.71s/it] Error while uploading 'data/train-00071-of-00950-72bab6e5cb223aee.parquet' to the Hub. Pushing split train to the Hub. Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.18ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.94s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.36ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.67s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.57ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.16s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.68ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:09<00:00, 9.63s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.36ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.67s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.37ba/s] Upload 1 LFS files: 0%| | 0/1 [16:39<?, ?it/s] Pushing dataset shards to the dataset hub: 8%|████████████ | 76/950 [46:21<8:53:08, 36.60s/it] Error while uploading 'data/train-00076-of-00950-b90e4e3b433db179.parquet' to the Hub. Pushing split train to the Hub. Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.21ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:25<00:00, 25.40s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00, 1.56ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.40s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.49ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.53s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.27ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.25s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.42ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.03s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.39ba/s] Upload 1 LFS files: 0%| | 0/1 [16:39<?, ?it/s] Pushing dataset shards to the dataset hub: 9%|████████████▊ | 81/950 [48:30<8:40:22, 35.93s/it] Error while uploading 'data/train-00081-of-00950-84b0450a1df093a9.parquet' to the Hub. Pushing split train to the Hub. Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.18ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.65s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00, 1.92ba/s] Upload 1 LFS files: 0%| | 0/1 [16:38<?, ?it/s] Pushing dataset shards to the dataset hub: 9%|█████████████ | 82/950 [48:55<8:37:57, 35.80s/it] Error while uploading 'data/train-00082-of-00950-0a1f52da35653e08.parquet' to the Hub. Pushing split train to the Hub. Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.31ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:26<00:00, 26.29s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.42ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.57s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.64ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.35s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.64ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.74s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.31ba/s] Upload 1 LFS files: 0%| | 0/1 [16:40<?, ?it/s] Pushing dataset shards to the dataset hub: 9%|█████████████▋ | 86/950 [50:48<8:30:25, 35.45s/it] Error while uploading 'data/train-00086-of-00950-e1cc80dd17191b20.parquet' to the Hub. ``` I have a while loop that forces retries, but it seems that the progress itself is randomly getting lost as well. Any ideas on how to improve this? It has been blocking me for way too long. Should I build the parquet manually and then push manually as well? If I do things manually, how can I ensure my dataset works properly with "stream=True"? Thank you for your help and time.
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
738
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` Also, just found another related issue. One of the many that make things hang or fail when pushing to hub. In the following code: ```python train_generator = lambda: data_generator("train", percentage=1.0) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) print(f"Pushing TALI-large to hub") dataset = datasets.DatasetDict( {"train": train_data, "val": val_data, "test": test_data} ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-large", max_shard_size="2GB") succesful_competion = True except Exception as e: print(e) ``` Things keep failing in the push_to_repo step, at random places, with the following error: ```bash Pushing dataset shards to the dataset hub: 7%|██████████▋ | 67/950 [42:41<9:22:37, 38.23s/it] Error while uploading 'data/train-00067-of-00950-a4d179ed5a593486.parquet' to the Hub. Pushing split train to the Hub. Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00, 1.81ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.20s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.48ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:15<00:00, 15.30s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.39ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.52s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.47ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.39s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.26ba/s] Upload 1 LFS files: 0%| | 0/1 [16:38<?, ?it/s] Pushing dataset shards to the dataset hub: 7%|███████████▎ | 71/950 [44:37<9:12:28, 37.71s/it] Error while uploading 'data/train-00071-of-00950-72bab6e5cb223aee.parquet' to the Hub. Pushing split train to the Hub. Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.18ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.94s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.36ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.67s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.57ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.16s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.68ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:09<00:00, 9.63s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.36ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.67s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.37ba/s] Upload 1 LFS files: 0%| | 0/1 [16:39<?, ?it/s] Pushing dataset shards to the dataset hub: 8%|████████████ | 76/950 [46:21<8:53:08, 36.60s/it] Error while uploading 'data/train-00076-of-00950-b90e4e3b433db179.parquet' to the Hub. Pushing split train to the Hub. Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.21ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:25<00:00, 25.40s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00, 1.56ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.40s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.49ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.53s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.27ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.25s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.42ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.03s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.39ba/s] Upload 1 LFS files: 0%| | 0/1 [16:39<?, ?it/s] Pushing dataset shards to the dataset hub: 9%|████████████▊ | 81/950 [48:30<8:40:22, 35.93s/it] Error while uploading 'data/train-00081-of-00950-84b0450a1df093a9.parquet' to the Hub. Pushing split train to the Hub. Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.18ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.65s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00, 1.92ba/s] Upload 1 LFS files: 0%| | 0/1 [16:38<?, ?it/s] Pushing dataset shards to the dataset hub: 9%|█████████████ | 82/950 [48:55<8:37:57, 35.80s/it] Error while uploading 'data/train-00082-of-00950-0a1f52da35653e08.parquet' to the Hub. Pushing split train to the Hub. Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.31ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:26<00:00, 26.29s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.42ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.57s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.64ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:10<00:00, 10.35s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.64ba/s] Upload 1 LFS files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:11<00:00, 11.74s/it] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.31ba/s] Upload 1 LFS files: 0%| | 0/1 [16:40<?, ?it/s] Pushing dataset shards to the dataset hub: 9%|█████████████▋ | 86/950 [50:48<8:30:25, 35.45s/it] Error while uploading 'data/train-00086-of-00950-e1cc80dd17191b20.parquet' to the Hub. ``` I have a while loop that forces retries, but it seems that the progress itself is randomly getting lost as well. Any ideas on how to improve this? It has been blocking me for way too long. Should I build the parquet manually and then push manually as well? If I do things manually, how can I ensure my dataset works properly with "stream=True"? Thank you for your help and time.
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
> @lhoestq It's a bit odd that when uploading a dataset, one set at a time "train", "val", "test", the push_to_hub function overwrites the readme and removes differently named sets from previous commits. i.e., you push "val", all is well. Then you push "test", and the "val" entry disappears from the readme, while the data remain intact. Hmm this shouldn't happen. What code did you run exactly ? Using which version of `datasets` ?
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
74
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` > @lhoestq It's a bit odd that when uploading a dataset, one set at a time "train", "val", "test", the push_to_hub function overwrites the readme and removes differently named sets from previous commits. i.e., you push "val", all is well. Then you push "test", and the "val" entry disappears from the readme, while the data remain intact. Hmm this shouldn't happen. What code did you run exactly ? Using which version of `datasets` ?
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
> I have a while loop that forces retries, but it seems that the progress itself is randomly getting lost as well. Any ideas on how to improve this? It has been blocking me for way too long. Could you also print the cause of the error (`e.__cause__`) ? Or show the full stack trace when the error happens ? This would give more details about why it failed and would help investigate.
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
73
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` > I have a while loop that forces retries, but it seems that the progress itself is randomly getting lost as well. Any ideas on how to improve this? It has been blocking me for way too long. Could you also print the cause of the error (`e.__cause__`) ? Or show the full stack trace when the error happens ? This would give more details about why it failed and would help investigate.
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
> Should I build the parquet manually and then push manually as well? If I do things manually, how can I ensure my dataset works properly with "stream=True"? Parquet is supported out of the box ^^ If you want to make sure it works as expected you can try locally first: ```python ds = load_dataset("path/to/local", streaming=True) ```
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
57
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` > Should I build the parquet manually and then push manually as well? If I do things manually, how can I ensure my dataset works properly with "stream=True"? Parquet is supported out of the box ^^ If you want to make sure it works as expected you can try locally first: ```python ds = load_dataset("path/to/local", streaming=True) ```
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
@lhoestq @AntreasAntoniou I transferred this issue to the `datasets` repository as the questions and answers are more related to this repo. Hope it can help other users find the bug and fixes more easily (like updating [tqdm](https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120204) and [pyarrow](https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120278) or [setting a lower `max_shard_size`](https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120328)). ~For the initial "pushing large dataset consistently hangs"-issue, I still think it's best to try to `save_to_disk` first and then upload it manually/with a script (see [upload_folder](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder)). It's not the most satisfying solution but at least it would confirm from where the problem comes from.~ **EDIT:** removed suggestion about saving to disk first (see https://github.com/huggingface/datasets/issues/5990#issuecomment-1607186914).
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
99
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` @lhoestq @AntreasAntoniou I transferred this issue to the `datasets` repository as the questions and answers are more related to this repo. Hope it can help other users find the bug and fixes more easily (like updating [tqdm](https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120204) and [pyarrow](https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120278) or [setting a lower `max_shard_size`](https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120328)). ~For the initial "pushing large dataset consistently hangs"-issue, I still think it's best to try to `save_to_disk` first and then upload it manually/with a script (see [upload_folder](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder)). It's not the most satisfying solution but at least it would confirm from where the problem comes from.~ **EDIT:** removed suggestion about saving to disk first (see https://github.com/huggingface/datasets/issues/5990#issuecomment-1607186914).
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
> @lhoestq @AntreasAntoniou I transferred this issue to the datasets repository as the questions and answers are more related to this repo. Hope it can help other users find the bug and fixes more easily (like updating https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120204 and https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120278 or https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120328). thanks :) > For the initial "pushing large dataset consistently hangs"-issue, I still think it's best to try to save_to_disk first and then upload it manually/with a script (see [upload_folder](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder)). It's not the most satisfying solution but at least it would confirm from where the problem comes from. As I've already said in other discussions, I would not recommend pushing files saved with `save_to_disk` to the Hub but save to parquet shards and upload them instead. The Hub does not support datasets saved with `save_to_disk`, which is meant for disk only.
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
133
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` > @lhoestq @AntreasAntoniou I transferred this issue to the datasets repository as the questions and answers are more related to this repo. Hope it can help other users find the bug and fixes more easily (like updating https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120204 and https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120278 or https://github.com/huggingface/datasets/issues/5990#issuecomment-1607120328). thanks :) > For the initial "pushing large dataset consistently hangs"-issue, I still think it's best to try to save_to_disk first and then upload it manually/with a script (see [upload_folder](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder)). It's not the most satisfying solution but at least it would confirm from where the problem comes from. As I've already said in other discussions, I would not recommend pushing files saved with `save_to_disk` to the Hub but save to parquet shards and upload them instead. The Hub does not support datasets saved with `save_to_disk`, which is meant for disk only.
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
> As I've already said in other discussions, I would not recommend pushing files saved with save_to_disk to the Hub but save to parquet shards and upload them instead. The Hub does not support datasets saved with save_to_disk, which is meant for disk only. Well noted, thanks. That part was not clear to me :)
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
55
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` > As I've already said in other discussions, I would not recommend pushing files saved with save_to_disk to the Hub but save to parquet shards and upload them instead. The Hub does not support datasets saved with save_to_disk, which is meant for disk only. Well noted, thanks. That part was not clear to me :)
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
Sorry for not replying in a few days, I was on leave. :) So, here are more information as to the error that causes some of the delay ```bash Pushing Antreas/TALI-tiny to hub Attempting to push to hub Pushing split train to the Hub. Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:24<00:00, 4.06s/ba] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:24<00:00, 4.15s/ba] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:26<00:00, 4.45s/ba] /opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/lfs.py:310: UserWarning: hf_transfer is enabled but does not support uploading from bytes or BinaryIO, falling back to regular upload warnings.warn( Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:25<00:00, 4.26s/ba] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:27<00:00, 4.58s/ba] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:24<00:00, 4.10s/ba] Pushing dataset shards to the dataset hub: 22%|████████████████████████▎ | 5/23 [52:23<3:08:37, 628.74s/it] Exception: Error while uploading 'data/train-00005-of-00023-e224d901fd65e062.parquet' to the Hub., with stacktrace: <traceback object at 0x7f745458d0c0>, and type: <class 'RuntimeError'>, and cause: HTTPSConnectionPool(host='s3.us-east-1.amazonaws.com', port=443): Max retries exceeded with url: /lfs.huggingface.co/repos/7c/d3/7cd385d9324302dc13e3986331d72d9be6fa0174c63dcfe0e08cd474f7f1e8b7/3415166ae28c0beccbbc692f38742b8dea2c197f5c805321104e888d21d7eb90?X-Amz-Algorithm=AWS4-HMAC-SHA256 &X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230627%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230627T003349Z&X-Amz-Expires=86400&X-Amz-Signature=5a12ff96f2 91f644134170992a6628e5f3c4e7b2e7fc3e940b4378fe11ae5390&X-Amz-SignedHeaders=host&partNumber=1&uploadId=JSsK8r63XSF.VlKQx3Vf8OW4DEVp5YIIY7LPnuapNIegsxs5EHgM1p4u0.Nn6_wlPlQnvxm8HKMxZhczKE9KB74t0etB oLcxqBIvsgey3uXBTZMAEGwU6y7CDUADiEIO&x-id=UploadPart (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:2426)'))) Push failed, retrying Attempting to push to hub Pushing split train to the Hub. ``` One issue is that the uploading does not continue from the chunk it failed off. It often continues from a very old chunk. e.g. if it failed on chunk 192/250, it will continue from say 53/250, and this behaviour appears almost random.
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
228
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` Sorry for not replying in a few days, I was on leave. :) So, here are more information as to the error that causes some of the delay ```bash Pushing Antreas/TALI-tiny to hub Attempting to push to hub Pushing split train to the Hub. Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:24<00:00, 4.06s/ba] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:24<00:00, 4.15s/ba] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:26<00:00, 4.45s/ba] /opt/conda/envs/main/lib/python3.10/site-packages/huggingface_hub/lfs.py:310: UserWarning: hf_transfer is enabled but does not support uploading from bytes or BinaryIO, falling back to regular upload warnings.warn( Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:25<00:00, 4.26s/ba] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:27<00:00, 4.58s/ba] Creating parquet from Arrow format: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:24<00:00, 4.10s/ba] Pushing dataset shards to the dataset hub: 22%|████████████████████████▎ | 5/23 [52:23<3:08:37, 628.74s/it] Exception: Error while uploading 'data/train-00005-of-00023-e224d901fd65e062.parquet' to the Hub., with stacktrace: <traceback object at 0x7f745458d0c0>, and type: <class 'RuntimeError'>, and cause: HTTPSConnectionPool(host='s3.us-east-1.amazonaws.com', port=443): Max retries exceeded with url: /lfs.huggingface.co/repos/7c/d3/7cd385d9324302dc13e3986331d72d9be6fa0174c63dcfe0e08cd474f7f1e8b7/3415166ae28c0beccbbc692f38742b8dea2c197f5c805321104e888d21d7eb90?X-Amz-Algorithm=AWS4-HMAC-SHA256 &X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230627%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230627T003349Z&X-Amz-Expires=86400&X-Amz-Signature=5a12ff96f2 91f644134170992a6628e5f3c4e7b2e7fc3e940b4378fe11ae5390&X-Amz-SignedHeaders=host&partNumber=1&uploadId=JSsK8r63XSF.VlKQx3Vf8OW4DEVp5YIIY7LPnuapNIegsxs5EHgM1p4u0.Nn6_wlPlQnvxm8HKMxZhczKE9KB74t0etB oLcxqBIvsgey3uXBTZMAEGwU6y7CDUADiEIO&x-id=UploadPart (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:2426)'))) Push failed, retrying Attempting to push to hub Pushing split train to the Hub. ``` One issue is that the uploading does not continue from the chunk it failed off. It often continues from a very old chunk. e.g. if it failed on chunk 192/250, it will continue from say 53/250, and this behaviour appears almost random.
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
So, other than the random connection drops here and there, any idea why the progress does not continue where it left off? ```bash Pushing split train to the Hub. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 10.79ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 13.65ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 13.39ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 13.04ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 13.52ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 12.28ba/s] Pushing dataset shards to the dataset hub: 20%|██████████████████████ | 75/381 [1:34:39<6:26:11, 75.72s/it] Exception: Error while uploading 'data/train-00075-of-00381-1614bc251b778766.parquet' to the Hub., with stacktrace: <traceback object at 0x7fab6d9a4980>, and type: <class 'RuntimeError'>, and cause: HTTPSConnectionPool(host='s3.us-east-1.amazonaws.com', port=443): Max retries exceeded with url: /lfs.huggingface.co/repos/3b/31/3b311464573d8d63b137fcd5b40af1e7a5b1306843c88e80372d0117157504e5/ed8dae933fb79ae1ef5fb1f698f5125d3e1c02977ac69438631f152bb3bfdd1e?X-Amz-Algorithm=AWS4-HMAC-SHA256&X- Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230629%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230629T053004Z&X-Amz-Expires=86400&X-Amz-Signature=da2b26270edfd6d0 d069c015a5a432031107a8664c3f0917717e5e40c688183c&X-Amz-SignedHeaders=host&partNumber=1&uploadId=2erWGHTh3ICqBLU_QvHfnygZ2tkMWbL0rEqpJdYohCKHUHnfwMjvoBIg0TI_KSGn4rSKxUxOyqSIzFUFSRSzixZeLeneaXJOw.Qx8 zLKSV5xV7HRQDj4RBesNve6cSoo&x-id=UploadPart (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:2426)'))) Push failed, retrying Attempting to push to hub Pushing split train to the Hub. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 12.09ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 11.51ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 10.77ba/s] Pushing dataset shards to the dataset hub: 20%|██████████████████████▋ | 77/381 [1:32:50<6:06:34, 72.35s/it] Exception: Error while uploading 'data/train-00077-of-00381-368b2327a9908aab.parquet' to the Hub., with stacktrace: <traceback object at 0x7fab45b27f80>, and type: <class 'RuntimeError'>, and cause: HTTPSConnectionPool(host='s3.us-east-1.amazonaws.com', port=443): Max retries exceeded with url: /lfs.huggingface.co/repos/3b/31/3b311464573d8d63b137fcd5b40af1e7a5b1306843c88e80372d0117157504e5/9462ff2c5e61283b53b091984a22de2f41a2f6e37b681171e2eca4a998f979cb?X-Amz-Algorithm=AWS4-HMAC-SHA256&X- Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230629%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230629T070510Z&X-Amz-Expires=86400&X-Amz-Signature=9ab8487b93d443cd 21f05476405855d46051a0771b4986bbb20f770ded21b1a4&X-Amz-SignedHeaders=host&partNumber=1&uploadId=UiHX1B.DcoAO2QmIHpWpCuNPwhXU_o1dsTkTGPqZt1P51o9k0yz.EsFD9eKpQMwgAST3jOatRG78I_JWRBeLBDYYVNp8r0TpIdeSg eUg8uwPZOCPw9y5mWOw8MWJrnBo&x-id=UploadPart (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:2426)'))) Push failed, retrying Attempting to push to hub Pushing split train to the Hub. Pushing dataset shards to the dataset hub: 8%|████████▋ | 29/381 [27:39<5:50:03, 59.67s/it] Map: 36%|████████████████████████████████████████████████████ | 1000/2764 [00:35<00:34, 51.63 examples/Map: 72%|████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 2000/2764 [00:40<00:15, 49.06 examples/Map: 72%|████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 2000/2764 [00:55<00:15, 49.06 examples/Map: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2764/2764 [00:56<00:00, 48.82 examples/Pushing dataset shards to the dataset hub: 8%|████████▉ | 30/381 [28:35<5:43:03, 58.64s/iPushing dataset shards to the dataset hub: 8%|█████████▎ | 31/381 [29:40<5:52:18, 60.40s/iPushing dataset shards to the dataset hub: 8%|█████████▌ | 32/381 [30:46<6:02:20, 62.29s/it] Map: 36%|███████████████████████████████████████████████████▎ ``` This is actually the issue that wastes the most time for me, and I need it fixed. Please advice on how I can go about it. Notice how the progress goes from | 77/381 to 30/381
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
352
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` So, other than the random connection drops here and there, any idea why the progress does not continue where it left off? ```bash Pushing split train to the Hub. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 10.79ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 13.65ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 13.39ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 13.04ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 13.52ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 12.28ba/s] Pushing dataset shards to the dataset hub: 20%|██████████████████████ | 75/381 [1:34:39<6:26:11, 75.72s/it] Exception: Error while uploading 'data/train-00075-of-00381-1614bc251b778766.parquet' to the Hub., with stacktrace: <traceback object at 0x7fab6d9a4980>, and type: <class 'RuntimeError'>, and cause: HTTPSConnectionPool(host='s3.us-east-1.amazonaws.com', port=443): Max retries exceeded with url: /lfs.huggingface.co/repos/3b/31/3b311464573d8d63b137fcd5b40af1e7a5b1306843c88e80372d0117157504e5/ed8dae933fb79ae1ef5fb1f698f5125d3e1c02977ac69438631f152bb3bfdd1e?X-Amz-Algorithm=AWS4-HMAC-SHA256&X- Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230629%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230629T053004Z&X-Amz-Expires=86400&X-Amz-Signature=da2b26270edfd6d0 d069c015a5a432031107a8664c3f0917717e5e40c688183c&X-Amz-SignedHeaders=host&partNumber=1&uploadId=2erWGHTh3ICqBLU_QvHfnygZ2tkMWbL0rEqpJdYohCKHUHnfwMjvoBIg0TI_KSGn4rSKxUxOyqSIzFUFSRSzixZeLeneaXJOw.Qx8 zLKSV5xV7HRQDj4RBesNve6cSoo&x-id=UploadPart (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:2426)'))) Push failed, retrying Attempting to push to hub Pushing split train to the Hub. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 12.09ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 11.51ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 28/28 [00:02<00:00, 10.77ba/s] Pushing dataset shards to the dataset hub: 20%|██████████████████████▋ | 77/381 [1:32:50<6:06:34, 72.35s/it] Exception: Error while uploading 'data/train-00077-of-00381-368b2327a9908aab.parquet' to the Hub., with stacktrace: <traceback object at 0x7fab45b27f80>, and type: <class 'RuntimeError'>, and cause: HTTPSConnectionPool(host='s3.us-east-1.amazonaws.com', port=443): Max retries exceeded with url: /lfs.huggingface.co/repos/3b/31/3b311464573d8d63b137fcd5b40af1e7a5b1306843c88e80372d0117157504e5/9462ff2c5e61283b53b091984a22de2f41a2f6e37b681171e2eca4a998f979cb?X-Amz-Algorithm=AWS4-HMAC-SHA256&X- Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA4N7VTDGO27GPWFUO%2F20230629%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230629T070510Z&X-Amz-Expires=86400&X-Amz-Signature=9ab8487b93d443cd 21f05476405855d46051a0771b4986bbb20f770ded21b1a4&X-Amz-SignedHeaders=host&partNumber=1&uploadId=UiHX1B.DcoAO2QmIHpWpCuNPwhXU_o1dsTkTGPqZt1P51o9k0yz.EsFD9eKpQMwgAST3jOatRG78I_JWRBeLBDYYVNp8r0TpIdeSg eUg8uwPZOCPw9y5mWOw8MWJrnBo&x-id=UploadPart (Caused by SSLError(SSLEOFError(8, 'EOF occurred in violation of protocol (_ssl.c:2426)'))) Push failed, retrying Attempting to push to hub Pushing split train to the Hub. Pushing dataset shards to the dataset hub: 8%|████████▋ | 29/381 [27:39<5:50:03, 59.67s/it] Map: 36%|████████████████████████████████████████████████████ | 1000/2764 [00:35<00:34, 51.63 examples/Map: 72%|████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 2000/2764 [00:40<00:15, 49.06 examples/Map: 72%|████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 2000/2764 [00:55<00:15, 49.06 examples/Map: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2764/2764 [00:56<00:00, 48.82 examples/Pushing dataset shards to the dataset hub: 8%|████████▉ | 30/381 [28:35<5:43:03, 58.64s/iPushing dataset shards to the dataset hub: 8%|█████████▎ | 31/381 [29:40<5:52:18, 60.40s/iPushing dataset shards to the dataset hub: 8%|█████████▌ | 32/381 [30:46<6:02:20, 62.29s/it] Map: 36%|███████████████████████████████████████████████████▎ ``` This is actually the issue that wastes the most time for me, and I need it fixed. Please advice on how I can go about it. Notice how the progress goes from | 77/381 to 30/381
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5990
Pushing a large dataset on the hub consistently hangs
If the any shard is missing on the Hub, it will re-upload it. It looks like the 30th shard was missing on the Hub in your case. It also means that the other files up to the 77th that were successfully uploaded won't be uploaded again. cc @mariosasko who might know better
### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
105
52
Pushing a large dataset on the hub consistently hangs ### Describe the bug Once I have locally built a large dataset that I want to push to hub, I use the recommended approach of .push_to_hub to get the dataset on the hub, and after pushing a few shards, it consistently hangs. This has happened over 40 times over the past week, and despite my best efforts to try and catch this happening and kill a process and restart, it seems to be extremely time wasting -- so I came to you to report this and to seek help. I already tried installing hf_transfer, but it doesn't support Byte file uploads so I uninstalled it. ### Reproduction ```python import multiprocessing as mp import pathlib from math import ceil import datasets import numpy as np from tqdm.auto import tqdm from tali.data.data import select_subtitles_between_timestamps from tali.utils import load_json tali_dataset_dir = "/data/" if __name__ == "__main__": full_dataset = datasets.load_dataset( "Antreas/TALI", num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir ) def data_generator(set_name, percentage: float = 1.0): dataset = full_dataset[set_name] for item in tqdm(dataset): video_list = item["youtube_content_video"] video_list = np.random.choice( video_list, int(ceil(len(video_list) * percentage)) ) if len(video_list) == 0: continue captions = item["youtube_subtitle_text"] captions = select_subtitles_between_timestamps( subtitle_dict=load_json( captions.replace( "/data/", tali_dataset_dir, ) ), starting_timestamp=0, ending_timestamp=100000000, ) for video_path in video_list: temp_path = video_path.replace("/data/", tali_dataset_dir) video_path_actual: pathlib.Path = pathlib.Path(temp_path) if video_path_actual.exists(): item["youtube_content_video"] = open(video_path_actual, "rb").read() item["youtube_subtitle_text"] = captions yield item train_generator = lambda: data_generator("train", percentage=0.1) val_generator = lambda: data_generator("val") test_generator = lambda: data_generator("test") train_data = datasets.Dataset.from_generator( train_generator, num_proc=mp.cpu_count(), writer_batch_size=5000, cache_dir=tali_dataset_dir, ) val_data = datasets.Dataset.from_generator( val_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) test_data = datasets.Dataset.from_generator( test_generator, writer_batch_size=5000, num_proc=mp.cpu_count(), cache_dir=tali_dataset_dir, ) dataset = datasets.DatasetDict( { "train": train_data, "val": val_data, "test": test_data, } ) succesful_competion = False while not succesful_competion: try: dataset.push_to_hub(repo_id="Antreas/TALI-small", max_shard_size="5GB") succesful_competion = True except Exception as e: print(e) ``` ### Logs ```shell Pushing dataset shards to the dataset hub: 33%|██████████████████████████████████████▎ | 7/21 [24:33<49:06, 210.45s/it] Error while uploading 'data/val-00007-of-00021-6b216a984af1a4c8.parquet' to the Hub. Pushing split train to the Hub. Resuming upload of the dataset shards. Pushing dataset shards to the dataset hub: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46/46 [42:10<00:00, 55.01s/it] Pushing split val to the Hub. Resuming upload of the dataset shards. Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:01<00:00, 1.55ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.51s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.39ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:30<00:00, 30.19s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.28ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:24<00:00, 24.08s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.42ba/s] Upload 1 LFS files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:23<00:00, 23.97s/it] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.49ba/s] Creating parquet from Arrow format: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:02<00:00, 1.54ba/s^ Upload 1 LFS files: 0%| | 0/1 [04:42<?, ?it/s] Pushing dataset shards to the dataset hub: 52%|████████████████████████████████████████████████████████████▏ | 11/21 [17:23<15:48, 94.82s/it] That's where it got stuck ``` ### System info ```shell - huggingface_hub version: 0.15.1 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.35 - Python version: 3.10.11 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /root/.cache/huggingface/token - Has saved token ?: True - Who am I ?: Antreas - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.1.0.dev20230606+cu121 - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.5.0 - hf_transfer: N/A - gradio: N/A - numpy: 1.24.3 - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /root/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /root/.cache/huggingface/assets - HF_TOKEN_PATH: /root/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` If the any shard is missing on the Hub, it will re-upload it. It looks like the 30th shard was missing on the Hub in your case. It also means that the other files up to the 77th that were successfully uploaded won't be uploaded again. cc @mariosasko who might know better
[ -1.256646752357483, -0.9809012413024902, -0.6407181620597839, 1.5306622982025146, -0.21641655266284943, -1.1815036535263062, 0.15102152526378632, -1.068782091140747, 1.5249862670898438, -0.8863497972488403, 0.297909140586853, -1.5170899629592896, -0.010666148737072945, -0.5834827423095703, -0.6541121006011963, -0.9267345666885376, -0.4325377643108368, -0.7332256436347961, 1.1574896574020386, 2.458573341369629, 1.2368751764297485, -1.3643852472305298, 2.729067087173462, 0.8135349750518799, -0.22260349988937378, -0.9958354830741882, 0.4729320704936981, 0.05391748994588852, -1.216493844985962, -0.5072863101959229, -0.9040550589561462, -0.0755440890789032, -0.5598601698875427, -0.3581269383430481, -0.05772779881954193, 0.46689334511756897, -0.2826787233352661, -0.3352503478527069, -0.6461340188980103, -0.7952183485031128, 0.4890669882297516, -0.3782905638217926, 0.908438503742218, -0.2587498128414154, 1.8502075672149658, -0.6264046430587769, 0.5192981958389282, 0.7507186532020569, 1.2326983213424683, 0.18117357790470123, 0.03131049871444702, 0.2676278352737427, 0.35925501585006714, -0.04078720510005951, 0.5812045335769653, 1.1631983518600464, 0.6419205665588379, 0.5036262273788452, 0.6315927505493164, -2.2316720485687256, 1.2687336206436157, -1.0524661540985107, 0.3825809061527252, 1.378225564956665, -0.9638535976409912, 0.386913001537323, -1.682797908782959, -0.12963923811912537, 0.6199060678482056, -2.220000982284546, 0.35615575313568115, -1.342714548110962, -0.5858532786369324, 0.9252170920372009, 0.3417864441871643, -1.152450680732727, 0.159867063164711, -0.5223419070243835, 1.1430730819702148, 0.46330446004867554, 0.9625985026359558, -1.7530206441879272, -0.06828748434782028, -0.23724956810474396, 0.11062408983707428, -1.3213393688201904, -1.564940094947815, 0.5746296644210815, 0.5497387051582336, 0.6145142316818237, -0.12907885015010834, 1.1407127380371094, -1.1909990310668945, 0.8495350480079651, -1.069911003112793, -1.529309868812561, -1.477879285812378, -2.461081027984619, -2.2779552936553955, 0.7205217480659485, -0.4745984971523285, -0.5947026610374451, 2.0763309001922607, -1.0799263715744019, -1.6540619134902954, 1.1673076152801514, 0.23774996399879456, 0.08962458372116089, 2.4299159049987793, 0.18348301947116852, -0.7461580038070679, 0.4283246695995331, -0.7916110754013062, 0.8293660283088684, -0.27381908893585205, 1.2655878067016602, 0.5013394355773926, -1.0129220485687256, 1.5095832347869873, -0.3248419463634491, 0.5925682783126831, -0.643505334854126, -0.560932993888855, -0.8769157528877258, 0.28343820571899414, 1.824817180633545, -0.22234037518501282, 1.5615239143371582, -0.2941889762878418, -1.5203266143798828, -1.628969430923462, 0.9372624754905701, 0.4043423533439636, -0.8322279453277588, 0.029892390593886375, -0.5532010793685913, 0.11245165020227432, -0.0810285210609436, 1.2257564067840576, 1.303245186805725, 0.6323512196540833, -0.4259154796600342, -0.7796809077262878, 0.12577059864997864, -0.14908729493618011, -0.7102359533309937, -1.7993097305297852, -0.32239624857902527, 0.13324840366840363, 0.6220372319221497, -1.0609197616577148, 1.7513731718063354, 1.0141180753707886, 1.8588768243789673, 1.034123182296753, -0.28366509079933167, 1.4175004959106445, 0.04768601804971695, 1.760775089263916, -0.5909331440925598, 0.6596172451972961, -0.32562944293022156, -1.1720309257507324, 0.8660841584205627, -0.3157886266708374, -2.0672848224639893, -0.8096810579299927, -0.6481605768203735, -0.2275533378124237, -0.777961790561676, 0.9066422581672668, -0.30336540937423706, -1.4476104974746704, 0.1347920298576355, -0.6988062858581543, 0.21021786332130432, -1.028686761856079, 0.3641296923160553, 0.6946907639503479, -0.5727870464324951, 0.019067058339715004, -0.2109067738056183, -1.2388534545898438, -0.4647983908653259, 0.3605394661426544, 1.8285330533981323, -0.6541218161582947, 0.9119884967803955, 1.0274282693862915, -0.6570969223976135, 0.09141714125871658, 0.16396312415599823, -0.2274591326713562, 0.8557735085487366, -1.025526523590088, -0.42022860050201416, 1.2031347751617432, -0.34166982769966125, -0.6152312755584717, 1.555149793624878, 0.7924784421920776, -0.9092138409614563, -0.24300281703472137, -0.1533021628856659, -0.890847384929657, 0.059177786111831665, -1.5034866333007812, -0.12373416870832443, 0.5044944286346436, -1.5103671550750732, -0.4459133446216583, -0.17893244326114655, 1.3016691207885742, -0.2609131336212158, 1.4176442623138428, -0.4108976721763611, -0.17290377616882324, -0.2569993734359741, -0.4252784252166748, 0.23420296609401703, -0.10118921846151352, -0.4667115807533264, 0.09268564730882645, -0.8419701457023621, 0.34278079867362976, 1.4834812879562378, 0.387186735868454, 0.028719129040837288, 0.3921698331832886, 1.1052411794662476, 0.40202224254608154, -0.13287241756916046, -0.8827606439590454, -1.560840368270874, 1.9436609745025635, -1.416805624961853, 2.0909132957458496, 0.7580803036689758, -0.03805728629231453, -1.7835378646850586, -1.8158962726593018, 1.1372946500778198, 1.145914077758789, 2.3664450645446777, 0.39138007164001465, 0.3487105369567871, -0.9144158959388733, -0.8208155035972595, 0.3824911117553711, -1.059994101524353, -0.5979301929473877, 0.14747267961502075, 2.326582670211792, 1.8351261615753174, -0.4227345883846283, -0.17548102140426636, -0.92641282081604, 1.386855959892273, -0.23846665024757385, 0.3634762763977051, 2.0281596183776855, -0.19878661632537842, -0.9975694417953491, 1.3651323318481445, -2.4079596996307373, 0.13587549328804016, 2.0979604721069336, 0.3021112084388733, 0.11773363500833511, -1.3340260982513428, -0.6061711311340332, -0.4350369870662689, -0.4077412188053131, -1.2926808595657349, 0.5261093378067017, -0.33137983083724976, -0.7646428346633911, -1.4103742837905884, 0.14008952677249908, -1.1150203943252563, -1.6781457662582397, 0.2559330463409424, 1.8589857816696167, 2.1018283367156982, -0.7286592125892639, 1.4812052249908447, -0.3083285093307495, 0.12329746037721634, 1.124306559562683, 1.4216103553771973, 3.0661189556121826, 1.8847655057907104, -1.2595759630203247, 0.5684547424316406, -0.23925645649433136, -0.49936434626579285, 1.1587119102478027, -1.2156585454940796, 1.2552162408828735, -0.05626777559518814, -1.1677724123001099, -1.2413415908813477, 1.0857875347137451, 0.445862740278244, 0.06076908856630325, -0.5220735669136047, 1.2166534662246704, 0.05985035002231598, 1.3903518915176392, 0.6558377742767334, -0.43251529335975647, 0.5273459553718567, -0.47181567549705505, -0.585402250289917, 1.5735034942626953, 0.19108939170837402, -1.4941333532333374, -2.2188031673431396, -0.2394646257162094, -0.8633699417114258, 0.0410558357834816, -0.6600326895713806, -1.0052086114883423, 1.6405360698699951, 0.3066903054714203, -1.3179587125778198, -0.271541029214859, -0.2564382255077362, -0.5201385021209717, 2.792956829071045, -1.1883103847503662, -0.16048851609230042, -0.9646404981613159, -0.6671285033226013, 1.6533280611038208, -1.2511593103408813, -0.27312588691711426, -1.0902849435806274, -0.608719527721405, -1.2079044580459595, -0.4125511348247528, 0.030078047886490822, -1.0678590536117554, 0.8228276371955872, 0.1687610149383545, -1.1675982475280762, -0.32033151388168335, -0.8417577743530273, 1.015634298324585, -0.15969720482826233, 0.18364807963371277, 1.7938647270202637, 0.23523575067520142, -0.3608313202857971, 0.870069682598114, 1.1653128862380981, 0.7001209259033203, -0.7043721079826355, 0.044600844383239746, -0.6871765851974487, 0.2991251051425934, -1.1998580694198608, 0.3231656551361084, -2.9825968742370605, 0.6538469195365906, -0.07147008180618286, -0.16839779913425446, -0.022128049284219742, -1.359907865524292, 1.036285400390625, 2.597541570663452, -1.1942062377929688, 0.4610680043697357, 0.3614233732223511, 1.109289526939392, -1.6695812940597534, 0.3913572132587433, -0.4410170912742615, 2.0155694484710693, 0.29029783606529236, 1.269982099533081, -0.49094197154045105, -2.36519193649292, 0.5463905930519104, -1.231435775756836, -1.1706448793411255, 0.7856835722923279, -1.0011690855026245, 0.25541606545448303, -1.4501276016235352, -0.3030530512332916, -0.9035470485687256, -1.200655460357666, 0.5625467300415039, 0.1627611219882965, 0.4194077253341675, -0.5300735831260681, 0.2476513832807541, -2.2881956100463867, -1.2635537385940552, -0.22309203445911407, -0.9464994072914124, 0.5615428686141968, -0.5066027641296387, 0.575635552406311, -0.1205659955739975, 0.041847243905067444, 0.3542696535587311, 1.5791376829147339, 3.3924336433410645, 0.247977152466774, 0.28838106989860535, -0.15000185370445251, -0.8174892663955688, 1.4581408500671387, 0.9158536791801453, 0.00011099502444267273, -0.5826044082641602, -0.9982142448425293, 1.2992136478424072, 1.943359375, 0.9742410778999329, -0.030572732910513878, -0.8187214136123657, -0.6613893508911133, -0.11516349762678146, 0.09473805874586105, 0.4693967401981354, 0.9828313589096069, 0.09324846416711807, 0.09501846134662628, 1.5047365427017212, 1.1858222484588623, -0.40910616517066956, 0.18960906565189362, -0.876018226146698, -0.4830470383167267, 0.4538734555244446, 0.1503414362668991, -0.11063066124916077, 0.4625915288925171, -0.9766706228256226, -0.23901721835136414, -0.5067825317382812, -0.7979652881622314, -0.7348568439483643, -0.417481929063797, -0.48453977704048157, 1.6582777500152588, 0.15323883295059204, -0.5052261352539062, 0.0072693247348070145, -0.7301580905914307, -0.24842743575572968, -1.178532600402832, 0.24937306344509125, -0.012323785573244095, -0.14108718931674957, -0.17116256058216095, 1.6596693992614746, -0.8960329294204712, -2.079150676727295, 0.16008655726909637, 0.15408995747566223, -0.21160948276519775, 0.18616361916065216, 1.675463318824768, 0.4586893618106842, 1.4344730377197266, 1.237501859664917, 0.9669710993766785, -0.6081872582435608, -1.25350821018219, 0.7749575972557068, 0.9483007788658142, -1.3632867336273193, 0.8943706750869751, -0.1613374799489975, -0.576583981513977, 0.6727935075759888, 1.2458552122116089, 0.5520619750022888, -2.0441341400146484, 0.8534809350967407, -1.1835927963256836, 0.8718573451042175, 0.6679100394248962, 0.5923095345497131, 0.2901034355163574, 0.9191776514053345, -1.182193636894226, -1.1010205745697021, -0.6673875451087952, -0.7313494086265564, 1.9686834812164307, -0.4326655864715576, 0.6755369901657104, -0.26103994250297546, -1.2056453227996826, -0.044267624616622925, 0.7713353633880615, 0.33590853214263916, -0.4946674704551697, 0.9097602367401123, -0.6761125922203064, -1.0158576965332031, -1.27733314037323, -0.380862832069397, -1.1196248531341553, -0.9752053618431091, 1.0895469188690186, 0.6888329386711121, 0.24742190539836884, 1.8479454517364502, 0.7024312615394592, 0.3895661532878876, -2.5987064838409424, 0.8783801794052124, 0.15312261879444122, -0.05298442393541336, 0.8111984729766846, 0.2980000972747803, 1.080427646636963, 0.04254026710987091, 0.567349910736084, -2.5278499126434326, 2.2945187091827393, -0.16162294149398804, 0.6660295128822327, -0.017516687512397766, -0.21520088613033295, 1.1954622268676758, 0.6427029967308044, 0.4982922375202179, -1.0205861330032349, 0.6742228269577026, -0.4019455909729004, 1.13741135597229, 0.8754082918167114, -0.7354879379272461, -0.008342206478118896, 1.4611361026763916, 0.4201657772064209, -0.62872314453125, -0.9096428751945496, -1.0179908275604248, 0.8692770600318909, 1.639098882675171, -0.026957694441080093, -0.10600829124450684, 0.8201376795768738, 0.6961979866027832, -1.1537692546844482, 0.07543071359395981, -0.6134631037712097, -0.7186344265937805, 1.5559489727020264, 2.065197229385376, -0.14675018191337585, -0.1514328271150589, -0.5370656847953796, -1.2610852718353271, 0.776685357093811, -0.11015313118696213, 0.09577879309654236, 0.487347275018692, -0.5739099979400635, 0.9604752063751221, 0.7601497173309326, 0.9784696698188782, 0.07495512813329697, 0.23523777723312378, 0.5260772705078125, -0.3952622413635254, -1.1888995170593262, -0.33834806084632874, -1.103279948234558, -2.5328893661499023, 0.3767949640750885, -0.2226661741733551, -1.5033355951309204, 0.060869693756103516, -1.06404709815979, 0.9462318420410156, -0.630264163017273, -1.051387071609497, -1.6457635164260864, 0.19526441395282745, -0.045514509081840515, 0.9405926465988159, -1.589158058166504, -0.20047736167907715, 1.1088659763336182, 0.741543710231781, -0.6217336058616638, 1.0576530694961548, 0.1691463589668274, 1.007480502128601, 0.7274938225746155, -0.44977885484695435, 0.6021197438240051, 0.05532364547252655, -1.4530245065689087, 0.5390235781669617, 1.229482650756836, 0.13112962245941162, 1.5021553039550781, -0.44593313336372375, 0.01851198822259903, 0.4332127571105957, -0.7491881251335144, -0.46705758571624756, -0.2988924980163574, 0.7171638011932373, 0.09502016752958298, -0.8684812784194946, -0.14280785620212555, -0.11474478244781494, -0.39065635204315186, 0.13004304468631744, -1.451722502708435, -0.17087455093860626, -0.5369646549224854, -0.565579354763031, -1.353659987449646, -0.006878769490867853, 1.4560667276382446, -0.722512423992157, -0.19399769604206085, 0.4157692790031433, 0.45215046405792236, 0.5935205221176147, 0.7089505195617676, -0.7038543224334717, -0.2093324512243271, -0.29055657982826233, -0.2996196746826172, 0.3569285273551941, 1.3013023138046265, -0.10467632114887238, -0.8714677095413208, 0.7150855660438538, -0.35411420464515686, 0.1558701992034912, 1.9468878507614136, 0.1316503882408142, -0.679948627948761, 0.365693598985672, -0.7281308174133301, 1.9250609874725342, 1.7155413627624512, 1.3617608547210693, -0.15037715435028076, -0.8587040901184082, 0.59337317943573, -0.4173595905303955, -0.32587212324142456, 0.802836000919342, 0.37862592935562134, -0.255596399307251, -1.3707338571548462, 0.8215442299842834, 1.1957876682281494, -0.838413417339325, -0.700485110282898, 0.1847192794084549, -0.7414146065711975, 1.1773197650909424, 0.5062357187271118, 0.307356059551239, 0.28608450293540955, 1.6897786855697632, 0.7432451844215393, -0.4044594466686249, 0.5228339433670044, 0.6403075456619263, -0.1920367032289505, -2.1264936923980713, -1.1299560070037842, 0.4168226718902588, -0.6216242909431458, -1.579400658607483, 1.4341199398040771, -1.0866705179214478, -1.033993124961853, 0.6306626200675964, -0.005595272406935692, 1.3707891702651978, 0.47275564074516296, 1.538006067276001, 2.1429104804992676, 0.780447244644165, 0.5575558543205261, 1.2689437866210938, -0.14279597997665405, -0.5026034712791443, 1.863229751586914, -0.44998699426651, 0.4751187264919281, 1.0680981874465942, -0.4061209559440613, -1.0984997749328613, -0.7288973331451416, -1.1662498712539673, -0.6630918979644775, 1.2010481357574463, 0.08216290175914764, -0.9865992069244385, 0.2299753874540329, 1.5771926641464233, 0.1995401531457901, -0.32029303908348083, 0.6065375208854675, 0.29921817779541016, -0.720748245716095, -0.03725482523441315, -0.9424522519111633, 0.5340750813484192, -0.25919845700263977, -0.35489872097969055, 0.37356865406036377, 0.4800805151462555, 1.282137155532837, -0.10332727432250977, 0.14438794553279877, 1.0181068181991577, -1.4655637741088867, 1.508517861366272, -0.5251721143722534, 0.31625115871429443, -2.3862624168395996, 1.3689943552017212, -0.701871395111084, 2.0244786739349365, -2.6607561111450195, 0.3669455051422119, -0.5846226811408997, -0.5699421167373657, 0.33328524231910706, -0.3442825675010681, 0.0782981738448143, -0.10040260851383209, -1.117576241493225, 0.07802420109510422, -0.6434924006462097, 0.6176685690879822, 1.1391667127609253, 1.2946206331253052, -1.1845968961715698, -0.2633790671825409, -1.6358712911605835, -0.11156921088695526, -0.869830310344696, 0.252890944480896, -2.090498924255371, -0.13748325407505035, -1.9283517599105835, -2.3743607997894287, -1.20334792137146, -0.798649251461029, 1.0937224626541138, 0.20138902962207794, -0.8911359906196594, 1.3560203313827515, -0.3098960816860199, -1.8292635679244995, 1.1323561668395996, -2.08902907371521 ]
https://github.com/huggingface/datasets/issues/5936
Sequence of array not supported for most dtype
Related, `float16` is the only dtype not supported by `Array2D` (probably by every `ArrayND`): ```python from datasets import Array2D, Features, Dataset import numpy as np for dtype in [ "bool", # ok "int8", # ok "int16", # ok "int32", # ok "int64", # ok "uint8", # ok "uint16", # ok "uint32", # ok "uint64", # ok "float16", # failed "float32", # ok "float64", # ok ]: features = Features({"foo": Array2D(dtype=dtype, shape=(3, 4))}) array = np.zeros((3, 4), dtype=dtype) try: dataset = Dataset.from_dict({"foo": [array]}, features=features) except Exception as e: print(f"Failed for dtype={dtype}") ```
### Describe the bug Create a dataset composed of sequence of array fails for most dtypes (see code below). ### Steps to reproduce the bug ```python from datasets import Sequence, Array2D, Features, Dataset import numpy as np for dtype in [ "bool", # ok "int8", # failed "int16", # failed "int32", # failed "int64", # ok "uint8", # failed "uint16", # failed "uint32", # failed "uint64", # failed "float16", # failed "float32", # failed "float64", # ok ]: features = Features({"foo": Sequence(Array2D(dtype=dtype, shape=(2, 2)))}) sequence = [ [[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]], ] array = np.array(sequence, dtype=dtype) try: dataset = Dataset.from_dict({"foo": [array]}, features=features) except Exception as e: print(f"Failed for dtype={dtype}") ``` Traceback for `dtype="int8"`: ``` Traceback (most recent call last): File "/home/qgallouedec/datasets/a.py", line 29, in <module> raise e File "/home/qgallouedec/datasets/a.py", line 26, in <module> dataset = Dataset.from_dict({"foo": [array]}, features=features) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 899, in from_dict pa_table = InMemoryTable.from_pydict(mapping=mapping) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 799, in from_pydict return cls(pa.Table.from_pydict(*args, **kwargs)) File "pyarrow/table.pxi", line 3725, in pyarrow.lib.Table.from_pydict File "pyarrow/table.pxi", line 5254, in pyarrow.lib._from_pydict File "pyarrow/array.pxi", line 350, in pyarrow.lib.asarray File "pyarrow/array.pxi", line 236, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_writer.py", line 204, in __arrow_array__ out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2091, in cast_array_to_feature casted_values = _c(array.values, feature.feature) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2139, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1967, in array_cast return pa_type.wrap_array(array) File "pyarrow/types.pxi", line 879, in pyarrow.lib.BaseExtensionType.wrap_array TypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: int8>>, got list<item: list<item: int64>> ``` ### Expected behavior Not to fail. ### Environment info - Python 3.10.6 - datasets: master branch - Numpy: 1.23.4
106
91
Sequence of array not supported for most dtype ### Describe the bug Create a dataset composed of sequence of array fails for most dtypes (see code below). ### Steps to reproduce the bug ```python from datasets import Sequence, Array2D, Features, Dataset import numpy as np for dtype in [ "bool", # ok "int8", # failed "int16", # failed "int32", # failed "int64", # ok "uint8", # failed "uint16", # failed "uint32", # failed "uint64", # failed "float16", # failed "float32", # failed "float64", # ok ]: features = Features({"foo": Sequence(Array2D(dtype=dtype, shape=(2, 2)))}) sequence = [ [[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]], ] array = np.array(sequence, dtype=dtype) try: dataset = Dataset.from_dict({"foo": [array]}, features=features) except Exception as e: print(f"Failed for dtype={dtype}") ``` Traceback for `dtype="int8"`: ``` Traceback (most recent call last): File "/home/qgallouedec/datasets/a.py", line 29, in <module> raise e File "/home/qgallouedec/datasets/a.py", line 26, in <module> dataset = Dataset.from_dict({"foo": [array]}, features=features) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 899, in from_dict pa_table = InMemoryTable.from_pydict(mapping=mapping) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 799, in from_pydict return cls(pa.Table.from_pydict(*args, **kwargs)) File "pyarrow/table.pxi", line 3725, in pyarrow.lib.Table.from_pydict File "pyarrow/table.pxi", line 5254, in pyarrow.lib._from_pydict File "pyarrow/array.pxi", line 350, in pyarrow.lib.asarray File "pyarrow/array.pxi", line 236, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_writer.py", line 204, in __arrow_array__ out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2091, in cast_array_to_feature casted_values = _c(array.values, feature.feature) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2139, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1967, in array_cast return pa_type.wrap_array(array) File "pyarrow/types.pxi", line 879, in pyarrow.lib.BaseExtensionType.wrap_array TypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: int8>>, got list<item: list<item: int64>> ``` ### Expected behavior Not to fail. ### Environment info - Python 3.10.6 - datasets: master branch - Numpy: 1.23.4 Related, `float16` is the only dtype not supported by `Array2D` (probably by every `ArrayND`): ```python from datasets import Array2D, Features, Dataset import numpy as np for dtype in [ "bool", # ok "int8", # ok "int16", # ok "int32", # ok "int64", # ok "uint8", # ok "uint16", # ok "uint32", # ok "uint64", # ok "float16", # failed "float32", # ok "float64", # ok ]: features = Features({"foo": Array2D(dtype=dtype, shape=(3, 4))}) array = np.zeros((3, 4), dtype=dtype) try: dataset = Dataset.from_dict({"foo": [array]}, features=features) except Exception as e: print(f"Failed for dtype={dtype}") ```
[ -1.2726014852523804, -0.8982098698616028, -0.754351019859314, 1.5242360830307007, -0.19428840279579163, -1.113892674446106, 0.17027276754379272, -1.1304137706756592, 1.5939068794250488, -0.7255213260650635, 0.27409541606903076, -1.6660664081573486, -0.005884177982807159, -0.5916813015937805, -0.6600245833396912, -0.96844083070755, -0.4061589241027832, -0.7113908529281616, 1.0816444158554077, 2.5066943168640137, 1.3183822631835938, -1.312247633934021, 2.6817641258239746, 0.8073651194572449, -0.24712267518043518, -0.9226223826408386, 0.59364253282547, 0.03160408139228821, -1.2632616758346558, -0.47807490825653076, -0.9880102276802063, -0.14557813107967377, -0.4641839861869812, -0.45634812116622925, -0.08659178763628006, 0.4508422613143921, -0.34935057163238525, -0.4096524715423584, -0.6464696526527405, -0.8726974725723267, 0.4425261616706848, -0.3791831135749817, 0.8977411389350891, -0.3344404101371765, 1.766489863395691, -0.6538199186325073, 0.4342852234840393, 0.6469801068305969, 1.2749310731887817, 0.25107377767562866, 0.1431141495704651, 0.3567417860031128, 0.437241792678833, -0.041555821895599365, 0.598843514919281, 1.228037714958191, 0.6755785942077637, 0.5328263640403748, 0.7771289944648743, -2.163054943084717, 1.2109562158584595, -1.0283039808273315, 0.2105415016412735, 1.369687557220459, -0.7599501609802246, 0.4822959303855896, -1.7541534900665283, -0.12904208898544312, 0.5299736857414246, -2.2639172077178955, 0.3659251928329468, -1.3560848236083984, -0.5635079741477966, 0.8982449173927307, 0.428527295589447, -1.2083802223205566, 0.16224217414855957, -0.4769465923309326, 0.9556289911270142, 0.4450751543045044, 1.0674647092819214, -1.6855499744415283, -0.03962916508316994, -0.327020525932312, 0.07175703346729279, -1.222422480583191, -1.5109484195709229, 0.5208132266998291, 0.5255292654037476, 0.6139838099479675, -0.046409834176301956, 1.0792434215545654, -1.156613826751709, 0.7375682592391968, -0.9879866242408752, -1.6625492572784424, -1.3989471197128296, -2.374857187271118, -2.275113582611084, 0.7943883538246155, -0.5105412602424622, -0.632594108581543, 2.0189578533172607, -0.9510616064071655, -1.7090013027191162, 1.1670397520065308, 0.32779020071029663, 0.01346898078918457, 2.5274713039398193, 0.1627144068479538, -0.6731400489807129, 0.5389026999473572, -0.7866769433021545, 0.796972393989563, -0.403969407081604, 1.3022980690002441, 0.4352573752403259, -1.0203040838241577, 1.6593620777130127, -0.3411903381347656, 0.6163118481636047, -0.6177675724029541, -0.4617116451263428, -0.6722826957702637, 0.376262903213501, 1.855350375175476, -0.3223090171813965, 1.501617670059204, -0.2519533932209015, -1.4984426498413086, -1.656355619430542, 0.9079972505569458, 0.47747373580932617, -0.7809409499168396, 0.08008682727813721, -0.3342621922492981, 0.12147955596446991, -0.05898791551589966, 1.1211888790130615, 1.2849332094192505, 0.6756717562675476, -0.30116575956344604, -0.7788198590278625, 0.18108579516410828, -0.13941016793251038, -0.7876526117324829, -1.6757872104644775, -0.38442808389663696, 0.13766153156757355, 0.6078356504440308, -1.2634745836257935, 1.7760525941848755, 0.8806512355804443, 1.8870751857757568, 1.0572938919067383, -0.44745224714279175, 1.5351077318191528, 0.10793019831180573, 1.7343460321426392, -0.5073332190513611, 0.6541547179222107, -0.36799418926239014, -1.2582144737243652, 0.8669571876525879, -0.35339486598968506, -2.005782127380371, -0.8633837103843689, -0.759627103805542, -0.2079518735408783, -0.7850333452224731, 0.9497301578521729, -0.35421043634414673, -1.4323928356170654, 0.22519263625144958, -0.8150282502174377, 0.06437404453754425, -1.3008416891098022, 0.3150023818016052, 0.66261887550354, -0.6048093438148499, 0.060723014175891876, -0.21666166186332703, -1.232884168624878, -0.48463088274002075, 0.20045605301856995, 1.9766865968704224, -0.7511221766471863, 0.9087269902229309, 1.0480725765228271, -0.8600746393203735, 0.03642561286687851, 0.31391823291778564, -0.34453946352005005, 0.7807544469833374, -1.0378272533416748, -0.5317438840866089, 1.1588422060012817, -0.15687917172908783, -0.6138259768486023, 1.4012329578399658, 0.7334224581718445, -1.017319679260254, -0.31935107707977295, -0.12516304850578308, -0.768012523651123, 0.03304552286863327, -1.443197250366211, -0.15661662817001343, 0.5143228769302368, -1.486924648284912, -0.423498272895813, -0.1885932832956314, 1.2818849086761475, -0.23832108080387115, 1.4536700248718262, -0.33372169733047485, -0.20054474472999573, -0.32700347900390625, -0.3457995057106018, 0.10113002359867096, -0.21824036538600922, -0.5632734894752502, 0.16024132072925568, -0.7833912372589111, 0.4192765951156616, 1.4162064790725708, 0.37639927864074707, 0.07512309402227402, 0.4708871841430664, 1.0698413848876953, 0.4605259895324707, -0.08851132541894913, -0.8885892629623413, -1.4534496068954468, 1.9025574922561646, -1.484241247177124, 2.00083327293396, 0.7864537239074707, -0.0756305530667305, -1.7321761846542358, -1.971746802330017, 1.336586356163025, 1.2180726528167725, 2.355276107788086, 0.507443904876709, 0.4337267279624939, -0.8112034797668457, -0.7563796043395996, 0.23753061890602112, -1.0754538774490356, -0.6807538866996765, 0.23191022872924805, 2.3903968334198, 1.7288792133331299, -0.44789808988571167, -0.18733231723308563, -1.0228374004364014, 1.3336554765701294, -0.24459192156791687, 0.18610186874866486, 2.0122437477111816, -0.28102433681488037, -1.0200304985046387, 1.271981120109558, -2.362997055053711, 0.09754341840744019, 1.9534990787506104, 0.3015233278274536, 0.011700524017214775, -1.3149564266204834, -0.771722137928009, -0.3572004437446594, -0.5494279861450195, -1.2258962392807007, 0.4774898290634155, -0.17983615398406982, -0.765956461429596, -1.4760618209838867, 0.11430748552083969, -1.1008048057556152, -1.5484466552734375, 0.2244919240474701, 1.9794585704803467, 2.0663132667541504, -0.7978584170341492, 1.4854917526245117, -0.1730625033378601, -0.04000130295753479, 1.2681964635849, 1.2795956134796143, 3.032139301300049, 1.8822228908538818, -1.1932159662246704, 0.6248700022697449, -0.1702520251274109, -0.4627944827079773, 1.2222893238067627, -1.2837587594985962, 1.2563998699188232, -0.049824848771095276, -1.2113823890686035, -1.2421497106552124, 0.9098703265190125, 0.3750772476196289, 0.011853959411382675, -0.508211076259613, 1.109633207321167, 0.13365575671195984, 1.364289402961731, 0.626848578453064, -0.2145354449748993, 0.6026581525802612, -0.34967344999313354, -0.4803141951560974, 1.5797219276428223, 0.17622189223766327, -1.5378309488296509, -2.353060245513916, -0.16960181295871735, -0.922784686088562, 0.018483001738786697, -0.595032811164856, -1.0711913108825684, 1.7101401090621948, 0.3225008249282837, -1.1065819263458252, -0.21635593473911285, -0.34468793869018555, -0.6145399808883667, 2.8338143825531006, -1.3649147748947144, -0.21836119890213013, -1.0063751935958862, -0.6913048028945923, 1.6806458234786987, -1.1487995386123657, -0.1148943305015564, -1.007773995399475, -0.5192365050315857, -1.329267144203186, -0.4693600535392761, 0.04494304209947586, -1.0224159955978394, 0.8560203909873962, 0.2731679081916809, -1.1309547424316406, -0.3248480558395386, -0.8333591818809509, 0.973398745059967, -0.10931839048862457, 0.2909369468688965, 1.9851170778274536, 0.39674997329711914, -0.32646918296813965, 0.7621152400970459, 1.2594820261001587, 0.6686838269233704, -0.6585310697555542, 0.16139724850654602, -0.7040435075759888, 0.3672800660133362, -1.3581408262252808, 0.2089128941297531, -2.7297298908233643, 0.5995355248451233, -0.14886139333248138, -0.12846948206424713, 0.059505172073841095, -1.239366888999939, 1.166269063949585, 2.5664641857147217, -1.175446629524231, 0.3719949722290039, 0.3330726623535156, 1.2428324222564697, -1.5706747770309448, 0.31664133071899414, -0.4679018259048462, 2.0824432373046875, 0.2352598011493683, 1.1469887495040894, -0.4717314839363098, -2.3027026653289795, 0.673362135887146, -1.3262712955474854, -1.1992439031600952, 0.6879006028175354, -0.9087432622909546, 0.22288112342357635, -1.4947618246078491, -0.19774313271045685, -0.8150155544281006, -1.1697580814361572, 0.6827624440193176, 0.06375909596681595, 0.37965625524520874, -0.463595986366272, 0.40791141986846924, -2.223087787628174, -1.4602235555648804, -0.24897968769073486, -0.8797653317451477, 0.546600878238678, -0.37710869312286377, 0.7161113023757935, -0.2228548377752304, -0.0666503757238388, 0.38091886043548584, 1.55966055393219, 3.353788137435913, 0.25206542015075684, 0.3436086177825928, -0.17073705792427063, -1.0349187850952148, 1.4494068622589111, 0.8383231163024902, -0.0743744745850563, -0.5474002957344055, -1.0694624185562134, 1.2782950401306152, 1.92629075050354, 1.1360232830047607, 0.05944114178419113, -0.8201204538345337, -0.741729736328125, -0.08286737650632858, 0.2494361251592636, 0.3326084613800049, 0.915719211101532, 0.052085842937231064, -0.012404365465044975, 1.4917587041854858, 1.2172306776046753, -0.41305702924728394, 0.3142209053039551, -0.8510935306549072, -0.4506649971008301, 0.5512270927429199, 0.16883568465709686, 0.04606562852859497, 0.5164660811424255, -1.03905189037323, -0.3586835265159607, -0.3569452166557312, -0.8773995041847229, -0.7419124841690063, -0.3019883632659912, -0.36999428272247314, 1.6620676517486572, 0.11144845932722092, -0.5766794681549072, 0.0003741178661584854, -0.8079996109008789, -0.13233384490013123, -1.1198047399520874, 0.16308118402957916, -0.10692733526229858, -0.17119285464286804, -0.12099024653434753, 1.8464281558990479, -0.9363402128219604, -2.068007230758667, 0.1780795007944107, 0.27750134468078613, -0.20009595155715942, 0.2794908881187439, 1.635794758796692, 0.5636657476425171, 1.4582831859588623, 1.165562629699707, 0.9269435405731201, -0.5510638356208801, -1.3505606651306152, 0.7146070003509521, 1.127557635307312, -1.2948445081710815, 0.8776724934577942, -0.08844085037708282, -0.530627429485321, 0.445248544216156, 1.2644654512405396, 0.42794501781463623, -1.9018784761428833, 0.8001480102539062, -0.9560886025428772, 0.7713451385498047, 0.6175146102905273, 0.6775190234184265, 0.23856119811534882, 0.7525168657302856, -1.2985628843307495, -1.1385095119476318, -0.7078430652618408, -0.6159916520118713, 1.9764715433120728, -0.34287673234939575, 0.6955333352088928, -0.3280092477798462, -1.2765766382217407, -0.016047850251197815, 0.6736308336257935, 0.3344915509223938, -0.5200968980789185, 0.883994996547699, -0.6229118704795837, -0.9807792901992798, -1.343253254890442, -0.41720718145370483, -1.07939612865448, -0.8882234692573547, 1.086006999015808, 0.750099241733551, 0.23860149085521698, 1.9039218425750732, 0.6563536524772644, 0.34299635887145996, -2.6247189044952393, 0.9119143486022949, 0.25184595584869385, -0.05382666364312172, 0.7897637486457825, 0.343447208404541, 1.0122108459472656, -0.007913155481219292, 0.5253790020942688, -2.405745506286621, 2.332409143447876, -0.1589077115058899, 0.6828755736351013, 0.05712701380252838, -0.11974799633026123, 1.114929437637329, 0.618718683719635, 0.4779258370399475, -1.0183438062667847, 0.4829210638999939, -0.538735032081604, 1.2997463941574097, 0.912933349609375, -0.8310661315917969, 0.04595152661204338, 1.407056212425232, 0.6212404370307922, -0.37806373834609985, -0.9476169347763062, -0.7928214073181152, 1.007305383682251, 1.6622756719589233, -0.006020372733473778, -0.038520000874996185, 0.8822727203369141, 0.5549938082695007, -1.2723554372787476, 0.04866442829370499, -0.732170820236206, -0.676101565361023, 1.6878583431243896, 2.1476194858551025, -0.21691739559173584, -0.27602362632751465, -0.6604094505310059, -1.3106539249420166, 0.8200586438179016, -0.10683614760637283, 0.22880767285823822, 0.6780914664268494, -0.6836903095245361, 1.0118259191513062, 0.819725751876831, 0.9652027487754822, 0.3036853075027466, 0.31368887424468994, 0.3797042965888977, -0.4451841115951538, -1.1430730819702148, -0.13014733791351318, -1.0535410642623901, -2.64925479888916, 0.34107065200805664, -0.21168839931488037, -1.43033766746521, 0.06458283960819244, -1.0778769254684448, 1.0053871870040894, -0.5192796587944031, -1.0773844718933105, -1.5452873706817627, 0.22744476795196533, 0.017729640007019043, 1.0099420547485352, -1.6158671379089355, -0.22756493091583252, 1.2455289363861084, 0.9173969030380249, -0.7240704894065857, 0.8734801411628723, 0.21006888151168823, 1.1236083507537842, 0.8127938508987427, -0.36392027139663696, 0.5423542857170105, -0.1649714857339859, -1.4053250551223755, 0.361924409866333, 1.2106056213378906, 0.18223199248313904, 1.4722501039505005, -0.533455491065979, 0.016238193958997726, 0.3819476366043091, -0.5487150549888611, -0.4838540554046631, -0.4628083109855652, 0.5051652789115906, 0.04314132779836655, -1.0160154104232788, -0.15442052483558655, 0.03405963256955147, -0.25007104873657227, 0.14362116158008575, -1.4158004522323608, -0.16560856997966766, -0.5368874073028564, -0.6285000443458557, -1.2526389360427856, -0.019976476207375526, 1.2531113624572754, -0.8338293433189392, -0.1467733532190323, 0.3519687056541443, 0.24947147071361542, 0.500033974647522, 0.5263493061065674, -0.7417908310890198, -0.39608192443847656, -0.23711435496807098, -0.4071311950683594, 0.3090099096298218, 1.3497226238250732, -0.13757866621017456, -0.9894968271255493, 0.6991763114929199, -0.2737264633178711, 0.15835249423980713, 1.9904643297195435, -0.011556732468307018, -0.7500882744789124, 0.27045738697052, -0.7019062042236328, 1.8695812225341797, 1.6783487796783447, 1.28451406955719, -0.22126080095767975, -0.7925975322723389, 0.5886102914810181, -0.34828221797943115, -0.3735262155532837, 0.8117191791534424, 0.3370091915130615, -0.16000747680664062, -1.5554945468902588, 0.7479596138000488, 1.3067104816436768, -0.8722875118255615, -0.751880407333374, 0.1459912806749344, -0.8524215221405029, 1.1301034688949585, 0.5844570994377136, 0.3029623031616211, 0.33408457040786743, 1.6067280769348145, 0.8349760174751282, -0.4445173740386963, 0.5412392616271973, 0.6126100420951843, -0.09331340342760086, -2.169280767440796, -1.1094504594802856, 0.23787809908390045, -0.5134432911872864, -1.5574696063995361, 1.4164460897445679, -1.1224342584609985, -0.9439398646354675, 0.6478695273399353, 0.1685679852962494, 1.3756375312805176, 0.39588427543640137, 1.5274773836135864, 2.048023223876953, 0.8078964948654175, 0.34671878814697266, 1.1378268003463745, -0.07195118069648743, -0.40654706954956055, 1.7581173181533813, -0.3900439739227295, 0.4721946120262146, 1.0110241174697876, -0.26867198944091797, -1.1472704410552979, -0.7289870381355286, -1.3481807708740234, -0.74590665102005, 1.2470675706863403, 0.06072663515806198, -1.0232763290405273, 0.2544337511062622, 1.5666937828063965, 0.021830668672919273, -0.37586748600006104, 0.5856751203536987, 0.4603027105331421, -0.8280253410339355, -0.12138794362545013, -0.8456658124923706, 0.5434905886650085, -0.016143815591931343, -0.33576905727386475, 0.30864596366882324, 0.4637296795845032, 1.4861929416656494, -0.10578928887844086, 0.20148147642612457, 1.0319589376449585, -1.4007512331008911, 1.6299601793289185, -0.739151120185852, 0.25046002864837646, -2.3036088943481445, 1.4085310697555542, -0.7254834175109863, 1.91217041015625, -2.5566246509552, 0.5234590172767639, -0.5272679328918457, -0.41644948720932007, 0.20480617880821228, -0.4437717795372009, 0.16670474410057068, -0.146518737077713, -1.0282965898513794, -0.034481026232242584, -0.6439664363861084, 0.5769267678260803, 1.112401008605957, 1.4286859035491943, -1.1298089027404785, -0.3505696654319763, -1.7407621145248413, -0.1301843225955963, -0.7582985758781433, 0.20880994200706482, -1.896411657333374, -0.2777026295661926, -1.8228298425674438, -2.441784620285034, -1.3248655796051025, -0.7835226058959961, 1.1470190286636353, 0.09579832851886749, -0.9585583806037903, 1.3187921047210693, -0.4529014825820923, -1.9124675989151, 1.2355204820632935, -2.1996166706085205 ]
https://github.com/huggingface/datasets/issues/5936
Sequence of array not supported for most dtype
Here's something I can't explain: When an array is encoded in the `from_dict` method, the numpy array is converted to a list (thus losing the original dtype, which is transfromed to the nearest builtin Python type) https://github.com/huggingface/datasets/blob/6ee61e6e695b1df9f232d47faf3a5e2b30b33737/src/datasets/features/features.py#L524-L525 However, later on, this same data is written to memory, and it seems authorized that the data is an array (or in this case, a list of arrays). https://github.com/huggingface/datasets/blob/6ee61e6e695b1df9f232d47faf3a5e2b30b33737/src/datasets/arrow_writer.py#L185-L186 So the question is: why convert it to a Python list? This seems to be quite expensive both in terms of write time (all data is copied) and memory (e.g., an int8 is converted to an int64). Finally, if I try to remove this step, it solves all the previous problems, and it seems to me that it doesn't break anything (the CI passes without problem).
### Describe the bug Create a dataset composed of sequence of array fails for most dtypes (see code below). ### Steps to reproduce the bug ```python from datasets import Sequence, Array2D, Features, Dataset import numpy as np for dtype in [ "bool", # ok "int8", # failed "int16", # failed "int32", # failed "int64", # ok "uint8", # failed "uint16", # failed "uint32", # failed "uint64", # failed "float16", # failed "float32", # failed "float64", # ok ]: features = Features({"foo": Sequence(Array2D(dtype=dtype, shape=(2, 2)))}) sequence = [ [[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]], ] array = np.array(sequence, dtype=dtype) try: dataset = Dataset.from_dict({"foo": [array]}, features=features) except Exception as e: print(f"Failed for dtype={dtype}") ``` Traceback for `dtype="int8"`: ``` Traceback (most recent call last): File "/home/qgallouedec/datasets/a.py", line 29, in <module> raise e File "/home/qgallouedec/datasets/a.py", line 26, in <module> dataset = Dataset.from_dict({"foo": [array]}, features=features) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 899, in from_dict pa_table = InMemoryTable.from_pydict(mapping=mapping) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 799, in from_pydict return cls(pa.Table.from_pydict(*args, **kwargs)) File "pyarrow/table.pxi", line 3725, in pyarrow.lib.Table.from_pydict File "pyarrow/table.pxi", line 5254, in pyarrow.lib._from_pydict File "pyarrow/array.pxi", line 350, in pyarrow.lib.asarray File "pyarrow/array.pxi", line 236, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_writer.py", line 204, in __arrow_array__ out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2091, in cast_array_to_feature casted_values = _c(array.values, feature.feature) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2139, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1967, in array_cast return pa_type.wrap_array(array) File "pyarrow/types.pxi", line 879, in pyarrow.lib.BaseExtensionType.wrap_array TypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: int8>>, got list<item: list<item: int64>> ``` ### Expected behavior Not to fail. ### Environment info - Python 3.10.6 - datasets: master branch - Numpy: 1.23.4
106
132
Sequence of array not supported for most dtype ### Describe the bug Create a dataset composed of sequence of array fails for most dtypes (see code below). ### Steps to reproduce the bug ```python from datasets import Sequence, Array2D, Features, Dataset import numpy as np for dtype in [ "bool", # ok "int8", # failed "int16", # failed "int32", # failed "int64", # ok "uint8", # failed "uint16", # failed "uint32", # failed "uint64", # failed "float16", # failed "float32", # failed "float64", # ok ]: features = Features({"foo": Sequence(Array2D(dtype=dtype, shape=(2, 2)))}) sequence = [ [[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]], ] array = np.array(sequence, dtype=dtype) try: dataset = Dataset.from_dict({"foo": [array]}, features=features) except Exception as e: print(f"Failed for dtype={dtype}") ``` Traceback for `dtype="int8"`: ``` Traceback (most recent call last): File "/home/qgallouedec/datasets/a.py", line 29, in <module> raise e File "/home/qgallouedec/datasets/a.py", line 26, in <module> dataset = Dataset.from_dict({"foo": [array]}, features=features) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 899, in from_dict pa_table = InMemoryTable.from_pydict(mapping=mapping) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 799, in from_pydict return cls(pa.Table.from_pydict(*args, **kwargs)) File "pyarrow/table.pxi", line 3725, in pyarrow.lib.Table.from_pydict File "pyarrow/table.pxi", line 5254, in pyarrow.lib._from_pydict File "pyarrow/array.pxi", line 350, in pyarrow.lib.asarray File "pyarrow/array.pxi", line 236, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_writer.py", line 204, in __arrow_array__ out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2091, in cast_array_to_feature casted_values = _c(array.values, feature.feature) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2139, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1967, in array_cast return pa_type.wrap_array(array) File "pyarrow/types.pxi", line 879, in pyarrow.lib.BaseExtensionType.wrap_array TypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: int8>>, got list<item: list<item: int64>> ``` ### Expected behavior Not to fail. ### Environment info - Python 3.10.6 - datasets: master branch - Numpy: 1.23.4 Here's something I can't explain: When an array is encoded in the `from_dict` method, the numpy array is converted to a list (thus losing the original dtype, which is transfromed to the nearest builtin Python type) https://github.com/huggingface/datasets/blob/6ee61e6e695b1df9f232d47faf3a5e2b30b33737/src/datasets/features/features.py#L524-L525 However, later on, this same data is written to memory, and it seems authorized that the data is an array (or in this case, a list of arrays). https://github.com/huggingface/datasets/blob/6ee61e6e695b1df9f232d47faf3a5e2b30b33737/src/datasets/arrow_writer.py#L185-L186 So the question is: why convert it to a Python list? This seems to be quite expensive both in terms of write time (all data is copied) and memory (e.g., an int8 is converted to an int64). Finally, if I try to remove this step, it solves all the previous problems, and it seems to me that it doesn't break anything (the CI passes without problem).
[ -1.2726014852523804, -0.8982098698616028, -0.754351019859314, 1.5242360830307007, -0.19428840279579163, -1.113892674446106, 0.17027276754379272, -1.1304137706756592, 1.5939068794250488, -0.7255213260650635, 0.27409541606903076, -1.6660664081573486, -0.005884177982807159, -0.5916813015937805, -0.6600245833396912, -0.96844083070755, -0.4061589241027832, -0.7113908529281616, 1.0816444158554077, 2.5066943168640137, 1.3183822631835938, -1.312247633934021, 2.6817641258239746, 0.8073651194572449, -0.24712267518043518, -0.9226223826408386, 0.59364253282547, 0.03160408139228821, -1.2632616758346558, -0.47807490825653076, -0.9880102276802063, -0.14557813107967377, -0.4641839861869812, -0.45634812116622925, -0.08659178763628006, 0.4508422613143921, -0.34935057163238525, -0.4096524715423584, -0.6464696526527405, -0.8726974725723267, 0.4425261616706848, -0.3791831135749817, 0.8977411389350891, -0.3344404101371765, 1.766489863395691, -0.6538199186325073, 0.4342852234840393, 0.6469801068305969, 1.2749310731887817, 0.25107377767562866, 0.1431141495704651, 0.3567417860031128, 0.437241792678833, -0.041555821895599365, 0.598843514919281, 1.228037714958191, 0.6755785942077637, 0.5328263640403748, 0.7771289944648743, -2.163054943084717, 1.2109562158584595, -1.0283039808273315, 0.2105415016412735, 1.369687557220459, -0.7599501609802246, 0.4822959303855896, -1.7541534900665283, -0.12904208898544312, 0.5299736857414246, -2.2639172077178955, 0.3659251928329468, -1.3560848236083984, -0.5635079741477966, 0.8982449173927307, 0.428527295589447, -1.2083802223205566, 0.16224217414855957, -0.4769465923309326, 0.9556289911270142, 0.4450751543045044, 1.0674647092819214, -1.6855499744415283, -0.03962916508316994, -0.327020525932312, 0.07175703346729279, -1.222422480583191, -1.5109484195709229, 0.5208132266998291, 0.5255292654037476, 0.6139838099479675, -0.046409834176301956, 1.0792434215545654, -1.156613826751709, 0.7375682592391968, -0.9879866242408752, -1.6625492572784424, -1.3989471197128296, -2.374857187271118, -2.275113582611084, 0.7943883538246155, -0.5105412602424622, -0.632594108581543, 2.0189578533172607, -0.9510616064071655, -1.7090013027191162, 1.1670397520065308, 0.32779020071029663, 0.01346898078918457, 2.5274713039398193, 0.1627144068479538, -0.6731400489807129, 0.5389026999473572, -0.7866769433021545, 0.796972393989563, -0.403969407081604, 1.3022980690002441, 0.4352573752403259, -1.0203040838241577, 1.6593620777130127, -0.3411903381347656, 0.6163118481636047, -0.6177675724029541, -0.4617116451263428, -0.6722826957702637, 0.376262903213501, 1.855350375175476, -0.3223090171813965, 1.501617670059204, -0.2519533932209015, -1.4984426498413086, -1.656355619430542, 0.9079972505569458, 0.47747373580932617, -0.7809409499168396, 0.08008682727813721, -0.3342621922492981, 0.12147955596446991, -0.05898791551589966, 1.1211888790130615, 1.2849332094192505, 0.6756717562675476, -0.30116575956344604, -0.7788198590278625, 0.18108579516410828, -0.13941016793251038, -0.7876526117324829, -1.6757872104644775, -0.38442808389663696, 0.13766153156757355, 0.6078356504440308, -1.2634745836257935, 1.7760525941848755, 0.8806512355804443, 1.8870751857757568, 1.0572938919067383, -0.44745224714279175, 1.5351077318191528, 0.10793019831180573, 1.7343460321426392, -0.5073332190513611, 0.6541547179222107, -0.36799418926239014, -1.2582144737243652, 0.8669571876525879, -0.35339486598968506, -2.005782127380371, -0.8633837103843689, -0.759627103805542, -0.2079518735408783, -0.7850333452224731, 0.9497301578521729, -0.35421043634414673, -1.4323928356170654, 0.22519263625144958, -0.8150282502174377, 0.06437404453754425, -1.3008416891098022, 0.3150023818016052, 0.66261887550354, -0.6048093438148499, 0.060723014175891876, -0.21666166186332703, -1.232884168624878, -0.48463088274002075, 0.20045605301856995, 1.9766865968704224, -0.7511221766471863, 0.9087269902229309, 1.0480725765228271, -0.8600746393203735, 0.03642561286687851, 0.31391823291778564, -0.34453946352005005, 0.7807544469833374, -1.0378272533416748, -0.5317438840866089, 1.1588422060012817, -0.15687917172908783, -0.6138259768486023, 1.4012329578399658, 0.7334224581718445, -1.017319679260254, -0.31935107707977295, -0.12516304850578308, -0.768012523651123, 0.03304552286863327, -1.443197250366211, -0.15661662817001343, 0.5143228769302368, -1.486924648284912, -0.423498272895813, -0.1885932832956314, 1.2818849086761475, -0.23832108080387115, 1.4536700248718262, -0.33372169733047485, -0.20054474472999573, -0.32700347900390625, -0.3457995057106018, 0.10113002359867096, -0.21824036538600922, -0.5632734894752502, 0.16024132072925568, -0.7833912372589111, 0.4192765951156616, 1.4162064790725708, 0.37639927864074707, 0.07512309402227402, 0.4708871841430664, 1.0698413848876953, 0.4605259895324707, -0.08851132541894913, -0.8885892629623413, -1.4534496068954468, 1.9025574922561646, -1.484241247177124, 2.00083327293396, 0.7864537239074707, -0.0756305530667305, -1.7321761846542358, -1.971746802330017, 1.336586356163025, 1.2180726528167725, 2.355276107788086, 0.507443904876709, 0.4337267279624939, -0.8112034797668457, -0.7563796043395996, 0.23753061890602112, -1.0754538774490356, -0.6807538866996765, 0.23191022872924805, 2.3903968334198, 1.7288792133331299, -0.44789808988571167, -0.18733231723308563, -1.0228374004364014, 1.3336554765701294, -0.24459192156791687, 0.18610186874866486, 2.0122437477111816, -0.28102433681488037, -1.0200304985046387, 1.271981120109558, -2.362997055053711, 0.09754341840744019, 1.9534990787506104, 0.3015233278274536, 0.011700524017214775, -1.3149564266204834, -0.771722137928009, -0.3572004437446594, -0.5494279861450195, -1.2258962392807007, 0.4774898290634155, -0.17983615398406982, -0.765956461429596, -1.4760618209838867, 0.11430748552083969, -1.1008048057556152, -1.5484466552734375, 0.2244919240474701, 1.9794585704803467, 2.0663132667541504, -0.7978584170341492, 1.4854917526245117, -0.1730625033378601, -0.04000130295753479, 1.2681964635849, 1.2795956134796143, 3.032139301300049, 1.8822228908538818, -1.1932159662246704, 0.6248700022697449, -0.1702520251274109, -0.4627944827079773, 1.2222893238067627, -1.2837587594985962, 1.2563998699188232, -0.049824848771095276, -1.2113823890686035, -1.2421497106552124, 0.9098703265190125, 0.3750772476196289, 0.011853959411382675, -0.508211076259613, 1.109633207321167, 0.13365575671195984, 1.364289402961731, 0.626848578453064, -0.2145354449748993, 0.6026581525802612, -0.34967344999313354, -0.4803141951560974, 1.5797219276428223, 0.17622189223766327, -1.5378309488296509, -2.353060245513916, -0.16960181295871735, -0.922784686088562, 0.018483001738786697, -0.595032811164856, -1.0711913108825684, 1.7101401090621948, 0.3225008249282837, -1.1065819263458252, -0.21635593473911285, -0.34468793869018555, -0.6145399808883667, 2.8338143825531006, -1.3649147748947144, -0.21836119890213013, -1.0063751935958862, -0.6913048028945923, 1.6806458234786987, -1.1487995386123657, -0.1148943305015564, -1.007773995399475, -0.5192365050315857, -1.329267144203186, -0.4693600535392761, 0.04494304209947586, -1.0224159955978394, 0.8560203909873962, 0.2731679081916809, -1.1309547424316406, -0.3248480558395386, -0.8333591818809509, 0.973398745059967, -0.10931839048862457, 0.2909369468688965, 1.9851170778274536, 0.39674997329711914, -0.32646918296813965, 0.7621152400970459, 1.2594820261001587, 0.6686838269233704, -0.6585310697555542, 0.16139724850654602, -0.7040435075759888, 0.3672800660133362, -1.3581408262252808, 0.2089128941297531, -2.7297298908233643, 0.5995355248451233, -0.14886139333248138, -0.12846948206424713, 0.059505172073841095, -1.239366888999939, 1.166269063949585, 2.5664641857147217, -1.175446629524231, 0.3719949722290039, 0.3330726623535156, 1.2428324222564697, -1.5706747770309448, 0.31664133071899414, -0.4679018259048462, 2.0824432373046875, 0.2352598011493683, 1.1469887495040894, -0.4717314839363098, -2.3027026653289795, 0.673362135887146, -1.3262712955474854, -1.1992439031600952, 0.6879006028175354, -0.9087432622909546, 0.22288112342357635, -1.4947618246078491, -0.19774313271045685, -0.8150155544281006, -1.1697580814361572, 0.6827624440193176, 0.06375909596681595, 0.37965625524520874, -0.463595986366272, 0.40791141986846924, -2.223087787628174, -1.4602235555648804, -0.24897968769073486, -0.8797653317451477, 0.546600878238678, -0.37710869312286377, 0.7161113023757935, -0.2228548377752304, -0.0666503757238388, 0.38091886043548584, 1.55966055393219, 3.353788137435913, 0.25206542015075684, 0.3436086177825928, -0.17073705792427063, -1.0349187850952148, 1.4494068622589111, 0.8383231163024902, -0.0743744745850563, -0.5474002957344055, -1.0694624185562134, 1.2782950401306152, 1.92629075050354, 1.1360232830047607, 0.05944114178419113, -0.8201204538345337, -0.741729736328125, -0.08286737650632858, 0.2494361251592636, 0.3326084613800049, 0.915719211101532, 0.052085842937231064, -0.012404365465044975, 1.4917587041854858, 1.2172306776046753, -0.41305702924728394, 0.3142209053039551, -0.8510935306549072, -0.4506649971008301, 0.5512270927429199, 0.16883568465709686, 0.04606562852859497, 0.5164660811424255, -1.03905189037323, -0.3586835265159607, -0.3569452166557312, -0.8773995041847229, -0.7419124841690063, -0.3019883632659912, -0.36999428272247314, 1.6620676517486572, 0.11144845932722092, -0.5766794681549072, 0.0003741178661584854, -0.8079996109008789, -0.13233384490013123, -1.1198047399520874, 0.16308118402957916, -0.10692733526229858, -0.17119285464286804, -0.12099024653434753, 1.8464281558990479, -0.9363402128219604, -2.068007230758667, 0.1780795007944107, 0.27750134468078613, -0.20009595155715942, 0.2794908881187439, 1.635794758796692, 0.5636657476425171, 1.4582831859588623, 1.165562629699707, 0.9269435405731201, -0.5510638356208801, -1.3505606651306152, 0.7146070003509521, 1.127557635307312, -1.2948445081710815, 0.8776724934577942, -0.08844085037708282, -0.530627429485321, 0.445248544216156, 1.2644654512405396, 0.42794501781463623, -1.9018784761428833, 0.8001480102539062, -0.9560886025428772, 0.7713451385498047, 0.6175146102905273, 0.6775190234184265, 0.23856119811534882, 0.7525168657302856, -1.2985628843307495, -1.1385095119476318, -0.7078430652618408, -0.6159916520118713, 1.9764715433120728, -0.34287673234939575, 0.6955333352088928, -0.3280092477798462, -1.2765766382217407, -0.016047850251197815, 0.6736308336257935, 0.3344915509223938, -0.5200968980789185, 0.883994996547699, -0.6229118704795837, -0.9807792901992798, -1.343253254890442, -0.41720718145370483, -1.07939612865448, -0.8882234692573547, 1.086006999015808, 0.750099241733551, 0.23860149085521698, 1.9039218425750732, 0.6563536524772644, 0.34299635887145996, -2.6247189044952393, 0.9119143486022949, 0.25184595584869385, -0.05382666364312172, 0.7897637486457825, 0.343447208404541, 1.0122108459472656, -0.007913155481219292, 0.5253790020942688, -2.405745506286621, 2.332409143447876, -0.1589077115058899, 0.6828755736351013, 0.05712701380252838, -0.11974799633026123, 1.114929437637329, 0.618718683719635, 0.4779258370399475, -1.0183438062667847, 0.4829210638999939, -0.538735032081604, 1.2997463941574097, 0.912933349609375, -0.8310661315917969, 0.04595152661204338, 1.407056212425232, 0.6212404370307922, -0.37806373834609985, -0.9476169347763062, -0.7928214073181152, 1.007305383682251, 1.6622756719589233, -0.006020372733473778, -0.038520000874996185, 0.8822727203369141, 0.5549938082695007, -1.2723554372787476, 0.04866442829370499, -0.732170820236206, -0.676101565361023, 1.6878583431243896, 2.1476194858551025, -0.21691739559173584, -0.27602362632751465, -0.6604094505310059, -1.3106539249420166, 0.8200586438179016, -0.10683614760637283, 0.22880767285823822, 0.6780914664268494, -0.6836903095245361, 1.0118259191513062, 0.819725751876831, 0.9652027487754822, 0.3036853075027466, 0.31368887424468994, 0.3797042965888977, -0.4451841115951538, -1.1430730819702148, -0.13014733791351318, -1.0535410642623901, -2.64925479888916, 0.34107065200805664, -0.21168839931488037, -1.43033766746521, 0.06458283960819244, -1.0778769254684448, 1.0053871870040894, -0.5192796587944031, -1.0773844718933105, -1.5452873706817627, 0.22744476795196533, 0.017729640007019043, 1.0099420547485352, -1.6158671379089355, -0.22756493091583252, 1.2455289363861084, 0.9173969030380249, -0.7240704894065857, 0.8734801411628723, 0.21006888151168823, 1.1236083507537842, 0.8127938508987427, -0.36392027139663696, 0.5423542857170105, -0.1649714857339859, -1.4053250551223755, 0.361924409866333, 1.2106056213378906, 0.18223199248313904, 1.4722501039505005, -0.533455491065979, 0.016238193958997726, 0.3819476366043091, -0.5487150549888611, -0.4838540554046631, -0.4628083109855652, 0.5051652789115906, 0.04314132779836655, -1.0160154104232788, -0.15442052483558655, 0.03405963256955147, -0.25007104873657227, 0.14362116158008575, -1.4158004522323608, -0.16560856997966766, -0.5368874073028564, -0.6285000443458557, -1.2526389360427856, -0.019976476207375526, 1.2531113624572754, -0.8338293433189392, -0.1467733532190323, 0.3519687056541443, 0.24947147071361542, 0.500033974647522, 0.5263493061065674, -0.7417908310890198, -0.39608192443847656, -0.23711435496807098, -0.4071311950683594, 0.3090099096298218, 1.3497226238250732, -0.13757866621017456, -0.9894968271255493, 0.6991763114929199, -0.2737264633178711, 0.15835249423980713, 1.9904643297195435, -0.011556732468307018, -0.7500882744789124, 0.27045738697052, -0.7019062042236328, 1.8695812225341797, 1.6783487796783447, 1.28451406955719, -0.22126080095767975, -0.7925975322723389, 0.5886102914810181, -0.34828221797943115, -0.3735262155532837, 0.8117191791534424, 0.3370091915130615, -0.16000747680664062, -1.5554945468902588, 0.7479596138000488, 1.3067104816436768, -0.8722875118255615, -0.751880407333374, 0.1459912806749344, -0.8524215221405029, 1.1301034688949585, 0.5844570994377136, 0.3029623031616211, 0.33408457040786743, 1.6067280769348145, 0.8349760174751282, -0.4445173740386963, 0.5412392616271973, 0.6126100420951843, -0.09331340342760086, -2.169280767440796, -1.1094504594802856, 0.23787809908390045, -0.5134432911872864, -1.5574696063995361, 1.4164460897445679, -1.1224342584609985, -0.9439398646354675, 0.6478695273399353, 0.1685679852962494, 1.3756375312805176, 0.39588427543640137, 1.5274773836135864, 2.048023223876953, 0.8078964948654175, 0.34671878814697266, 1.1378268003463745, -0.07195118069648743, -0.40654706954956055, 1.7581173181533813, -0.3900439739227295, 0.4721946120262146, 1.0110241174697876, -0.26867198944091797, -1.1472704410552979, -0.7289870381355286, -1.3481807708740234, -0.74590665102005, 1.2470675706863403, 0.06072663515806198, -1.0232763290405273, 0.2544337511062622, 1.5666937828063965, 0.021830668672919273, -0.37586748600006104, 0.5856751203536987, 0.4603027105331421, -0.8280253410339355, -0.12138794362545013, -0.8456658124923706, 0.5434905886650085, -0.016143815591931343, -0.33576905727386475, 0.30864596366882324, 0.4637296795845032, 1.4861929416656494, -0.10578928887844086, 0.20148147642612457, 1.0319589376449585, -1.4007512331008911, 1.6299601793289185, -0.739151120185852, 0.25046002864837646, -2.3036088943481445, 1.4085310697555542, -0.7254834175109863, 1.91217041015625, -2.5566246509552, 0.5234590172767639, -0.5272679328918457, -0.41644948720932007, 0.20480617880821228, -0.4437717795372009, 0.16670474410057068, -0.146518737077713, -1.0282965898513794, -0.034481026232242584, -0.6439664363861084, 0.5769267678260803, 1.112401008605957, 1.4286859035491943, -1.1298089027404785, -0.3505696654319763, -1.7407621145248413, -0.1301843225955963, -0.7582985758781433, 0.20880994200706482, -1.896411657333374, -0.2777026295661926, -1.8228298425674438, -2.441784620285034, -1.3248655796051025, -0.7835226058959961, 1.1470190286636353, 0.09579832851886749, -0.9585583806037903, 1.3187921047210693, -0.4529014825820923, -1.9124675989151, 1.2355204820632935, -2.1996166706085205 ]
https://github.com/huggingface/datasets/issues/5936
Sequence of array not supported for most dtype
Arrow only support 1d numpy arrays, so we convert multidim arrays to lists of 1s arrays (and keep the dtype). Though you noticed that it's concerting to lists and lose the dtype. If it's the case then it's a bug.
### Describe the bug Create a dataset composed of sequence of array fails for most dtypes (see code below). ### Steps to reproduce the bug ```python from datasets import Sequence, Array2D, Features, Dataset import numpy as np for dtype in [ "bool", # ok "int8", # failed "int16", # failed "int32", # failed "int64", # ok "uint8", # failed "uint16", # failed "uint32", # failed "uint64", # failed "float16", # failed "float32", # failed "float64", # ok ]: features = Features({"foo": Sequence(Array2D(dtype=dtype, shape=(2, 2)))}) sequence = [ [[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]], ] array = np.array(sequence, dtype=dtype) try: dataset = Dataset.from_dict({"foo": [array]}, features=features) except Exception as e: print(f"Failed for dtype={dtype}") ``` Traceback for `dtype="int8"`: ``` Traceback (most recent call last): File "/home/qgallouedec/datasets/a.py", line 29, in <module> raise e File "/home/qgallouedec/datasets/a.py", line 26, in <module> dataset = Dataset.from_dict({"foo": [array]}, features=features) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 899, in from_dict pa_table = InMemoryTable.from_pydict(mapping=mapping) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 799, in from_pydict return cls(pa.Table.from_pydict(*args, **kwargs)) File "pyarrow/table.pxi", line 3725, in pyarrow.lib.Table.from_pydict File "pyarrow/table.pxi", line 5254, in pyarrow.lib._from_pydict File "pyarrow/array.pxi", line 350, in pyarrow.lib.asarray File "pyarrow/array.pxi", line 236, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_writer.py", line 204, in __arrow_array__ out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2091, in cast_array_to_feature casted_values = _c(array.values, feature.feature) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2139, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1967, in array_cast return pa_type.wrap_array(array) File "pyarrow/types.pxi", line 879, in pyarrow.lib.BaseExtensionType.wrap_array TypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: int8>>, got list<item: list<item: int64>> ``` ### Expected behavior Not to fail. ### Environment info - Python 3.10.6 - datasets: master branch - Numpy: 1.23.4
106
40
Sequence of array not supported for most dtype ### Describe the bug Create a dataset composed of sequence of array fails for most dtypes (see code below). ### Steps to reproduce the bug ```python from datasets import Sequence, Array2D, Features, Dataset import numpy as np for dtype in [ "bool", # ok "int8", # failed "int16", # failed "int32", # failed "int64", # ok "uint8", # failed "uint16", # failed "uint32", # failed "uint64", # failed "float16", # failed "float32", # failed "float64", # ok ]: features = Features({"foo": Sequence(Array2D(dtype=dtype, shape=(2, 2)))}) sequence = [ [[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]], ] array = np.array(sequence, dtype=dtype) try: dataset = Dataset.from_dict({"foo": [array]}, features=features) except Exception as e: print(f"Failed for dtype={dtype}") ``` Traceback for `dtype="int8"`: ``` Traceback (most recent call last): File "/home/qgallouedec/datasets/a.py", line 29, in <module> raise e File "/home/qgallouedec/datasets/a.py", line 26, in <module> dataset = Dataset.from_dict({"foo": [array]}, features=features) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 899, in from_dict pa_table = InMemoryTable.from_pydict(mapping=mapping) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 799, in from_pydict return cls(pa.Table.from_pydict(*args, **kwargs)) File "pyarrow/table.pxi", line 3725, in pyarrow.lib.Table.from_pydict File "pyarrow/table.pxi", line 5254, in pyarrow.lib._from_pydict File "pyarrow/array.pxi", line 350, in pyarrow.lib.asarray File "pyarrow/array.pxi", line 236, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_writer.py", line 204, in __arrow_array__ out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2091, in cast_array_to_feature casted_values = _c(array.values, feature.feature) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2139, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1967, in array_cast return pa_type.wrap_array(array) File "pyarrow/types.pxi", line 879, in pyarrow.lib.BaseExtensionType.wrap_array TypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: int8>>, got list<item: list<item: int64>> ``` ### Expected behavior Not to fail. ### Environment info - Python 3.10.6 - datasets: master branch - Numpy: 1.23.4 Arrow only support 1d numpy arrays, so we convert multidim arrays to lists of 1s arrays (and keep the dtype). Though you noticed that it's concerting to lists and lose the dtype. If it's the case then it's a bug.
[ -1.2726014852523804, -0.8982098698616028, -0.754351019859314, 1.5242360830307007, -0.19428840279579163, -1.113892674446106, 0.17027276754379272, -1.1304137706756592, 1.5939068794250488, -0.7255213260650635, 0.27409541606903076, -1.6660664081573486, -0.005884177982807159, -0.5916813015937805, -0.6600245833396912, -0.96844083070755, -0.4061589241027832, -0.7113908529281616, 1.0816444158554077, 2.5066943168640137, 1.3183822631835938, -1.312247633934021, 2.6817641258239746, 0.8073651194572449, -0.24712267518043518, -0.9226223826408386, 0.59364253282547, 0.03160408139228821, -1.2632616758346558, -0.47807490825653076, -0.9880102276802063, -0.14557813107967377, -0.4641839861869812, -0.45634812116622925, -0.08659178763628006, 0.4508422613143921, -0.34935057163238525, -0.4096524715423584, -0.6464696526527405, -0.8726974725723267, 0.4425261616706848, -0.3791831135749817, 0.8977411389350891, -0.3344404101371765, 1.766489863395691, -0.6538199186325073, 0.4342852234840393, 0.6469801068305969, 1.2749310731887817, 0.25107377767562866, 0.1431141495704651, 0.3567417860031128, 0.437241792678833, -0.041555821895599365, 0.598843514919281, 1.228037714958191, 0.6755785942077637, 0.5328263640403748, 0.7771289944648743, -2.163054943084717, 1.2109562158584595, -1.0283039808273315, 0.2105415016412735, 1.369687557220459, -0.7599501609802246, 0.4822959303855896, -1.7541534900665283, -0.12904208898544312, 0.5299736857414246, -2.2639172077178955, 0.3659251928329468, -1.3560848236083984, -0.5635079741477966, 0.8982449173927307, 0.428527295589447, -1.2083802223205566, 0.16224217414855957, -0.4769465923309326, 0.9556289911270142, 0.4450751543045044, 1.0674647092819214, -1.6855499744415283, -0.03962916508316994, -0.327020525932312, 0.07175703346729279, -1.222422480583191, -1.5109484195709229, 0.5208132266998291, 0.5255292654037476, 0.6139838099479675, -0.046409834176301956, 1.0792434215545654, -1.156613826751709, 0.7375682592391968, -0.9879866242408752, -1.6625492572784424, -1.3989471197128296, -2.374857187271118, -2.275113582611084, 0.7943883538246155, -0.5105412602424622, -0.632594108581543, 2.0189578533172607, -0.9510616064071655, -1.7090013027191162, 1.1670397520065308, 0.32779020071029663, 0.01346898078918457, 2.5274713039398193, 0.1627144068479538, -0.6731400489807129, 0.5389026999473572, -0.7866769433021545, 0.796972393989563, -0.403969407081604, 1.3022980690002441, 0.4352573752403259, -1.0203040838241577, 1.6593620777130127, -0.3411903381347656, 0.6163118481636047, -0.6177675724029541, -0.4617116451263428, -0.6722826957702637, 0.376262903213501, 1.855350375175476, -0.3223090171813965, 1.501617670059204, -0.2519533932209015, -1.4984426498413086, -1.656355619430542, 0.9079972505569458, 0.47747373580932617, -0.7809409499168396, 0.08008682727813721, -0.3342621922492981, 0.12147955596446991, -0.05898791551589966, 1.1211888790130615, 1.2849332094192505, 0.6756717562675476, -0.30116575956344604, -0.7788198590278625, 0.18108579516410828, -0.13941016793251038, -0.7876526117324829, -1.6757872104644775, -0.38442808389663696, 0.13766153156757355, 0.6078356504440308, -1.2634745836257935, 1.7760525941848755, 0.8806512355804443, 1.8870751857757568, 1.0572938919067383, -0.44745224714279175, 1.5351077318191528, 0.10793019831180573, 1.7343460321426392, -0.5073332190513611, 0.6541547179222107, -0.36799418926239014, -1.2582144737243652, 0.8669571876525879, -0.35339486598968506, -2.005782127380371, -0.8633837103843689, -0.759627103805542, -0.2079518735408783, -0.7850333452224731, 0.9497301578521729, -0.35421043634414673, -1.4323928356170654, 0.22519263625144958, -0.8150282502174377, 0.06437404453754425, -1.3008416891098022, 0.3150023818016052, 0.66261887550354, -0.6048093438148499, 0.060723014175891876, -0.21666166186332703, -1.232884168624878, -0.48463088274002075, 0.20045605301856995, 1.9766865968704224, -0.7511221766471863, 0.9087269902229309, 1.0480725765228271, -0.8600746393203735, 0.03642561286687851, 0.31391823291778564, -0.34453946352005005, 0.7807544469833374, -1.0378272533416748, -0.5317438840866089, 1.1588422060012817, -0.15687917172908783, -0.6138259768486023, 1.4012329578399658, 0.7334224581718445, -1.017319679260254, -0.31935107707977295, -0.12516304850578308, -0.768012523651123, 0.03304552286863327, -1.443197250366211, -0.15661662817001343, 0.5143228769302368, -1.486924648284912, -0.423498272895813, -0.1885932832956314, 1.2818849086761475, -0.23832108080387115, 1.4536700248718262, -0.33372169733047485, -0.20054474472999573, -0.32700347900390625, -0.3457995057106018, 0.10113002359867096, -0.21824036538600922, -0.5632734894752502, 0.16024132072925568, -0.7833912372589111, 0.4192765951156616, 1.4162064790725708, 0.37639927864074707, 0.07512309402227402, 0.4708871841430664, 1.0698413848876953, 0.4605259895324707, -0.08851132541894913, -0.8885892629623413, -1.4534496068954468, 1.9025574922561646, -1.484241247177124, 2.00083327293396, 0.7864537239074707, -0.0756305530667305, -1.7321761846542358, -1.971746802330017, 1.336586356163025, 1.2180726528167725, 2.355276107788086, 0.507443904876709, 0.4337267279624939, -0.8112034797668457, -0.7563796043395996, 0.23753061890602112, -1.0754538774490356, -0.6807538866996765, 0.23191022872924805, 2.3903968334198, 1.7288792133331299, -0.44789808988571167, -0.18733231723308563, -1.0228374004364014, 1.3336554765701294, -0.24459192156791687, 0.18610186874866486, 2.0122437477111816, -0.28102433681488037, -1.0200304985046387, 1.271981120109558, -2.362997055053711, 0.09754341840744019, 1.9534990787506104, 0.3015233278274536, 0.011700524017214775, -1.3149564266204834, -0.771722137928009, -0.3572004437446594, -0.5494279861450195, -1.2258962392807007, 0.4774898290634155, -0.17983615398406982, -0.765956461429596, -1.4760618209838867, 0.11430748552083969, -1.1008048057556152, -1.5484466552734375, 0.2244919240474701, 1.9794585704803467, 2.0663132667541504, -0.7978584170341492, 1.4854917526245117, -0.1730625033378601, -0.04000130295753479, 1.2681964635849, 1.2795956134796143, 3.032139301300049, 1.8822228908538818, -1.1932159662246704, 0.6248700022697449, -0.1702520251274109, -0.4627944827079773, 1.2222893238067627, -1.2837587594985962, 1.2563998699188232, -0.049824848771095276, -1.2113823890686035, -1.2421497106552124, 0.9098703265190125, 0.3750772476196289, 0.011853959411382675, -0.508211076259613, 1.109633207321167, 0.13365575671195984, 1.364289402961731, 0.626848578453064, -0.2145354449748993, 0.6026581525802612, -0.34967344999313354, -0.4803141951560974, 1.5797219276428223, 0.17622189223766327, -1.5378309488296509, -2.353060245513916, -0.16960181295871735, -0.922784686088562, 0.018483001738786697, -0.595032811164856, -1.0711913108825684, 1.7101401090621948, 0.3225008249282837, -1.1065819263458252, -0.21635593473911285, -0.34468793869018555, -0.6145399808883667, 2.8338143825531006, -1.3649147748947144, -0.21836119890213013, -1.0063751935958862, -0.6913048028945923, 1.6806458234786987, -1.1487995386123657, -0.1148943305015564, -1.007773995399475, -0.5192365050315857, -1.329267144203186, -0.4693600535392761, 0.04494304209947586, -1.0224159955978394, 0.8560203909873962, 0.2731679081916809, -1.1309547424316406, -0.3248480558395386, -0.8333591818809509, 0.973398745059967, -0.10931839048862457, 0.2909369468688965, 1.9851170778274536, 0.39674997329711914, -0.32646918296813965, 0.7621152400970459, 1.2594820261001587, 0.6686838269233704, -0.6585310697555542, 0.16139724850654602, -0.7040435075759888, 0.3672800660133362, -1.3581408262252808, 0.2089128941297531, -2.7297298908233643, 0.5995355248451233, -0.14886139333248138, -0.12846948206424713, 0.059505172073841095, -1.239366888999939, 1.166269063949585, 2.5664641857147217, -1.175446629524231, 0.3719949722290039, 0.3330726623535156, 1.2428324222564697, -1.5706747770309448, 0.31664133071899414, -0.4679018259048462, 2.0824432373046875, 0.2352598011493683, 1.1469887495040894, -0.4717314839363098, -2.3027026653289795, 0.673362135887146, -1.3262712955474854, -1.1992439031600952, 0.6879006028175354, -0.9087432622909546, 0.22288112342357635, -1.4947618246078491, -0.19774313271045685, -0.8150155544281006, -1.1697580814361572, 0.6827624440193176, 0.06375909596681595, 0.37965625524520874, -0.463595986366272, 0.40791141986846924, -2.223087787628174, -1.4602235555648804, -0.24897968769073486, -0.8797653317451477, 0.546600878238678, -0.37710869312286377, 0.7161113023757935, -0.2228548377752304, -0.0666503757238388, 0.38091886043548584, 1.55966055393219, 3.353788137435913, 0.25206542015075684, 0.3436086177825928, -0.17073705792427063, -1.0349187850952148, 1.4494068622589111, 0.8383231163024902, -0.0743744745850563, -0.5474002957344055, -1.0694624185562134, 1.2782950401306152, 1.92629075050354, 1.1360232830047607, 0.05944114178419113, -0.8201204538345337, -0.741729736328125, -0.08286737650632858, 0.2494361251592636, 0.3326084613800049, 0.915719211101532, 0.052085842937231064, -0.012404365465044975, 1.4917587041854858, 1.2172306776046753, -0.41305702924728394, 0.3142209053039551, -0.8510935306549072, -0.4506649971008301, 0.5512270927429199, 0.16883568465709686, 0.04606562852859497, 0.5164660811424255, -1.03905189037323, -0.3586835265159607, -0.3569452166557312, -0.8773995041847229, -0.7419124841690063, -0.3019883632659912, -0.36999428272247314, 1.6620676517486572, 0.11144845932722092, -0.5766794681549072, 0.0003741178661584854, -0.8079996109008789, -0.13233384490013123, -1.1198047399520874, 0.16308118402957916, -0.10692733526229858, -0.17119285464286804, -0.12099024653434753, 1.8464281558990479, -0.9363402128219604, -2.068007230758667, 0.1780795007944107, 0.27750134468078613, -0.20009595155715942, 0.2794908881187439, 1.635794758796692, 0.5636657476425171, 1.4582831859588623, 1.165562629699707, 0.9269435405731201, -0.5510638356208801, -1.3505606651306152, 0.7146070003509521, 1.127557635307312, -1.2948445081710815, 0.8776724934577942, -0.08844085037708282, -0.530627429485321, 0.445248544216156, 1.2644654512405396, 0.42794501781463623, -1.9018784761428833, 0.8001480102539062, -0.9560886025428772, 0.7713451385498047, 0.6175146102905273, 0.6775190234184265, 0.23856119811534882, 0.7525168657302856, -1.2985628843307495, -1.1385095119476318, -0.7078430652618408, -0.6159916520118713, 1.9764715433120728, -0.34287673234939575, 0.6955333352088928, -0.3280092477798462, -1.2765766382217407, -0.016047850251197815, 0.6736308336257935, 0.3344915509223938, -0.5200968980789185, 0.883994996547699, -0.6229118704795837, -0.9807792901992798, -1.343253254890442, -0.41720718145370483, -1.07939612865448, -0.8882234692573547, 1.086006999015808, 0.750099241733551, 0.23860149085521698, 1.9039218425750732, 0.6563536524772644, 0.34299635887145996, -2.6247189044952393, 0.9119143486022949, 0.25184595584869385, -0.05382666364312172, 0.7897637486457825, 0.343447208404541, 1.0122108459472656, -0.007913155481219292, 0.5253790020942688, -2.405745506286621, 2.332409143447876, -0.1589077115058899, 0.6828755736351013, 0.05712701380252838, -0.11974799633026123, 1.114929437637329, 0.618718683719635, 0.4779258370399475, -1.0183438062667847, 0.4829210638999939, -0.538735032081604, 1.2997463941574097, 0.912933349609375, -0.8310661315917969, 0.04595152661204338, 1.407056212425232, 0.6212404370307922, -0.37806373834609985, -0.9476169347763062, -0.7928214073181152, 1.007305383682251, 1.6622756719589233, -0.006020372733473778, -0.038520000874996185, 0.8822727203369141, 0.5549938082695007, -1.2723554372787476, 0.04866442829370499, -0.732170820236206, -0.676101565361023, 1.6878583431243896, 2.1476194858551025, -0.21691739559173584, -0.27602362632751465, -0.6604094505310059, -1.3106539249420166, 0.8200586438179016, -0.10683614760637283, 0.22880767285823822, 0.6780914664268494, -0.6836903095245361, 1.0118259191513062, 0.819725751876831, 0.9652027487754822, 0.3036853075027466, 0.31368887424468994, 0.3797042965888977, -0.4451841115951538, -1.1430730819702148, -0.13014733791351318, -1.0535410642623901, -2.64925479888916, 0.34107065200805664, -0.21168839931488037, -1.43033766746521, 0.06458283960819244, -1.0778769254684448, 1.0053871870040894, -0.5192796587944031, -1.0773844718933105, -1.5452873706817627, 0.22744476795196533, 0.017729640007019043, 1.0099420547485352, -1.6158671379089355, -0.22756493091583252, 1.2455289363861084, 0.9173969030380249, -0.7240704894065857, 0.8734801411628723, 0.21006888151168823, 1.1236083507537842, 0.8127938508987427, -0.36392027139663696, 0.5423542857170105, -0.1649714857339859, -1.4053250551223755, 0.361924409866333, 1.2106056213378906, 0.18223199248313904, 1.4722501039505005, -0.533455491065979, 0.016238193958997726, 0.3819476366043091, -0.5487150549888611, -0.4838540554046631, -0.4628083109855652, 0.5051652789115906, 0.04314132779836655, -1.0160154104232788, -0.15442052483558655, 0.03405963256955147, -0.25007104873657227, 0.14362116158008575, -1.4158004522323608, -0.16560856997966766, -0.5368874073028564, -0.6285000443458557, -1.2526389360427856, -0.019976476207375526, 1.2531113624572754, -0.8338293433189392, -0.1467733532190323, 0.3519687056541443, 0.24947147071361542, 0.500033974647522, 0.5263493061065674, -0.7417908310890198, -0.39608192443847656, -0.23711435496807098, -0.4071311950683594, 0.3090099096298218, 1.3497226238250732, -0.13757866621017456, -0.9894968271255493, 0.6991763114929199, -0.2737264633178711, 0.15835249423980713, 1.9904643297195435, -0.011556732468307018, -0.7500882744789124, 0.27045738697052, -0.7019062042236328, 1.8695812225341797, 1.6783487796783447, 1.28451406955719, -0.22126080095767975, -0.7925975322723389, 0.5886102914810181, -0.34828221797943115, -0.3735262155532837, 0.8117191791534424, 0.3370091915130615, -0.16000747680664062, -1.5554945468902588, 0.7479596138000488, 1.3067104816436768, -0.8722875118255615, -0.751880407333374, 0.1459912806749344, -0.8524215221405029, 1.1301034688949585, 0.5844570994377136, 0.3029623031616211, 0.33408457040786743, 1.6067280769348145, 0.8349760174751282, -0.4445173740386963, 0.5412392616271973, 0.6126100420951843, -0.09331340342760086, -2.169280767440796, -1.1094504594802856, 0.23787809908390045, -0.5134432911872864, -1.5574696063995361, 1.4164460897445679, -1.1224342584609985, -0.9439398646354675, 0.6478695273399353, 0.1685679852962494, 1.3756375312805176, 0.39588427543640137, 1.5274773836135864, 2.048023223876953, 0.8078964948654175, 0.34671878814697266, 1.1378268003463745, -0.07195118069648743, -0.40654706954956055, 1.7581173181533813, -0.3900439739227295, 0.4721946120262146, 1.0110241174697876, -0.26867198944091797, -1.1472704410552979, -0.7289870381355286, -1.3481807708740234, -0.74590665102005, 1.2470675706863403, 0.06072663515806198, -1.0232763290405273, 0.2544337511062622, 1.5666937828063965, 0.021830668672919273, -0.37586748600006104, 0.5856751203536987, 0.4603027105331421, -0.8280253410339355, -0.12138794362545013, -0.8456658124923706, 0.5434905886650085, -0.016143815591931343, -0.33576905727386475, 0.30864596366882324, 0.4637296795845032, 1.4861929416656494, -0.10578928887844086, 0.20148147642612457, 1.0319589376449585, -1.4007512331008911, 1.6299601793289185, -0.739151120185852, 0.25046002864837646, -2.3036088943481445, 1.4085310697555542, -0.7254834175109863, 1.91217041015625, -2.5566246509552, 0.5234590172767639, -0.5272679328918457, -0.41644948720932007, 0.20480617880821228, -0.4437717795372009, 0.16670474410057068, -0.146518737077713, -1.0282965898513794, -0.034481026232242584, -0.6439664363861084, 0.5769267678260803, 1.112401008605957, 1.4286859035491943, -1.1298089027404785, -0.3505696654319763, -1.7407621145248413, -0.1301843225955963, -0.7582985758781433, 0.20880994200706482, -1.896411657333374, -0.2777026295661926, -1.8228298425674438, -2.441784620285034, -1.3248655796051025, -0.7835226058959961, 1.1470190286636353, 0.09579832851886749, -0.9585583806037903, 1.3187921047210693, -0.4529014825820923, -1.9124675989151, 1.2355204820632935, -2.1996166706085205 ]
https://github.com/huggingface/datasets/issues/5936
Sequence of array not supported for most dtype
Ok the conversion to list shouldn't be there indeed ! Could you open a PR to remove it ?
### Describe the bug Create a dataset composed of sequence of array fails for most dtypes (see code below). ### Steps to reproduce the bug ```python from datasets import Sequence, Array2D, Features, Dataset import numpy as np for dtype in [ "bool", # ok "int8", # failed "int16", # failed "int32", # failed "int64", # ok "uint8", # failed "uint16", # failed "uint32", # failed "uint64", # failed "float16", # failed "float32", # failed "float64", # ok ]: features = Features({"foo": Sequence(Array2D(dtype=dtype, shape=(2, 2)))}) sequence = [ [[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]], ] array = np.array(sequence, dtype=dtype) try: dataset = Dataset.from_dict({"foo": [array]}, features=features) except Exception as e: print(f"Failed for dtype={dtype}") ``` Traceback for `dtype="int8"`: ``` Traceback (most recent call last): File "/home/qgallouedec/datasets/a.py", line 29, in <module> raise e File "/home/qgallouedec/datasets/a.py", line 26, in <module> dataset = Dataset.from_dict({"foo": [array]}, features=features) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 899, in from_dict pa_table = InMemoryTable.from_pydict(mapping=mapping) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 799, in from_pydict return cls(pa.Table.from_pydict(*args, **kwargs)) File "pyarrow/table.pxi", line 3725, in pyarrow.lib.Table.from_pydict File "pyarrow/table.pxi", line 5254, in pyarrow.lib._from_pydict File "pyarrow/array.pxi", line 350, in pyarrow.lib.asarray File "pyarrow/array.pxi", line 236, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_writer.py", line 204, in __arrow_array__ out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2091, in cast_array_to_feature casted_values = _c(array.values, feature.feature) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2139, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1967, in array_cast return pa_type.wrap_array(array) File "pyarrow/types.pxi", line 879, in pyarrow.lib.BaseExtensionType.wrap_array TypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: int8>>, got list<item: list<item: int64>> ``` ### Expected behavior Not to fail. ### Environment info - Python 3.10.6 - datasets: master branch - Numpy: 1.23.4
106
19
Sequence of array not supported for most dtype ### Describe the bug Create a dataset composed of sequence of array fails for most dtypes (see code below). ### Steps to reproduce the bug ```python from datasets import Sequence, Array2D, Features, Dataset import numpy as np for dtype in [ "bool", # ok "int8", # failed "int16", # failed "int32", # failed "int64", # ok "uint8", # failed "uint16", # failed "uint32", # failed "uint64", # failed "float16", # failed "float32", # failed "float64", # ok ]: features = Features({"foo": Sequence(Array2D(dtype=dtype, shape=(2, 2)))}) sequence = [ [[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]], ] array = np.array(sequence, dtype=dtype) try: dataset = Dataset.from_dict({"foo": [array]}, features=features) except Exception as e: print(f"Failed for dtype={dtype}") ``` Traceback for `dtype="int8"`: ``` Traceback (most recent call last): File "/home/qgallouedec/datasets/a.py", line 29, in <module> raise e File "/home/qgallouedec/datasets/a.py", line 26, in <module> dataset = Dataset.from_dict({"foo": [array]}, features=features) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 899, in from_dict pa_table = InMemoryTable.from_pydict(mapping=mapping) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 799, in from_pydict return cls(pa.Table.from_pydict(*args, **kwargs)) File "pyarrow/table.pxi", line 3725, in pyarrow.lib.Table.from_pydict File "pyarrow/table.pxi", line 5254, in pyarrow.lib._from_pydict File "pyarrow/array.pxi", line 350, in pyarrow.lib.asarray File "pyarrow/array.pxi", line 236, in pyarrow.lib.array File "pyarrow/array.pxi", line 110, in pyarrow.lib._handle_arrow_array_protocol File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/arrow_writer.py", line 204, in __arrow_array__ out = cast_array_to_feature(out, type, allow_number_to_str=not self.trying_type) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2091, in cast_array_to_feature casted_values = _c(array.values, feature.feature) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 2139, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1833, in wrapper return func(array, *args, **kwargs) File "/home/qgallouedec/env/lib/python3.10/site-packages/datasets/table.py", line 1967, in array_cast return pa_type.wrap_array(array) File "pyarrow/types.pxi", line 879, in pyarrow.lib.BaseExtensionType.wrap_array TypeError: Incompatible storage type for extension<arrow.py_extension_type<Array2DExtensionType>>: expected list<item: list<item: int8>>, got list<item: list<item: int64>> ``` ### Expected behavior Not to fail. ### Environment info - Python 3.10.6 - datasets: master branch - Numpy: 1.23.4 Ok the conversion to list shouldn't be there indeed ! Could you open a PR to remove it ?
[ -1.2726014852523804, -0.8982098698616028, -0.754351019859314, 1.5242360830307007, -0.19428840279579163, -1.113892674446106, 0.17027276754379272, -1.1304137706756592, 1.5939068794250488, -0.7255213260650635, 0.27409541606903076, -1.6660664081573486, -0.005884177982807159, -0.5916813015937805, -0.6600245833396912, -0.96844083070755, -0.4061589241027832, -0.7113908529281616, 1.0816444158554077, 2.5066943168640137, 1.3183822631835938, -1.312247633934021, 2.6817641258239746, 0.8073651194572449, -0.24712267518043518, -0.9226223826408386, 0.59364253282547, 0.03160408139228821, -1.2632616758346558, -0.47807490825653076, -0.9880102276802063, -0.14557813107967377, -0.4641839861869812, -0.45634812116622925, -0.08659178763628006, 0.4508422613143921, -0.34935057163238525, -0.4096524715423584, -0.6464696526527405, -0.8726974725723267, 0.4425261616706848, -0.3791831135749817, 0.8977411389350891, -0.3344404101371765, 1.766489863395691, -0.6538199186325073, 0.4342852234840393, 0.6469801068305969, 1.2749310731887817, 0.25107377767562866, 0.1431141495704651, 0.3567417860031128, 0.437241792678833, -0.041555821895599365, 0.598843514919281, 1.228037714958191, 0.6755785942077637, 0.5328263640403748, 0.7771289944648743, -2.163054943084717, 1.2109562158584595, -1.0283039808273315, 0.2105415016412735, 1.369687557220459, -0.7599501609802246, 0.4822959303855896, -1.7541534900665283, -0.12904208898544312, 0.5299736857414246, -2.2639172077178955, 0.3659251928329468, -1.3560848236083984, -0.5635079741477966, 0.8982449173927307, 0.428527295589447, -1.2083802223205566, 0.16224217414855957, -0.4769465923309326, 0.9556289911270142, 0.4450751543045044, 1.0674647092819214, -1.6855499744415283, -0.03962916508316994, -0.327020525932312, 0.07175703346729279, -1.222422480583191, -1.5109484195709229, 0.5208132266998291, 0.5255292654037476, 0.6139838099479675, -0.046409834176301956, 1.0792434215545654, -1.156613826751709, 0.7375682592391968, -0.9879866242408752, -1.6625492572784424, -1.3989471197128296, -2.374857187271118, -2.275113582611084, 0.7943883538246155, -0.5105412602424622, -0.632594108581543, 2.0189578533172607, -0.9510616064071655, -1.7090013027191162, 1.1670397520065308, 0.32779020071029663, 0.01346898078918457, 2.5274713039398193, 0.1627144068479538, -0.6731400489807129, 0.5389026999473572, -0.7866769433021545, 0.796972393989563, -0.403969407081604, 1.3022980690002441, 0.4352573752403259, -1.0203040838241577, 1.6593620777130127, -0.3411903381347656, 0.6163118481636047, -0.6177675724029541, -0.4617116451263428, -0.6722826957702637, 0.376262903213501, 1.855350375175476, -0.3223090171813965, 1.501617670059204, -0.2519533932209015, -1.4984426498413086, -1.656355619430542, 0.9079972505569458, 0.47747373580932617, -0.7809409499168396, 0.08008682727813721, -0.3342621922492981, 0.12147955596446991, -0.05898791551589966, 1.1211888790130615, 1.2849332094192505, 0.6756717562675476, -0.30116575956344604, -0.7788198590278625, 0.18108579516410828, -0.13941016793251038, -0.7876526117324829, -1.6757872104644775, -0.38442808389663696, 0.13766153156757355, 0.6078356504440308, -1.2634745836257935, 1.7760525941848755, 0.8806512355804443, 1.8870751857757568, 1.0572938919067383, -0.44745224714279175, 1.5351077318191528, 0.10793019831180573, 1.7343460321426392, -0.5073332190513611, 0.6541547179222107, -0.36799418926239014, -1.2582144737243652, 0.8669571876525879, -0.35339486598968506, -2.005782127380371, -0.8633837103843689, -0.759627103805542, -0.2079518735408783, -0.7850333452224731, 0.9497301578521729, -0.35421043634414673, -1.4323928356170654, 0.22519263625144958, -0.8150282502174377, 0.06437404453754425, -1.3008416891098022, 0.3150023818016052, 0.66261887550354, -0.6048093438148499, 0.060723014175891876, -0.21666166186332703, -1.232884168624878, -0.48463088274002075, 0.20045605301856995, 1.9766865968704224, -0.7511221766471863, 0.9087269902229309, 1.0480725765228271, -0.8600746393203735, 0.03642561286687851, 0.31391823291778564, -0.34453946352005005, 0.7807544469833374, -1.0378272533416748, -0.5317438840866089, 1.1588422060012817, -0.15687917172908783, -0.6138259768486023, 1.4012329578399658, 0.7334224581718445, -1.017319679260254, -0.31935107707977295, -0.12516304850578308, -0.768012523651123, 0.03304552286863327, -1.443197250366211, -0.15661662817001343, 0.5143228769302368, -1.486924648284912, -0.423498272895813, -0.1885932832956314, 1.2818849086761475, -0.23832108080387115, 1.4536700248718262, -0.33372169733047485, -0.20054474472999573, -0.32700347900390625, -0.3457995057106018, 0.10113002359867096, -0.21824036538600922, -0.5632734894752502, 0.16024132072925568, -0.7833912372589111, 0.4192765951156616, 1.4162064790725708, 0.37639927864074707, 0.07512309402227402, 0.4708871841430664, 1.0698413848876953, 0.4605259895324707, -0.08851132541894913, -0.8885892629623413, -1.4534496068954468, 1.9025574922561646, -1.484241247177124, 2.00083327293396, 0.7864537239074707, -0.0756305530667305, -1.7321761846542358, -1.971746802330017, 1.336586356163025, 1.2180726528167725, 2.355276107788086, 0.507443904876709, 0.4337267279624939, -0.8112034797668457, -0.7563796043395996, 0.23753061890602112, -1.0754538774490356, -0.6807538866996765, 0.23191022872924805, 2.3903968334198, 1.7288792133331299, -0.44789808988571167, -0.18733231723308563, -1.0228374004364014, 1.3336554765701294, -0.24459192156791687, 0.18610186874866486, 2.0122437477111816, -0.28102433681488037, -1.0200304985046387, 1.271981120109558, -2.362997055053711, 0.09754341840744019, 1.9534990787506104, 0.3015233278274536, 0.011700524017214775, -1.3149564266204834, -0.771722137928009, -0.3572004437446594, -0.5494279861450195, -1.2258962392807007, 0.4774898290634155, -0.17983615398406982, -0.765956461429596, -1.4760618209838867, 0.11430748552083969, -1.1008048057556152, -1.5484466552734375, 0.2244919240474701, 1.9794585704803467, 2.0663132667541504, -0.7978584170341492, 1.4854917526245117, -0.1730625033378601, -0.04000130295753479, 1.2681964635849, 1.2795956134796143, 3.032139301300049, 1.8822228908538818, -1.1932159662246704, 0.6248700022697449, -0.1702520251274109, -0.4627944827079773, 1.2222893238067627, -1.2837587594985962, 1.2563998699188232, -0.049824848771095276, -1.2113823890686035, -1.2421497106552124, 0.9098703265190125, 0.3750772476196289, 0.011853959411382675, -0.508211076259613, 1.109633207321167, 0.13365575671195984, 1.364289402961731, 0.626848578453064, -0.2145354449748993, 0.6026581525802612, -0.34967344999313354, -0.4803141951560974, 1.5797219276428223, 0.17622189223766327, -1.5378309488296509, -2.353060245513916, -0.16960181295871735, -0.922784686088562, 0.018483001738786697, -0.595032811164856, -1.0711913108825684, 1.7101401090621948, 0.3225008249282837, -1.1065819263458252, -0.21635593473911285, -0.34468793869018555, -0.6145399808883667, 2.8338143825531006, -1.3649147748947144, -0.21836119890213013, -1.0063751935958862, -0.6913048028945923, 1.6806458234786987, -1.1487995386123657, -0.1148943305015564, -1.007773995399475, -0.5192365050315857, -1.329267144203186, -0.4693600535392761, 0.04494304209947586, -1.0224159955978394, 0.8560203909873962, 0.2731679081916809, -1.1309547424316406, -0.3248480558395386, -0.8333591818809509, 0.973398745059967, -0.10931839048862457, 0.2909369468688965, 1.9851170778274536, 0.39674997329711914, -0.32646918296813965, 0.7621152400970459, 1.2594820261001587, 0.6686838269233704, -0.6585310697555542, 0.16139724850654602, -0.7040435075759888, 0.3672800660133362, -1.3581408262252808, 0.2089128941297531, -2.7297298908233643, 0.5995355248451233, -0.14886139333248138, -0.12846948206424713, 0.059505172073841095, -1.239366888999939, 1.166269063949585, 2.5664641857147217, -1.175446629524231, 0.3719949722290039, 0.3330726623535156, 1.2428324222564697, -1.5706747770309448, 0.31664133071899414, -0.4679018259048462, 2.0824432373046875, 0.2352598011493683, 1.1469887495040894, -0.4717314839363098, -2.3027026653289795, 0.673362135887146, -1.3262712955474854, -1.1992439031600952, 0.6879006028175354, -0.9087432622909546, 0.22288112342357635, -1.4947618246078491, -0.19774313271045685, -0.8150155544281006, -1.1697580814361572, 0.6827624440193176, 0.06375909596681595, 0.37965625524520874, -0.463595986366272, 0.40791141986846924, -2.223087787628174, -1.4602235555648804, -0.24897968769073486, -0.8797653317451477, 0.546600878238678, -0.37710869312286377, 0.7161113023757935, -0.2228548377752304, -0.0666503757238388, 0.38091886043548584, 1.55966055393219, 3.353788137435913, 0.25206542015075684, 0.3436086177825928, -0.17073705792427063, -1.0349187850952148, 1.4494068622589111, 0.8383231163024902, -0.0743744745850563, -0.5474002957344055, -1.0694624185562134, 1.2782950401306152, 1.92629075050354, 1.1360232830047607, 0.05944114178419113, -0.8201204538345337, -0.741729736328125, -0.08286737650632858, 0.2494361251592636, 0.3326084613800049, 0.915719211101532, 0.052085842937231064, -0.012404365465044975, 1.4917587041854858, 1.2172306776046753, -0.41305702924728394, 0.3142209053039551, -0.8510935306549072, -0.4506649971008301, 0.5512270927429199, 0.16883568465709686, 0.04606562852859497, 0.5164660811424255, -1.03905189037323, -0.3586835265159607, -0.3569452166557312, -0.8773995041847229, -0.7419124841690063, -0.3019883632659912, -0.36999428272247314, 1.6620676517486572, 0.11144845932722092, -0.5766794681549072, 0.0003741178661584854, -0.8079996109008789, -0.13233384490013123, -1.1198047399520874, 0.16308118402957916, -0.10692733526229858, -0.17119285464286804, -0.12099024653434753, 1.8464281558990479, -0.9363402128219604, -2.068007230758667, 0.1780795007944107, 0.27750134468078613, -0.20009595155715942, 0.2794908881187439, 1.635794758796692, 0.5636657476425171, 1.4582831859588623, 1.165562629699707, 0.9269435405731201, -0.5510638356208801, -1.3505606651306152, 0.7146070003509521, 1.127557635307312, -1.2948445081710815, 0.8776724934577942, -0.08844085037708282, -0.530627429485321, 0.445248544216156, 1.2644654512405396, 0.42794501781463623, -1.9018784761428833, 0.8001480102539062, -0.9560886025428772, 0.7713451385498047, 0.6175146102905273, 0.6775190234184265, 0.23856119811534882, 0.7525168657302856, -1.2985628843307495, -1.1385095119476318, -0.7078430652618408, -0.6159916520118713, 1.9764715433120728, -0.34287673234939575, 0.6955333352088928, -0.3280092477798462, -1.2765766382217407, -0.016047850251197815, 0.6736308336257935, 0.3344915509223938, -0.5200968980789185, 0.883994996547699, -0.6229118704795837, -0.9807792901992798, -1.343253254890442, -0.41720718145370483, -1.07939612865448, -0.8882234692573547, 1.086006999015808, 0.750099241733551, 0.23860149085521698, 1.9039218425750732, 0.6563536524772644, 0.34299635887145996, -2.6247189044952393, 0.9119143486022949, 0.25184595584869385, -0.05382666364312172, 0.7897637486457825, 0.343447208404541, 1.0122108459472656, -0.007913155481219292, 0.5253790020942688, -2.405745506286621, 2.332409143447876, -0.1589077115058899, 0.6828755736351013, 0.05712701380252838, -0.11974799633026123, 1.114929437637329, 0.618718683719635, 0.4779258370399475, -1.0183438062667847, 0.4829210638999939, -0.538735032081604, 1.2997463941574097, 0.912933349609375, -0.8310661315917969, 0.04595152661204338, 1.407056212425232, 0.6212404370307922, -0.37806373834609985, -0.9476169347763062, -0.7928214073181152, 1.007305383682251, 1.6622756719589233, -0.006020372733473778, -0.038520000874996185, 0.8822727203369141, 0.5549938082695007, -1.2723554372787476, 0.04866442829370499, -0.732170820236206, -0.676101565361023, 1.6878583431243896, 2.1476194858551025, -0.21691739559173584, -0.27602362632751465, -0.6604094505310059, -1.3106539249420166, 0.8200586438179016, -0.10683614760637283, 0.22880767285823822, 0.6780914664268494, -0.6836903095245361, 1.0118259191513062, 0.819725751876831, 0.9652027487754822, 0.3036853075027466, 0.31368887424468994, 0.3797042965888977, -0.4451841115951538, -1.1430730819702148, -0.13014733791351318, -1.0535410642623901, -2.64925479888916, 0.34107065200805664, -0.21168839931488037, -1.43033766746521, 0.06458283960819244, -1.0778769254684448, 1.0053871870040894, -0.5192796587944031, -1.0773844718933105, -1.5452873706817627, 0.22744476795196533, 0.017729640007019043, 1.0099420547485352, -1.6158671379089355, -0.22756493091583252, 1.2455289363861084, 0.9173969030380249, -0.7240704894065857, 0.8734801411628723, 0.21006888151168823, 1.1236083507537842, 0.8127938508987427, -0.36392027139663696, 0.5423542857170105, -0.1649714857339859, -1.4053250551223755, 0.361924409866333, 1.2106056213378906, 0.18223199248313904, 1.4722501039505005, -0.533455491065979, 0.016238193958997726, 0.3819476366043091, -0.5487150549888611, -0.4838540554046631, -0.4628083109855652, 0.5051652789115906, 0.04314132779836655, -1.0160154104232788, -0.15442052483558655, 0.03405963256955147, -0.25007104873657227, 0.14362116158008575, -1.4158004522323608, -0.16560856997966766, -0.5368874073028564, -0.6285000443458557, -1.2526389360427856, -0.019976476207375526, 1.2531113624572754, -0.8338293433189392, -0.1467733532190323, 0.3519687056541443, 0.24947147071361542, 0.500033974647522, 0.5263493061065674, -0.7417908310890198, -0.39608192443847656, -0.23711435496807098, -0.4071311950683594, 0.3090099096298218, 1.3497226238250732, -0.13757866621017456, -0.9894968271255493, 0.6991763114929199, -0.2737264633178711, 0.15835249423980713, 1.9904643297195435, -0.011556732468307018, -0.7500882744789124, 0.27045738697052, -0.7019062042236328, 1.8695812225341797, 1.6783487796783447, 1.28451406955719, -0.22126080095767975, -0.7925975322723389, 0.5886102914810181, -0.34828221797943115, -0.3735262155532837, 0.8117191791534424, 0.3370091915130615, -0.16000747680664062, -1.5554945468902588, 0.7479596138000488, 1.3067104816436768, -0.8722875118255615, -0.751880407333374, 0.1459912806749344, -0.8524215221405029, 1.1301034688949585, 0.5844570994377136, 0.3029623031616211, 0.33408457040786743, 1.6067280769348145, 0.8349760174751282, -0.4445173740386963, 0.5412392616271973, 0.6126100420951843, -0.09331340342760086, -2.169280767440796, -1.1094504594802856, 0.23787809908390045, -0.5134432911872864, -1.5574696063995361, 1.4164460897445679, -1.1224342584609985, -0.9439398646354675, 0.6478695273399353, 0.1685679852962494, 1.3756375312805176, 0.39588427543640137, 1.5274773836135864, 2.048023223876953, 0.8078964948654175, 0.34671878814697266, 1.1378268003463745, -0.07195118069648743, -0.40654706954956055, 1.7581173181533813, -0.3900439739227295, 0.4721946120262146, 1.0110241174697876, -0.26867198944091797, -1.1472704410552979, -0.7289870381355286, -1.3481807708740234, -0.74590665102005, 1.2470675706863403, 0.06072663515806198, -1.0232763290405273, 0.2544337511062622, 1.5666937828063965, 0.021830668672919273, -0.37586748600006104, 0.5856751203536987, 0.4603027105331421, -0.8280253410339355, -0.12138794362545013, -0.8456658124923706, 0.5434905886650085, -0.016143815591931343, -0.33576905727386475, 0.30864596366882324, 0.4637296795845032, 1.4861929416656494, -0.10578928887844086, 0.20148147642612457, 1.0319589376449585, -1.4007512331008911, 1.6299601793289185, -0.739151120185852, 0.25046002864837646, -2.3036088943481445, 1.4085310697555542, -0.7254834175109863, 1.91217041015625, -2.5566246509552, 0.5234590172767639, -0.5272679328918457, -0.41644948720932007, 0.20480617880821228, -0.4437717795372009, 0.16670474410057068, -0.146518737077713, -1.0282965898513794, -0.034481026232242584, -0.6439664363861084, 0.5769267678260803, 1.112401008605957, 1.4286859035491943, -1.1298089027404785, -0.3505696654319763, -1.7407621145248413, -0.1301843225955963, -0.7582985758781433, 0.20880994200706482, -1.896411657333374, -0.2777026295661926, -1.8228298425674438, -2.441784620285034, -1.3248655796051025, -0.7835226058959961, 1.1470190286636353, 0.09579832851886749, -0.9585583806037903, 1.3187921047210693, -0.4529014825820923, -1.9124675989151, 1.2355204820632935, -2.1996166706085205 ]
https://github.com/huggingface/datasets/issues/5931
`datasets.map` not reusing cached copy by default
This can happen when a map transform cannot be hashed deterministically (e.g., an object referenced by the transform changes its state after the first call - an issue with fast tokenizers). The solution is to provide `cache_file_name` in the `map` call to check this file for the cached result instead of relying on the default caching mechanism.
### Describe the bug When I load the dataset from local directory, it's cached copy is picked up after first time. However, for `map` operation, the operation is applied again and cached copy is not picked up. Is there any way to pick cached copy instead of processing it again? The only solution I could think of was to use `save_to_disk` after my last transform and then use that in my DataLoader pipeline. Are there any other solutions for the same? One more thing, my dataset is occupying 6GB storage memory after I use `map`, is there any way I can reduce that memory usage? ### Steps to reproduce the bug ``` # make sure that dataset decodes audio with correct sampling rate dataset_sampling_rate = next(iter(self.raw_datasets.values())).features["audio"].sampling_rate if dataset_sampling_rate != self.feature_extractor.sampling_rate: self.raw_datasets = self.raw_datasets.cast_column( "audio", datasets.features.Audio(sampling_rate=self.feature_extractor.sampling_rate) ) vectorized_datasets = self.raw_datasets.map( self.prepare_dataset, remove_columns=next(iter(self.raw_datasets.values())).column_names, num_proc=self.num_workers, desc="preprocess datasets", ) # filter data that is longer than max_input_length self.vectorized_datasets = vectorized_datasets.filter( self.is_audio_in_length_range, num_proc=self.num_workers, input_columns=["input_length"], ) def prepare_dataset(self, batch): # load audio sample = batch["audio"] inputs = self.feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) batch["input_values"] = inputs.input_values[0] batch["input_length"] = len(batch["input_values"]) batch["labels"] = self.tokenizer(batch["target_text"]).input_ids return batch ``` ### Expected behavior `map` to use cached copy and if possible an alternative technique to reduce memory usage after using `map` ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-3.10.0-1160.71.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.8.16 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.2
107
57
`datasets.map` not reusing cached copy by default ### Describe the bug When I load the dataset from local directory, it's cached copy is picked up after first time. However, for `map` operation, the operation is applied again and cached copy is not picked up. Is there any way to pick cached copy instead of processing it again? The only solution I could think of was to use `save_to_disk` after my last transform and then use that in my DataLoader pipeline. Are there any other solutions for the same? One more thing, my dataset is occupying 6GB storage memory after I use `map`, is there any way I can reduce that memory usage? ### Steps to reproduce the bug ``` # make sure that dataset decodes audio with correct sampling rate dataset_sampling_rate = next(iter(self.raw_datasets.values())).features["audio"].sampling_rate if dataset_sampling_rate != self.feature_extractor.sampling_rate: self.raw_datasets = self.raw_datasets.cast_column( "audio", datasets.features.Audio(sampling_rate=self.feature_extractor.sampling_rate) ) vectorized_datasets = self.raw_datasets.map( self.prepare_dataset, remove_columns=next(iter(self.raw_datasets.values())).column_names, num_proc=self.num_workers, desc="preprocess datasets", ) # filter data that is longer than max_input_length self.vectorized_datasets = vectorized_datasets.filter( self.is_audio_in_length_range, num_proc=self.num_workers, input_columns=["input_length"], ) def prepare_dataset(self, batch): # load audio sample = batch["audio"] inputs = self.feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) batch["input_values"] = inputs.input_values[0] batch["input_length"] = len(batch["input_values"]) batch["labels"] = self.tokenizer(batch["target_text"]).input_ids return batch ``` ### Expected behavior `map` to use cached copy and if possible an alternative technique to reduce memory usage after using `map` ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-3.10.0-1160.71.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.8.16 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.2 This can happen when a map transform cannot be hashed deterministically (e.g., an object referenced by the transform changes its state after the first call - an issue with fast tokenizers). The solution is to provide `cache_file_name` in the `map` call to check this file for the cached result instead of relying on the default caching mechanism.
[ -1.3139508962631226, -0.9539834260940552, -0.5751308798789978, 1.482445478439331, -0.20235255360603333, -1.1960197687149048, 0.21385622024536133, -1.1024669408798218, 1.6944544315338135, -0.8689805269241333, 0.33893150091171265, -1.649861454963684, 0.046380672603845596, -0.6254940032958984, -0.7007938027381897, -0.8968998789787292, -0.36732953786849976, -0.6833536028862, 1.054833173751831, 2.431689977645874, 1.2274601459503174, -1.3436099290847778, 2.699676513671875, 0.7116042375564575, -0.2090807408094406, -0.9726823568344116, 0.5121446251869202, 0.1278720498085022, -1.3152999877929688, -0.45857423543930054, -1.0636370182037354, -0.06045117974281311, -0.5742228627204895, -0.36473602056503296, 0.010592987760901451, 0.35807913541793823, -0.3494579792022705, -0.4370746612548828, -0.6530039310455322, -0.7213653326034546, 0.37298089265823364, -0.30320215225219727, 1.022151231765747, -0.38126105070114136, 1.8511804342269897, -0.6234689950942993, 0.5360506772994995, 0.7330033779144287, 1.21683931350708, 0.23508962988853455, -0.01486130803823471, 0.2771037220954895, 0.445573627948761, -0.015703249722719193, 0.5050373077392578, 1.1438015699386597, 0.6641148924827576, 0.5297645330429077, 0.7102360129356384, -2.160446882247925, 1.3228453397750854, -0.9872266054153442, 0.2900468111038208, 1.426395058631897, -0.9156420230865479, 0.3658748269081116, -1.7470983266830444, -0.07677286118268967, 0.7232739329338074, -2.2072434425354004, 0.27147573232650757, -1.4276785850524902, -0.5241988301277161, 0.9497032761573792, 0.41948121786117554, -1.2077653408050537, 0.16131706535816193, -0.4962262511253357, 0.996961236000061, 0.4380004405975342, 1.0677056312561035, -1.6741455793380737, -0.03644932061433792, -0.2745075225830078, 0.10599909722805023, -1.3190034627914429, -1.5706748962402344, 0.6553813815116882, 0.6275285482406616, 0.5421715378761292, -0.11207203567028046, 1.125110387802124, -1.163159966468811, 0.8160603046417236, -1.0281546115875244, -1.6572037935256958, -1.4492961168289185, -2.350595235824585, -2.3512892723083496, 0.7539820075035095, -0.41914331912994385, -0.5248855352401733, 2.157470226287842, -1.0109716653823853, -1.5936305522918701, 1.0872100591659546, 0.1256602257490158, 0.02428600937128067, 2.3968522548675537, 0.22967147827148438, -0.7008078098297119, 0.41687625646591187, -0.6865679621696472, 0.7427106499671936, -0.20815300941467285, 1.2856031656265259, 0.41860491037368774, -1.0566051006317139, 1.5645190477371216, -0.35780662298202515, 0.5775352120399475, -0.5100334286689758, -0.5570749044418335, -0.7524526715278625, 0.22162893414497375, 1.885697841644287, -0.20700237154960632, 1.549965262413025, -0.33146679401397705, -1.558648943901062, -1.6843342781066895, 0.911119818687439, 0.39910680055618286, -0.8003370761871338, 0.018923863768577576, -0.47849518060684204, 0.1575915515422821, -0.11853771656751633, 1.263887882232666, 1.3390400409698486, 0.7783452868461609, -0.41588085889816284, -0.8036065101623535, 0.09375138580799103, -0.11754554510116577, -0.7489373683929443, -1.7751485109329224, -0.3388561010360718, 0.07737115770578384, 0.6901491284370422, -1.1653839349746704, 1.7345819473266602, 0.9776431322097778, 1.7870196104049683, 1.0404046773910522, -0.37365853786468506, 1.3791182041168213, 0.08951540291309357, 1.777054786682129, -0.5260260701179504, 0.6580451130867004, -0.34438109397888184, -1.1603150367736816, 0.7537871599197388, -0.2807160019874573, -2.0523509979248047, -0.8736777305603027, -0.6892092227935791, -0.1648891568183899, -0.7675752639770508, 0.8992620706558228, -0.25195252895355225, -1.5320147275924683, 0.27892959117889404, -0.7236615419387817, 0.11535438895225525, -1.1367111206054688, 0.34122276306152344, 0.7077574133872986, -0.6292092800140381, 0.06903055310249329, -0.1731308549642563, -1.2556413412094116, -0.43761181831359863, 0.3216521739959717, 1.8785018920898438, -0.6928341388702393, 0.9290445446968079, 1.08998441696167, -0.6210153102874756, -0.0021547889336943626, 0.16450057923793793, -0.2650553584098816, 0.8225533962249756, -1.086370825767517, -0.46481460332870483, 1.2276535034179688, -0.29809945821762085, -0.6252539157867432, 1.5465892553329468, 0.6950780749320984, -0.9918927550315857, -0.18654364347457886, -0.1403946876525879, -0.8531243801116943, 0.048095397651195526, -1.5794175863265991, -0.22529418766498566, 0.5171566605567932, -1.4604624509811401, -0.4353488087654114, -0.1392115205526352, 1.337320327758789, -0.11279410123825073, 1.4597296714782715, -0.31754106283187866, -0.20999522507190704, -0.3300604224205017, -0.3599942922592163, 0.17955179512500763, -0.2043568640947342, -0.5774796009063721, 0.21516579389572144, -0.8197434544563293, 0.3590542674064636, 1.427628993988037, 0.3244606852531433, -0.0006790030747652054, 0.4590100049972534, 1.0236470699310303, 0.36522114276885986, -0.05952026695013046, -0.8895556330680847, -1.5542640686035156, 1.9220391511917114, -1.3729852437973022, 1.9465819597244263, 0.7346396446228027, -0.10452765971422195, -1.7987089157104492, -1.8303972482681274, 1.3188403844833374, 1.0873088836669922, 2.2258832454681396, 0.46875524520874023, 0.30976247787475586, -0.7839806079864502, -0.6835097074508667, 0.4080870747566223, -1.0355907678604126, -0.5715076327323914, 0.18916893005371094, 2.404461145401001, 1.7615776062011719, -0.4309598207473755, -0.09497915208339691, -0.9746090173721313, 1.269171118736267, -0.1873651146888733, 0.23949921131134033, 2.0429341793060303, -0.32729482650756836, -1.0414624214172363, 1.2949124574661255, -2.40586256980896, 0.16870230436325073, 2.085383415222168, 0.29721277952194214, 0.0976448580622673, -1.4103281497955322, -0.634259819984436, -0.44991034269332886, -0.391650915145874, -1.2442193031311035, 0.5135803818702698, -0.25304344296455383, -0.783221423625946, -1.4048699140548706, 0.1338200569152832, -1.188825249671936, -1.6499378681182861, 0.2683309316635132, 1.9210705757141113, 2.035728693008423, -0.6899502277374268, 1.5028033256530762, -0.31961846351623535, 0.03735484182834625, 1.206599473953247, 1.3339545726776123, 3.1271355152130127, 1.9067397117614746, -1.3191912174224854, 0.7201781868934631, -0.10854825377464294, -0.4044158458709717, 1.137153148651123, -1.2327758073806763, 1.31597101688385, -0.11543069779872894, -1.1411499977111816, -1.2411061525344849, 1.009166955947876, 0.5006438493728638, -0.0455377921462059, -0.5516730546951294, 1.224824070930481, 0.0365542396903038, 1.4492541551589966, 0.567662239074707, -0.3840840458869934, 0.5999720096588135, -0.4579394459724426, -0.48275238275527954, 1.5887892246246338, 0.20107078552246094, -1.498322606086731, -2.210761785507202, -0.31519579887390137, -0.8282326459884644, 0.09372763335704803, -0.562143087387085, -1.0374417304992676, 1.728399634361267, 0.3522334098815918, -1.2441691160202026, -0.308738648891449, -0.3067989945411682, -0.5058161616325378, 2.788952589035034, -1.257051944732666, -0.15323399007320404, -1.0279775857925415, -0.6901875138282776, 1.6398088932037354, -1.2531821727752686, -0.19867123663425446, -1.0674479007720947, -0.6095139980316162, -1.3087199926376343, -0.46681487560272217, 0.14149723947048187, -1.0179134607315063, 0.8596752285957336, 0.16471019387245178, -1.1525102853775024, -0.40200382471084595, -0.8427183032035828, 0.9667157530784607, -0.10222194343805313, 0.15669465065002441, 1.880070447921753, 0.32753026485443115, -0.475185751914978, 0.6976720690727234, 1.1949400901794434, 0.7167837023735046, -0.7277930974960327, 0.13301585614681244, -0.6571760773658752, 0.30407148599624634, -1.2685867547988892, 0.22545941174030304, -2.935173511505127, 0.6213982105255127, -0.1319914013147354, -0.1335010826587677, 0.029421601444482803, -1.2973113059997559, 1.0860425233840942, 2.531324625015259, -1.212918758392334, 0.5048040151596069, 0.356747031211853, 1.087491512298584, -1.5057950019836426, 0.39622700214385986, -0.4812150001525879, 2.030407428741455, 0.3186851143836975, 1.2360398769378662, -0.482563853263855, -2.198525905609131, 0.6961936950683594, -1.2780556678771973, -1.1692200899124146, 0.828292727470398, -0.9782347679138184, 0.29294663667678833, -1.401144027709961, -0.29915159940719604, -0.8920732140541077, -1.179996371269226, 0.5826059579849243, 0.18151254951953888, 0.32107818126678467, -0.5747828483581543, 0.27164554595947266, -2.2187976837158203, -1.2927268743515015, -0.1471986323595047, -1.0470706224441528, 0.5186673402786255, -0.45431292057037354, 0.6568832993507385, -0.18318726122379303, 0.030126694589853287, 0.3429020047187805, 1.5323344469070435, 3.3893778324127197, 0.10155245661735535, 0.2464984804391861, -0.19116710126399994, -0.8837668299674988, 1.4450587034225464, 0.9783927798271179, -0.015374892391264439, -0.5973272323608398, -1.1417882442474365, 1.2176969051361084, 1.92816162109375, 0.9438964128494263, 0.014635611325502396, -0.8126876354217529, -0.7147496938705444, -0.054631076753139496, 0.1500021368265152, 0.5004703402519226, 0.9718674421310425, 0.0577482134103775, 0.10409817099571228, 1.5194319486618042, 1.1381794214248657, -0.39804190397262573, 0.2028592824935913, -0.8508087396621704, -0.5460946559906006, 0.4843863844871521, 0.2774118185043335, 0.004395927302539349, 0.4348636865615845, -0.9894897937774658, -0.1878381371498108, -0.4258694052696228, -0.909868597984314, -0.7049800157546997, -0.3543335199356079, -0.36534929275512695, 1.6487081050872803, 0.11804693937301636, -0.5092374682426453, -0.038478538393974304, -0.7514990568161011, -0.18680602312088013, -1.1013668775558472, 0.31322628259658813, -0.0711834579706192, -0.13857850432395935, -0.11491460353136063, 1.7298702001571655, -0.8372219204902649, -2.0101468563079834, 0.1555447280406952, 0.17788904905319214, -0.2276386320590973, 0.2332029640674591, 1.6522046327590942, 0.5466515421867371, 1.451623558998108, 1.3252416849136353, 0.9483991861343384, -0.6044604778289795, -1.3861817121505737, 0.6224451065063477, 0.9113609790802002, -1.4359025955200195, 0.8702001571655273, -0.1760944277048111, -0.549696147441864, 0.6267354488372803, 1.3401113748550415, 0.5568438768386841, -1.966809630393982, 0.8548087477684021, -1.0091997385025024, 0.8033755421638489, 0.7404663562774658, 0.6233086585998535, 0.18758977949619293, 0.8445775508880615, -1.1778966188430786, -1.1339495182037354, -0.6786884069442749, -0.7057103514671326, 2.114847183227539, -0.4053143858909607, 0.5757626891136169, -0.1898999959230423, -1.2031736373901367, -0.14247466623783112, 0.7473329305648804, 0.3286482095718384, -0.4459468722343445, 0.870782732963562, -0.6499192118644714, -1.0610429048538208, -1.4024276733398438, -0.4847436547279358, -1.0841385126113892, -0.9017088413238525, 1.0995261669158936, 0.7131795883178711, 0.3637160658836365, 1.8505418300628662, 0.5984408855438232, 0.32695263624191284, -2.614896774291992, 0.8629677891731262, 0.25527840852737427, -0.078288733959198, 0.8787625432014465, 0.3138161897659302, 1.080306053161621, -0.04933471977710724, 0.5947690010070801, -2.45981502532959, 2.382106065750122, -0.26764464378356934, 0.682049036026001, 0.02259477972984314, -0.15579046308994293, 1.1668832302093506, 0.7536566853523254, 0.6014192700386047, -1.0421842336654663, 0.6418420672416687, -0.49221402406692505, 1.1910306215286255, 0.8852404952049255, -0.7751467227935791, -0.049091409891843796, 1.4129270315170288, 0.5592123866081238, -0.495586633682251, -0.9370141625404358, -0.9911807775497437, 0.9206388592720032, 1.6541588306427002, -0.03605763614177704, -0.061759136617183685, 0.7487683296203613, 0.6836394667625427, -1.2542530298233032, 0.12554477155208588, -0.7429604530334473, -0.7527880668640137, 1.5879801511764526, 2.098733425140381, -0.160970076918602, -0.22002427279949188, -0.6159695386886597, -1.2903472185134888, 0.7692371010780334, -0.13882169127464294, 0.187864288687706, 0.5830561518669128, -0.6053907871246338, 0.9640331864356995, 0.7064877152442932, 0.8881508111953735, 0.23559565842151642, 0.32972168922424316, 0.4721173048019409, -0.30252599716186523, -1.2361465692520142, -0.21449589729309082, -1.027148962020874, -2.5754148960113525, 0.36662667989730835, -0.31594228744506836, -1.4651540517807007, 0.036621008068323135, -1.0320258140563965, 0.8672082424163818, -0.5720547437667847, -1.1586843729019165, -1.5691685676574707, 0.12397423386573792, -0.006641332060098648, 1.0024573802947998, -1.584434151649475, -0.2571723461151123, 1.2021363973617554, 0.8239871859550476, -0.6526282429695129, 1.02462899684906, 0.21771551668643951, 0.9941885471343994, 0.7804816365242004, -0.39838743209838867, 0.4967443346977234, -0.03153418004512787, -1.3422067165374756, 0.5010949969291687, 1.1908479928970337, 0.17046651244163513, 1.5400480031967163, -0.4789590835571289, -0.020722506567835808, 0.4416170120239258, -0.6275215148925781, -0.3725586533546448, -0.3934282064437866, 0.6129623055458069, 0.06534738093614578, -0.8469507694244385, -0.15550383925437927, -0.06979215145111084, -0.32962357997894287, 0.059551745653152466, -1.4134474992752075, -0.19140930473804474, -0.5194714665412903, -0.6206480264663696, -1.2294714450836182, -0.09502572566270828, 1.427603840827942, -0.7291392683982849, -0.22417721152305603, 0.37968289852142334, 0.42976224422454834, 0.5974264144897461, 0.7311964631080627, -0.7399467825889587, -0.32306820154190063, -0.2516915202140808, -0.33632081747055054, 0.33674508333206177, 1.3669575452804565, -0.10225683450698853, -0.967235803604126, 0.615227460861206, -0.307145357131958, 0.16953866183757782, 2.0062944889068604, 0.07468262314796448, -0.767575740814209, 0.2388453185558319, -0.8341034054756165, 1.9157763719558716, 1.676533579826355, 1.2369027137756348, -0.13203927874565125, -0.8670323491096497, 0.6012939214706421, -0.40051013231277466, -0.3845384120941162, 0.8601322174072266, 0.41866791248321533, -0.20778460800647736, -1.3727130889892578, 0.7754334807395935, 1.1884911060333252, -0.8930339217185974, -0.7635423541069031, 0.19412146508693695, -0.7180872559547424, 1.09364914894104, 0.5714894533157349, 0.34994131326675415, 0.32904136180877686, 1.6096134185791016, 0.7831713557243347, -0.4478324055671692, 0.5130481123924255, 0.4990140199661255, -0.20523615181446075, -2.1548006534576416, -1.1427555084228516, 0.3404232859611511, -0.6238469481468201, -1.6114578247070312, 1.4674668312072754, -1.0589849948883057, -0.9842715263366699, 0.5195379257202148, 0.04685712233185768, 1.3168492317199707, 0.43081963062286377, 1.6500529050827026, 2.0627875328063965, 0.888299286365509, 0.5154994130134583, 1.2862201929092407, -0.022758346050977707, -0.5037260055541992, 1.8559197187423706, -0.42407745122909546, 0.3673766255378723, 1.1427240371704102, -0.28491395711898804, -1.0327454805374146, -0.7190271019935608, -1.1813232898712158, -0.6723571419715881, 1.0744974613189697, 0.07868735492229462, -1.0948022603988647, 0.1913985311985016, 1.5063412189483643, 0.1395902782678604, -0.31630462408065796, 0.6209158897399902, 0.3646396994590759, -0.7194700837135315, -0.11665806174278259, -0.910862922668457, 0.5325098037719727, -0.277978777885437, -0.427179753780365, 0.2941439151763916, 0.4597426652908325, 1.4433660507202148, -0.07565783709287643, 0.13902990520000458, 1.166777491569519, -1.4990670680999756, 1.5048120021820068, -0.5774101614952087, 0.31633615493774414, -2.33770489692688, 1.3724113702774048, -0.7041921615600586, 1.991997241973877, -2.6799798011779785, 0.4406535029411316, -0.5677181482315063, -0.5197707414627075, 0.29481667280197144, -0.23913800716400146, 0.1498110443353653, -0.11488045752048492, -1.1998659372329712, -0.024711085483431816, -0.7128251791000366, 0.6078181862831116, 1.0650604963302612, 1.2410565614700317, -1.2091199159622192, -0.2163742333650589, -1.6219226121902466, -0.1579533815383911, -0.7885338664054871, 0.37697672843933105, -1.958199143409729, -0.16839781403541565, -1.854100227355957, -2.4649221897125244, -1.2955783605575562, -0.7395585179328918, 1.1113616228103638, 0.1386769562959671, -0.991352915763855, 1.2987232208251953, -0.2771438956260681, -1.8497952222824097, 1.0811094045639038, -2.1948843002319336 ]
https://github.com/huggingface/datasets/issues/5929
Importing PyTorch reduces multiprocessing performance for map
Hi! The times match when I run this code locally or on Colab. Also, we use `multiprocess`, not `multiprocessing`, for parallelization, and torch's `__init__.py` (executed on `import torch` ) slightly modifies the latter.
### Describe the bug I noticed that the performance of my dataset preprocessing with `map(...,num_proc=32)` decreases when PyTorch is imported. ### Steps to reproduce the bug I created two example scripts to reproduce this behavior: ``` import datasets datasets.disable_caching() from datasets import Dataset import time PROC=32 if __name__ == "__main__": dataset = [True] * 10000000 dataset = Dataset.from_dict({'train': dataset}) start = time.time() dataset.map(lambda x: x, num_proc=PROC) end = time.time() print(end - start) ``` Takes around 4 seconds on my machine. While the same code, but with an `import torch`: ``` import datasets datasets.disable_caching() from datasets import Dataset import time import torch PROC=32 if __name__ == "__main__": dataset = [True] * 10000000 dataset = Dataset.from_dict({'train': dataset}) start = time.time() dataset.map(lambda x: x, num_proc=PROC) end = time.time() print(end - start) ``` takes around 22 seconds. ### Expected behavior I would expect that the import of torch to not have such a significant effect on the performance of map using multiprocessing. ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-5.15.0-56-generic-x86_64-with-glibc2.35 - Python version: 3.11.3 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.2 - torch: 2.0.1
109
33
Importing PyTorch reduces multiprocessing performance for map ### Describe the bug I noticed that the performance of my dataset preprocessing with `map(...,num_proc=32)` decreases when PyTorch is imported. ### Steps to reproduce the bug I created two example scripts to reproduce this behavior: ``` import datasets datasets.disable_caching() from datasets import Dataset import time PROC=32 if __name__ == "__main__": dataset = [True] * 10000000 dataset = Dataset.from_dict({'train': dataset}) start = time.time() dataset.map(lambda x: x, num_proc=PROC) end = time.time() print(end - start) ``` Takes around 4 seconds on my machine. While the same code, but with an `import torch`: ``` import datasets datasets.disable_caching() from datasets import Dataset import time import torch PROC=32 if __name__ == "__main__": dataset = [True] * 10000000 dataset = Dataset.from_dict({'train': dataset}) start = time.time() dataset.map(lambda x: x, num_proc=PROC) end = time.time() print(end - start) ``` takes around 22 seconds. ### Expected behavior I would expect that the import of torch to not have such a significant effect on the performance of map using multiprocessing. ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-5.15.0-56-generic-x86_64-with-glibc2.35 - Python version: 3.11.3 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.2 - torch: 2.0.1 Hi! The times match when I run this code locally or on Colab. Also, we use `multiprocess`, not `multiprocessing`, for parallelization, and torch's `__init__.py` (executed on `import torch` ) slightly modifies the latter.
[ -1.2972315549850464, -0.9371899366378784, -0.5583590269088745, 1.5140435695648193, -0.21326544880867004, -1.1232210397720337, 0.12382470071315765, -1.0957438945770264, 1.605454683303833, -0.7892005443572998, 0.2743966579437256, -1.6092616319656372, 0.05693559721112251, -0.5055386424064636, -0.7175440192222595, -0.8559420704841614, -0.44473162293434143, -0.6191143989562988, 1.150146722793579, 2.4892539978027344, 1.2126152515411377, -1.4299036264419556, 2.637326717376709, 0.7718549966812134, -0.19103966653347015, -1.0060235261917114, 0.5077937245368958, 0.020982101559638977, -1.4352020025253296, -0.3706132471561432, -0.9472511410713196, -0.10844576358795166, -0.5465297102928162, -0.5482323169708252, -0.08586394786834717, 0.3856000304222107, -0.27816468477249146, -0.424142986536026, -0.4804300367832184, -0.7719970345497131, 0.43141627311706543, -0.3866606056690216, 0.8103606104850769, -0.35558921098709106, 1.701717734336853, -0.5880163908004761, 0.6483464241027832, 0.7050566673278809, 1.230342149734497, 0.20490200817584991, -0.07251118123531342, 0.4611632227897644, 0.4386538565158844, -0.017758075147867203, 0.5718528032302856, 1.1252728700637817, 0.6573662757873535, 0.40867310762405396, 0.6732740998268127, -2.254131555557251, 1.289669156074524, -0.9574012160301208, 0.2993547320365906, 1.3803895711898804, -1.0100396871566772, 0.33643022179603577, -1.68316650390625, -0.0467013455927372, 0.5351316332817078, -2.222384214401245, 0.2614816427230835, -1.3799712657928467, -0.5869856476783752, 1.0597182512283325, 0.4720994532108307, -1.1997261047363281, 0.08076801896095276, -0.4037899672985077, 1.012449026107788, 0.45418381690979004, 1.1433264017105103, -1.6460050344467163, -0.08651103079319, -0.29561153054237366, 0.16884246468544006, -1.3219013214111328, -1.5004576444625854, 0.5055407285690308, 0.6491020321846008, 0.5627036094665527, -0.1596723049879074, 1.0142979621887207, -1.0350033044815063, 0.7101506590843201, -1.1030393838882446, -1.8324882984161377, -1.481553077697754, -2.343148708343506, -2.261945962905884, 0.7251107692718506, -0.39468303322792053, -0.5031649470329285, 2.079926013946533, -1.0760146379470825, -1.7943443059921265, 1.093876838684082, 0.2657071352005005, -0.041304655373096466, 2.3676645755767822, 0.16846656799316406, -0.7290552258491516, 0.5099028944969177, -0.8202700018882751, 0.6304892301559448, -0.2364012598991394, 1.3477709293365479, 0.41647371649742126, -1.0354747772216797, 1.5113375186920166, -0.31624022126197815, 0.5862967371940613, -0.6198301315307617, -0.4314345419406891, -0.6671952605247498, 0.25299906730651855, 1.9386630058288574, -0.2692851424217224, 1.5052934885025024, -0.3538375794887543, -1.5367594957351685, -1.5740889310836792, 0.8670511245727539, 0.4627533555030823, -0.6879755258560181, 0.16532164812088013, -0.44529977440834045, 0.060675036162137985, -0.07181277871131897, 1.0998783111572266, 1.2919305562973022, 0.7896071076393127, -0.35924896597862244, -0.8968043327331543, 0.1901266872882843, -0.04188278689980507, -0.7396746873855591, -1.8007737398147583, -0.2957306206226349, 0.05832533910870552, 0.6721369028091431, -1.1933590173721313, 1.763163447380066, 0.9402471780776978, 1.8712137937545776, 1.0247656106948853, -0.3701685965061188, 1.4036744832992554, 0.13919173181056976, 1.8584941625595093, -0.43741557002067566, 0.6647329926490784, -0.35581985116004944, -1.1335701942443848, 0.812725841999054, -0.2817597985267639, -2.068929672241211, -0.6764078140258789, -0.7814434766769409, -0.15091027319431305, -0.8393778800964355, 1.0106295347213745, -0.22280187904834747, -1.4373488426208496, 0.19204269349575043, -0.7997716069221497, 0.19797812402248383, -1.21017587184906, 0.3247494101524353, 0.7411495447158813, -0.5797532200813293, 0.09281368553638458, -0.3068976402282715, -1.235735297203064, -0.5080515146255493, 0.3813355565071106, 1.7203975915908813, -0.7516312599182129, 1.0168066024780273, 1.070738673210144, -0.6737918853759766, 0.01573217287659645, 0.3518945872783661, -0.25672605633735657, 0.8483240008354187, -0.994537889957428, -0.3821519613265991, 1.243629813194275, -0.22328123450279236, -0.6411693096160889, 1.5282350778579712, 0.775218665599823, -0.9939352869987488, -0.21072959899902344, -0.14031362533569336, -0.8355753421783447, 0.05028344318270683, -1.644213318824768, -0.07084006071090698, 0.43174976110458374, -1.6055980920791626, -0.44949668645858765, -0.15794101357460022, 1.3824280500411987, -0.11206483840942383, 1.4590034484863281, -0.37133729457855225, -0.15625117719173431, -0.3969719111919403, -0.3230212330818176, 0.1547251045703888, -0.23069067299365997, -0.5773758888244629, 0.2077724039554596, -0.8254954814910889, 0.3659309446811676, 1.446338415145874, 0.39765968918800354, -0.009088292717933655, 0.5021292567253113, 1.0568119287490845, 0.4056491553783417, -0.1910490095615387, -0.9033047556877136, -1.6423602104187012, 1.9879250526428223, -1.3673012256622314, 1.9961779117584229, 0.7590028643608093, -0.10624676942825317, -1.8298982381820679, -1.9213895797729492, 1.3634313344955444, 1.1290817260742188, 2.4248297214508057, 0.4952465891838074, 0.41650500893592834, -0.8598520159721375, -0.6660435199737549, 0.342717707157135, -0.9238932132720947, -0.7565953731536865, 0.17555800080299377, 2.407088279724121, 1.8358991146087646, -0.33880898356437683, -0.1432046890258789, -1.0705174207687378, 1.4781583547592163, -0.1945461481809616, 0.30109813809394836, 1.9722861051559448, -0.19249697029590607, -1.0313481092453003, 1.336687445640564, -2.2664287090301514, 0.2119065821170807, 2.045769453048706, 0.21389159560203552, 0.1227935254573822, -1.346550703048706, -0.6489688158035278, -0.3177591562271118, -0.43782839179039, -1.2347091436386108, 0.47397977113723755, -0.22284938395023346, -0.7545913457870483, -1.3665186166763306, 0.1793312132358551, -1.0944448709487915, -1.6885473728179932, 0.26823052763938904, 1.791311502456665, 1.9445549249649048, -0.7527672052383423, 1.5140745639801025, -0.36697542667388916, 0.17951631546020508, 1.2101597785949707, 1.2329643964767456, 3.11690354347229, 1.9855884313583374, -1.386948585510254, 0.736173689365387, -0.0751333087682724, -0.43360716104507446, 1.2299638986587524, -1.2531898021697998, 1.316415548324585, -0.1761290729045868, -1.2197928428649902, -1.1744617223739624, 0.9419195652008057, 0.4782768189907074, 0.10947448015213013, -0.5314710140228271, 1.1589324474334717, 0.04760247841477394, 1.34437096118927, 0.5233718156814575, -0.33696451783180237, 0.6744004487991333, -0.4591873586177826, -0.48178088665008545, 1.506722331047058, 0.16469870507717133, -1.4929689168930054, -2.2164316177368164, -0.19802379608154297, -0.8680081367492676, 0.024148523807525635, -0.6148055791854858, -0.9648184776306152, 1.577574372291565, 0.40950995683670044, -1.2378746271133423, -0.24250930547714233, -0.2646336257457733, -0.5450979471206665, 2.7238638401031494, -1.3303613662719727, -0.198945090174675, -1.0282089710235596, -0.6457691788673401, 1.6234731674194336, -1.1321345567703247, -0.2586846947669983, -1.0840606689453125, -0.5548441410064697, -1.2746522426605225, -0.5559784770011902, -0.00504274619743228, -0.9386026859283447, 0.8540297150611877, 0.0971454530954361, -1.1990666389465332, -0.36838585138320923, -0.89632648229599, 0.9609349966049194, -0.14365988969802856, 0.1201145201921463, 1.829356074333191, 0.3444797992706299, -0.3633471131324768, 0.7057324647903442, 1.119396448135376, 0.6982017159461975, -0.6739075779914856, 0.24839481711387634, -0.6520330905914307, 0.35916203260421753, -1.236728549003601, 0.20199912786483765, -2.847172737121582, 0.603030264377594, -0.002701587975025177, -0.04160439968109131, -0.08456887304782867, -1.317720651626587, 1.1197640895843506, 2.5765669345855713, -1.2294610738754272, 0.5275692343711853, 0.35479483008384705, 1.116540551185608, -1.5214756727218628, 0.29351234436035156, -0.5081048607826233, 2.101343870162964, 0.2475745677947998, 1.2204177379608154, -0.4365914463996887, -2.3117189407348633, 0.7024807929992676, -1.2434360980987549, -1.1683090925216675, 0.7949357628822327, -0.8879305124282837, 0.11397235095500946, -1.3522303104400635, -0.19040712714195251, -0.7978399991989136, -1.0826928615570068, 0.616070568561554, 0.18801018595695496, 0.5055862665176392, -0.5711705684661865, 0.34076759219169617, -2.297548532485962, -1.3260002136230469, -0.31738215684890747, -0.9745749831199646, 0.46138113737106323, -0.39909127354621887, 0.698049783706665, -0.18088875710964203, -0.04091186448931694, 0.38725918531417847, 1.389405608177185, 3.3989973068237305, 0.18168975412845612, 0.2877683937549591, -0.14290757477283478, -0.9546922445297241, 1.456965446472168, 0.9340895414352417, -0.11331206560134888, -0.5655105113983154, -1.0224436521530151, 1.163291096687317, 1.957553505897522, 1.077426791191101, -0.04758048057556152, -0.8692965507507324, -0.7563644647598267, 0.022603482007980347, 0.11277012526988983, 0.4915517568588257, 0.9759919047355652, 0.11584208905696869, 0.08912695944309235, 1.5033012628555298, 1.1629855632781982, -0.3866257071495056, 0.3215077817440033, -0.8145979046821594, -0.5057006478309631, 0.5333382487297058, 0.34187671542167664, -0.01780707761645317, 0.35889557003974915, -1.0888333320617676, -0.11654214560985565, -0.431266188621521, -0.9279379844665527, -0.719600260257721, -0.4143124222755432, -0.43720561265945435, 1.6658987998962402, 0.07578492164611816, -0.48289790749549866, -0.0916609913110733, -0.7728683352470398, -0.0965646505355835, -1.0177791118621826, 0.4521452784538269, -0.12172408401966095, -0.04901856556534767, -0.2095254510641098, 1.6778714656829834, -0.9881718754768372, -2.0352747440338135, 0.23478318750858307, 0.22909078001976013, -0.3018134534358978, 0.22368745505809784, 1.674987554550171, 0.5796390771865845, 1.4556208848953247, 1.3493047952651978, 0.9575229287147522, -0.6325390338897705, -1.3128694295883179, 0.6887214779853821, 1.0042263269424438, -1.3492094278335571, 0.7385866641998291, 0.028783004730939865, -0.5472192168235779, 0.6163563132286072, 1.285831332206726, 0.5164880156517029, -2.044173240661621, 0.7674218416213989, -0.968660831451416, 0.8215031623840332, 0.7157276272773743, 0.7431915998458862, 0.08048619329929352, 0.8695722222328186, -1.2375829219818115, -1.0733789205551147, -0.6863939762115479, -0.6595097780227661, 1.9860628843307495, -0.35405099391937256, 0.6070529222488403, -0.25629425048828125, -1.31283700466156, -0.034961193799972534, 0.7287812232971191, 0.2827630341053009, -0.5582498908042908, 0.7969657182693481, -0.5593491792678833, -1.1544499397277832, -1.3377985954284668, -0.5089134573936462, -0.9936594367027283, -0.9521964192390442, 1.0556308031082153, 0.712410032749176, 0.32190144062042236, 1.8530939817428589, 0.6295416355133057, 0.18962746858596802, -2.6706254482269287, 0.8869779706001282, 0.20963989198207855, -0.01912257820367813, 0.8599377870559692, 0.3107641041278839, 0.9501400589942932, -0.05290176346898079, 0.5746685266494751, -2.4195027351379395, 2.296377658843994, -0.20447951555252075, 0.5924811959266663, -0.037315186113119125, -0.09466558694839478, 1.059768557548523, 0.6889691948890686, 0.5172824263572693, -1.024187684059143, 0.7313799262046814, -0.560214102268219, 1.3030238151550293, 0.7950977087020874, -0.7522643804550171, -0.08564776182174683, 1.3303848505020142, 0.3960278034210205, -0.4795803427696228, -0.9016550779342651, -1.0673422813415527, 1.0090707540512085, 1.7440853118896484, -0.07329778373241425, -0.04786911606788635, 0.8428321480751038, 0.7059040665626526, -1.3334858417510986, 0.024960704147815704, -0.7076969742774963, -0.6289945840835571, 1.611688494682312, 2.1094510555267334, -0.10690993070602417, -0.15825656056404114, -0.6954027414321899, -1.2620446681976318, 0.7873432040214539, -0.02941591665148735, 0.048240043222904205, 0.6700279712677002, -0.5186256766319275, 1.0986887216567993, 0.837588906288147, 0.9067367315292358, 0.306447833776474, 0.20122921466827393, 0.29113078117370605, -0.30985692143440247, -1.2671852111816406, -0.270901083946228, -1.0013017654418945, -2.529582977294922, 0.3627079129219055, -0.19369934499263763, -1.440236210823059, 0.03725728765130043, -1.0559415817260742, 0.8851062655448914, -0.582308828830719, -1.107608437538147, -1.5847254991531372, 0.11145538091659546, -0.08134059607982635, 0.8796992897987366, -1.5781623125076294, -0.09361819922924042, 1.2409090995788574, 0.8636297583580017, -0.6645368933677673, 1.040872573852539, 0.2345062643289566, 1.050892949104309, 0.8718727827072144, -0.37921008467674255, 0.5097773671150208, 0.07264506816864014, -1.3575657606124878, 0.45080384612083435, 1.2525602579116821, 0.20029893517494202, 1.5421886444091797, -0.665499746799469, -0.013258764520287514, 0.37452542781829834, -0.5574493408203125, -0.42470240592956543, -0.5437551140785217, 0.7119833827018738, -0.011681098490953445, -0.9037373661994934, -0.003178978804498911, -0.06459535658359528, -0.18601012229919434, 0.20228131115436554, -1.431686520576477, -0.02883298695087433, -0.3816840350627899, -0.7026169896125793, -1.2316714525222778, -0.08580709993839264, 1.416337251663208, -0.8832283616065979, -0.1178240180015564, 0.4700614809989929, 0.21979966759681702, 0.5324073433876038, 0.7504665851593018, -0.6898382902145386, -0.3296802341938019, -0.2438005656003952, -0.34814420342445374, 0.3521699011325836, 1.3604810237884521, -0.04184771701693535, -0.966563880443573, 0.7194693684577942, -0.35384896397590637, 0.10457511246204376, 1.96755051612854, 0.08270759880542755, -0.7894941568374634, 0.3474978506565094, -0.7260937690734863, 1.9549039602279663, 1.699068307876587, 1.3808046579360962, -0.14304830133914948, -1.0446950197219849, 0.5571066737174988, -0.3108508884906769, -0.41738978028297424, 0.8842405676841736, 0.3766932785511017, -0.27542299032211304, -1.2839083671569824, 0.7174642086029053, 1.2442337274551392, -0.9045595526695251, -0.8637316823005676, 0.15614348649978638, -0.7816938161849976, 1.1296930313110352, 0.7098129391670227, 0.28426995873451233, 0.3027816414833069, 1.6412073373794556, 0.7495235204696655, -0.40677785873413086, 0.5809125304222107, 0.480815052986145, -0.15901686251163483, -2.0823800563812256, -1.1172370910644531, 0.40886789560317993, -0.620948314666748, -1.5691807270050049, 1.3317701816558838, -1.193454384803772, -0.9376269578933716, 0.594075083732605, 0.07022017240524292, 1.4186663627624512, 0.36767539381980896, 1.5725488662719727, 2.124300718307495, 0.916068434715271, 0.44984138011932373, 1.3033937215805054, -0.2154518961906433, -0.4878794252872467, 1.722964882850647, -0.44829419255256653, 0.4715038239955902, 1.1006991863250732, -0.288220077753067, -1.0224454402923584, -0.815163254737854, -1.2297064065933228, -0.712473452091217, 1.1758216619491577, 0.04473142698407173, -1.133933663368225, 0.2316638082265854, 1.455124855041504, 0.1332470178604126, -0.26544299721717834, 0.6902790665626526, 0.2749069035053253, -0.8569387197494507, -0.10991200804710388, -0.9392762184143066, 0.5571085214614868, -0.34222134947776794, -0.34685319662094116, 0.2755635380744934, 0.4615175127983093, 1.3114179372787476, -0.08407902717590332, 0.14294910430908203, 1.1934977769851685, -1.3666068315505981, 1.4988561868667603, -0.7498553395271301, 0.29150643944740295, -2.3153276443481445, 1.3627650737762451, -0.8107772469520569, 1.8831799030303955, -2.7404959201812744, 0.45690545439720154, -0.5115570425987244, -0.47392702102661133, 0.24933204054832458, -0.3227199614048004, 0.1234719455242157, -0.11574970185756683, -1.2095683813095093, -0.13343480229377747, -0.7705113887786865, 0.5319771766662598, 1.1238791942596436, 1.3289321660995483, -1.1806260347366333, -0.32092005014419556, -1.7610559463500977, -0.2130555659532547, -0.7837498188018799, 0.45699238777160645, -1.9527554512023926, -0.13954752683639526, -1.909644365310669, -2.4627726078033447, -1.1678632497787476, -0.8218104243278503, 1.145496129989624, 0.12565596401691437, -0.8113880157470703, 1.1481927633285522, -0.3831733465194702, -1.8606164455413818, 1.093912959098816, -2.1991360187530518 ]
https://github.com/huggingface/datasets/issues/5929
Importing PyTorch reduces multiprocessing performance for map
Hey Mariosasko, Thanks for looking into it. We further did some investigations after your comment and figured out it's only affecting some hardware/software configurations with the `pytorch` installation of `conda-forge`. Based on this we found the following issue in PyTorch: https://github.com/pytorch/pytorch/issues/102269 with a quick fix for now. Since it seems to be a deeper issue with forking processes, the difference between`multiprocess` and `multiprocessing` didn't make a difference. Closing this, since the issue comes from `pytorch` not `dataset`.
### Describe the bug I noticed that the performance of my dataset preprocessing with `map(...,num_proc=32)` decreases when PyTorch is imported. ### Steps to reproduce the bug I created two example scripts to reproduce this behavior: ``` import datasets datasets.disable_caching() from datasets import Dataset import time PROC=32 if __name__ == "__main__": dataset = [True] * 10000000 dataset = Dataset.from_dict({'train': dataset}) start = time.time() dataset.map(lambda x: x, num_proc=PROC) end = time.time() print(end - start) ``` Takes around 4 seconds on my machine. While the same code, but with an `import torch`: ``` import datasets datasets.disable_caching() from datasets import Dataset import time import torch PROC=32 if __name__ == "__main__": dataset = [True] * 10000000 dataset = Dataset.from_dict({'train': dataset}) start = time.time() dataset.map(lambda x: x, num_proc=PROC) end = time.time() print(end - start) ``` takes around 22 seconds. ### Expected behavior I would expect that the import of torch to not have such a significant effect on the performance of map using multiprocessing. ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-5.15.0-56-generic-x86_64-with-glibc2.35 - Python version: 3.11.3 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.2 - torch: 2.0.1
109
77
Importing PyTorch reduces multiprocessing performance for map ### Describe the bug I noticed that the performance of my dataset preprocessing with `map(...,num_proc=32)` decreases when PyTorch is imported. ### Steps to reproduce the bug I created two example scripts to reproduce this behavior: ``` import datasets datasets.disable_caching() from datasets import Dataset import time PROC=32 if __name__ == "__main__": dataset = [True] * 10000000 dataset = Dataset.from_dict({'train': dataset}) start = time.time() dataset.map(lambda x: x, num_proc=PROC) end = time.time() print(end - start) ``` Takes around 4 seconds on my machine. While the same code, but with an `import torch`: ``` import datasets datasets.disable_caching() from datasets import Dataset import time import torch PROC=32 if __name__ == "__main__": dataset = [True] * 10000000 dataset = Dataset.from_dict({'train': dataset}) start = time.time() dataset.map(lambda x: x, num_proc=PROC) end = time.time() print(end - start) ``` takes around 22 seconds. ### Expected behavior I would expect that the import of torch to not have such a significant effect on the performance of map using multiprocessing. ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-5.15.0-56-generic-x86_64-with-glibc2.35 - Python version: 3.11.3 - Huggingface_hub version: 0.15.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.2 - torch: 2.0.1 Hey Mariosasko, Thanks for looking into it. We further did some investigations after your comment and figured out it's only affecting some hardware/software configurations with the `pytorch` installation of `conda-forge`. Based on this we found the following issue in PyTorch: https://github.com/pytorch/pytorch/issues/102269 with a quick fix for now. Since it seems to be a deeper issue with forking processes, the difference between`multiprocess` and `multiprocessing` didn't make a difference. Closing this, since the issue comes from `pytorch` not `dataset`.
[ -1.3170827627182007, -0.9440229535102844, -0.5832527279853821, 1.5125045776367188, -0.19861438870429993, -1.1227771043777466, 0.1241239681839943, -1.0682389736175537, 1.6109813451766968, -0.8030138611793518, 0.2515172064304352, -1.6242655515670776, 0.06468179821968079, -0.47204259037971497, -0.7097519040107727, -0.8419073224067688, -0.4449883699417114, -0.636867105960846, 1.134310245513916, 2.478419303894043, 1.2231993675231934, -1.4128063917160034, 2.6548168659210205, 0.7903895378112793, -0.18010592460632324, -1.015078067779541, 0.5057821869850159, 0.01688021421432495, -1.4429137706756592, -0.3696118891239166, -0.9515673518180847, -0.07792220264673233, -0.5335392355918884, -0.5396426916122437, -0.0706053376197815, 0.38500210642814636, -0.2847138047218323, -0.44200584292411804, -0.4979420304298401, -0.7770571708679199, 0.4327653646469116, -0.38669872283935547, 0.8239820599555969, -0.3563354015350342, 1.7047593593597412, -0.5889753103256226, 0.6269540190696716, 0.7030283808708191, 1.2314565181732178, 0.1912878006696701, -0.06425682455301285, 0.4502986967563629, 0.45093774795532227, -0.01635505072772503, 0.5752739906311035, 1.1445896625518799, 0.667904257774353, 0.3979680836200714, 0.6854285597801208, -2.27111554145813, 1.2914642095565796, -0.9562925696372986, 0.30768853425979614, 1.369795799255371, -0.9994069933891296, 0.33142468333244324, -1.676613688468933, -0.03705248981714249, 0.5295460224151611, -2.2238755226135254, 0.26311686635017395, -1.3863145112991333, -0.5776975750923157, 1.059162974357605, 0.4721541106700897, -1.2028861045837402, 0.07345295697450638, -0.4167047142982483, 1.0116890668869019, 0.4587605595588684, 1.1641111373901367, -1.6367037296295166, -0.09091811627149582, -0.28443753719329834, 0.1629532277584076, -1.328853726387024, -1.512495756149292, 0.49926096200942993, 0.6513354182243347, 0.569820761680603, -0.1493273228406906, 1.0157955884933472, -1.052297592163086, 0.7051618099212646, -1.094270944595337, -1.8336914777755737, -1.488714575767517, -2.3321151733398438, -2.2692131996154785, 0.7265160083770752, -0.3912014067173004, -0.5074334144592285, 2.063363552093506, -1.0985674858093262, -1.7957403659820557, 1.096277117729187, 0.22978249192237854, -0.02091614343225956, 2.353569269180298, 0.18686050176620483, -0.7411395907402039, 0.5188973546028137, -0.809130847454071, 0.6400040984153748, -0.23213833570480347, 1.3485276699066162, 0.4159623086452484, -1.021649956703186, 1.5261327028274536, -0.32868272066116333, 0.6055803298950195, -0.6249616146087646, -0.43551307916641235, -0.6554323434829712, 0.23812903463840485, 1.949771523475647, -0.27446886897087097, 1.5078673362731934, -0.36087238788604736, -1.5328320264816284, -1.5652389526367188, 0.8588533401489258, 0.45494988560676575, -0.6848720908164978, 0.14934618771076202, -0.46339693665504456, 0.0633036270737648, -0.06673049181699753, 1.0927135944366455, 1.2838246822357178, 0.8031625747680664, -0.36188697814941406, -0.908178985118866, 0.18673110008239746, -0.044282495975494385, -0.7385138273239136, -1.7661347389221191, -0.28086090087890625, 0.06695926934480667, 0.6851810216903687, -1.20387864112854, 1.7582848072052002, 0.9365187883377075, 1.8900234699249268, 1.0336253643035889, -0.37217941880226135, 1.3976161479949951, 0.12284942716360092, 1.8562875986099243, -0.43362146615982056, 0.6511673927307129, -0.3476980924606323, -1.123543620109558, 0.7916682362556458, -0.28906145691871643, -2.089411973953247, -0.6834375858306885, -0.7586842179298401, -0.15741953253746033, -0.8392485976219177, 1.0039067268371582, -0.2379634529352188, -1.4220889806747437, 0.19532155990600586, -0.8047341704368591, 0.1964818388223648, -1.2223771810531616, 0.3036656975746155, 0.7504016757011414, -0.5872609615325928, 0.09717937558889389, -0.28885185718536377, -1.2500407695770264, -0.48624205589294434, 0.3802269399166107, 1.7198406457901, -0.7417093515396118, 1.0017367601394653, 1.0786776542663574, -0.6717135310173035, 0.030029887333512306, 0.34394165873527527, -0.2525498569011688, 0.854774534702301, -0.9799813628196716, -0.37829193472862244, 1.2557154893875122, -0.2190338373184204, -0.6366586685180664, 1.5430891513824463, 0.7740647792816162, -0.982744038105011, -0.22970053553581238, -0.11359914392232895, -0.8305878639221191, 0.0765845999121666, -1.6380608081817627, -0.07486928999423981, 0.41846781969070435, -1.5915330648422241, -0.45559632778167725, -0.16397550702095032, 1.3725405931472778, -0.11662009358406067, 1.4640803337097168, -0.3781020939350128, -0.1377280354499817, -0.3820487856864929, -0.308247447013855, 0.15331058204174042, -0.23471027612686157, -0.5979322791099548, 0.20669269561767578, -0.826397716999054, 0.36951643228530884, 1.44023859500885, 0.39863282442092896, -0.021231628954410553, 0.491482675075531, 1.0607326030731201, 0.41023948788642883, -0.18994630873203278, -0.8944367170333862, -1.6602225303649902, 1.9807913303375244, -1.3801296949386597, 2.0014357566833496, 0.7465930581092834, -0.11904975026845932, -1.8243402242660522, -1.9108258485794067, 1.3478803634643555, 1.1269136667251587, 2.408154249191284, 0.4942757487297058, 0.41308358311653137, -0.8548917770385742, -0.6638278961181641, 0.34372374415397644, -0.9123425483703613, -0.7666395306587219, 0.1626887172460556, 2.3988759517669678, 1.8306529521942139, -0.33813270926475525, -0.14132320880889893, -1.0558295249938965, 1.4703302383422852, -0.19300095736980438, 0.2954642176628113, 1.9619842767715454, -0.18500670790672302, -1.0246950387954712, 1.3481781482696533, -2.267426013946533, 0.23684239387512207, 2.0420470237731934, 0.23049773275852203, 0.12303251773118973, -1.3540968894958496, -0.6485499739646912, -0.33345577120780945, -0.41845884919166565, -1.2326856851577759, 0.4809757173061371, -0.2392583042383194, -0.7608135938644409, -1.369267225265503, 0.182353213429451, -1.0868780612945557, -1.6780354976654053, 0.2735866904258728, 1.793198585510254, 1.964983582496643, -0.7410309910774231, 1.4984982013702393, -0.36371883749961853, 0.16857263445854187, 1.215833067893982, 1.2153788805007935, 3.1176247596740723, 1.9824028015136719, -1.38713538646698, 0.7296165227890015, -0.07360454648733139, -0.43931499123573303, 1.2166005373001099, -1.2764209508895874, 1.316502332687378, -0.16749365627765656, -1.232548713684082, -1.170390248298645, 0.9636915922164917, 0.48394066095352173, 0.09360884875059128, -0.5347858667373657, 1.1572080850601196, 0.025523414835333824, 1.3502134084701538, 0.5223197340965271, -0.3437047600746155, 0.6569911241531372, -0.45015162229537964, -0.4772677719593048, 1.511786699295044, 0.15014077723026276, -1.4981789588928223, -2.2107508182525635, -0.19904521107673645, -0.8567779660224915, 0.007457878440618515, -0.6220868229866028, -0.972503125667572, 1.579980731010437, 0.41673508286476135, -1.244826316833496, -0.26012325286865234, -0.2726476490497589, -0.5426904559135437, 2.7260570526123047, -1.3594284057617188, -0.20064190030097961, -1.0378830432891846, -0.6279534101486206, 1.627536416053772, -1.1466312408447266, -0.2706271708011627, -1.07509446144104, -0.5615357160568237, -1.2834627628326416, -0.5611104369163513, -0.0016625160351395607, -0.9401257038116455, 0.8441973924636841, 0.11953475326299667, -1.1832202672958374, -0.3757023513317108, -0.9024187922477722, 0.9584828019142151, -0.15542593598365784, 0.1243143305182457, 1.8305670022964478, 0.34797194600105286, -0.3731767535209656, 0.7001864314079285, 1.1326771974563599, 0.6956562995910645, -0.6653903126716614, 0.22715918719768524, -0.6556171774864197, 0.37572211027145386, -1.2613242864608765, 0.21417175233364105, -2.83986759185791, 0.6041034460067749, -0.00843457505106926, -0.024561181664466858, -0.08436515927314758, -1.3175715208053589, 1.130642294883728, 2.563694953918457, -1.2314434051513672, 0.5435343384742737, 0.3394475281238556, 1.1152722835540771, -1.5251394510269165, 0.29313260316848755, -0.5149503350257874, 2.099403142929077, 0.24898086488246918, 1.220234751701355, -0.4351159930229187, -2.3045148849487305, 0.7128440737724304, -1.2329487800598145, -1.1592233180999756, 0.7905234694480896, -0.8914531469345093, 0.11473124474287033, -1.339933156967163, -0.20325534045696259, -0.8140179514884949, -1.0772000551223755, 0.6149568557739258, 0.1876077502965927, 0.49073994159698486, -0.5839759707450867, 0.3305204510688782, -2.313443183898926, -1.3357702493667603, -0.3037216365337372, -0.988524317741394, 0.47551268339157104, -0.40566110610961914, 0.6814118027687073, -0.16818177700042725, -0.043965794146060944, 0.3901175558567047, 1.3808132410049438, 3.4096531867980957, 0.17733316123485565, 0.29533571004867554, -0.13781291246414185, -0.9600524306297302, 1.4471521377563477, 0.93324214220047, -0.11493365466594696, -0.5742030143737793, -1.0215020179748535, 1.1663124561309814, 1.935519814491272, 1.0651228427886963, -0.035887062549591064, -0.8628103137016296, -0.7620826959609985, 0.02501109428703785, 0.11992434412240982, 0.49962031841278076, 0.9851897954940796, 0.11273587495088577, 0.08925970643758774, 1.5083942413330078, 1.1566122770309448, -0.3829977214336395, 0.30429860949516296, -0.810052752494812, -0.4951586127281189, 0.5429294109344482, 0.3477710485458374, -0.03695768862962723, 0.3598588705062866, -1.101076602935791, -0.10547711700201035, -0.42613542079925537, -0.9254868030548096, -0.7123342156410217, -0.40986278653144836, -0.4125564694404602, 1.6516354084014893, 0.09496334940195084, -0.4788171947002411, -0.10071767866611481, -0.7884918451309204, -0.1009422093629837, -1.0136760473251343, 0.46620798110961914, -0.13305802643299103, -0.05618003010749817, -0.20409192144870758, 1.6732937097549438, -0.9807435274124146, -2.032115936279297, 0.24444444477558136, 0.2250230759382248, -0.30756404995918274, 0.21909846365451813, 1.6740014553070068, 0.5745809674263, 1.443147897720337, 1.3537434339523315, 0.963919460773468, -0.6313674449920654, -1.31071138381958, 0.6827406883239746, 1.0057843923568726, -1.3576788902282715, 0.7392169237136841, 0.02053600363433361, -0.5397129058837891, 0.6070200204849243, 1.3087046146392822, 0.5108611583709717, -2.025369644165039, 0.7731695771217346, -0.9556293487548828, 0.8166770935058594, 0.7241115570068359, 0.751183807849884, 0.07692117244005203, 0.8756890892982483, -1.2352745532989502, -1.0890631675720215, -0.6885762214660645, -0.6674187779426575, 1.9813587665557861, -0.35298463702201843, 0.6072924137115479, -0.2443392276763916, -1.307159423828125, -0.0308206919580698, 0.7371232509613037, 0.27774930000305176, -0.5642540454864502, 0.8188685774803162, -0.5605175495147705, -1.1686012744903564, -1.3300654888153076, -0.5133134722709656, -0.9793570637702942, -0.9525220990180969, 1.0594819784164429, 0.7092599272727966, 0.2925932705402374, 1.8603070974349976, 0.6420521140098572, 0.19825662672519684, -2.6891415119171143, 0.8700803518295288, 0.19664931297302246, -0.003966042771935463, 0.870934009552002, 0.3031284213066101, 0.9453807473182678, -0.03506481647491455, 0.5606825351715088, -2.413541555404663, 2.293795108795166, -0.2166770100593567, 0.6069461107254028, -0.06106468290090561, -0.09817241132259369, 1.063485026359558, 0.6946492195129395, 0.5152013897895813, -1.0277931690216064, 0.7312521934509277, -0.5703133940696716, 1.2850359678268433, 0.7830128073692322, -0.7623876929283142, -0.08362004905939102, 1.3225685358047485, 0.381083220243454, -0.4800361692905426, -0.8849337100982666, -1.0697699785232544, 0.9897719621658325, 1.7494796514511108, -0.051110073924064636, -0.04019754007458687, 0.8344692587852478, 0.7193649411201477, -1.3406133651733398, 0.010559899732470512, -0.7052994966506958, -0.6209220290184021, 1.6200284957885742, 2.1180338859558105, -0.08930934965610504, -0.18260090053081512, -0.6917296648025513, -1.257811188697815, 0.7797518372535706, -0.03799668699502945, 0.045439474284648895, 0.6732364296913147, -0.5340436100959778, 1.106317400932312, 0.8342276215553284, 0.9106870889663696, 0.27061066031455994, 0.2092142552137375, 0.3037843704223633, -0.3102269470691681, -1.2739663124084473, -0.26873236894607544, -1.0119401216506958, -2.5212209224700928, 0.37768515944480896, -0.17629209160804749, -1.4575074911117554, 0.05590198189020157, -1.0545748472213745, 0.8946208357810974, -0.5757090449333191, -1.1188856363296509, -1.571213960647583, 0.09206478297710419, -0.0811029002070427, 0.8657099604606628, -1.5623829364776611, -0.10975461453199387, 1.2534140348434448, 0.8893738985061646, -0.6559063196182251, 1.0473413467407227, 0.23419545590877533, 1.0423630475997925, 0.8639969825744629, -0.37711548805236816, 0.49820029735565186, 0.06927294284105301, -1.3627375364303589, 0.4521903693675995, 1.260845422744751, 0.20878306031227112, 1.5456733703613281, -0.6493172645568848, -0.016968686133623123, 0.3821026086807251, -0.5712834596633911, -0.4040130376815796, -0.5460613965988159, 0.7305628657341003, 0.008015302941203117, -0.8935108184814453, -0.018246639519929886, -0.08190806210041046, -0.17605702579021454, 0.19120465219020844, -1.4280260801315308, -0.031532663851976395, -0.3896294832229614, -0.6983040571212769, -1.2384085655212402, -0.07353153079748154, 1.4190418720245361, -0.9180946946144104, -0.11535882204771042, 0.45954376459121704, 0.22894467413425446, 0.5429021716117859, 0.7543125748634338, -0.7029791474342346, -0.3115217685699463, -0.2389751374721527, -0.3177992105484009, 0.3370742201805115, 1.3640282154083252, -0.04299693554639816, -0.9801515340805054, 0.7231546640396118, -0.35627129673957825, 0.10977794229984283, 1.9675928354263306, 0.07103440165519714, -0.7791798710823059, 0.3495001494884491, -0.7369641661643982, 1.9533718824386597, 1.6895945072174072, 1.3852730989456177, -0.14775297045707703, -1.020377278327942, 0.5581698417663574, -0.3164241909980774, -0.399724543094635, 0.8663033246994019, 0.38627949357032776, -0.27824902534484863, -1.293898582458496, 0.7083941102027893, 1.2247273921966553, -0.9099278450012207, -0.8483745455741882, 0.1662781685590744, -0.7745108008384705, 1.1372663974761963, 0.7185397744178772, 0.27789372205734253, 0.3021267056465149, 1.6372228860855103, 0.7346984148025513, -0.40046581625938416, 0.5816728472709656, 0.489635169506073, -0.17066411674022675, -2.090351104736328, -1.0851649045944214, 0.40991055965423584, -0.5896733999252319, -1.5573368072509766, 1.333803415298462, -1.194025993347168, -0.9378177523612976, 0.5657700300216675, 0.08894802629947662, 1.4161587953567505, 0.368071973323822, 1.5783159732818604, 2.130380392074585, 0.9233970642089844, 0.44583821296691895, 1.289549469947815, -0.20454417169094086, -0.4709288775920868, 1.7210404872894287, -0.4491676092147827, 0.48755335807800293, 1.1042044162750244, -0.28835219144821167, -1.0370484590530396, -0.806657075881958, -1.229516625404358, -0.704336404800415, 1.1844996213912964, 0.049299001693725586, -1.1278753280639648, 0.2136913537979126, 1.4494892358779907, 0.1416042447090149, -0.24093958735466003, 0.6749904155731201, 0.2862164080142975, -0.8506945371627808, -0.11412161588668823, -0.9487959146499634, 0.5496194362640381, -0.3279772400856018, -0.34395113587379456, 0.2658732533454895, 0.4532281160354614, 1.3114625215530396, -0.07814693450927734, 0.12929394841194153, 1.2168817520141602, -1.3710272312164307, 1.5108855962753296, -0.7550051212310791, 0.279048889875412, -2.3237295150756836, 1.3704376220703125, -0.8178820610046387, 1.8913098573684692, -2.7285590171813965, 0.4524625837802887, -0.5225009322166443, -0.4725494682788849, 0.2459447830915451, -0.32605934143066406, 0.11778061836957932, -0.11693346500396729, -1.2005994319915771, -0.12420012801885605, -0.7843390703201294, 0.5348349213600159, 1.1267504692077637, 1.3304122686386108, -1.185396671295166, -0.32054391503334045, -1.7536481618881226, -0.2165178507566452, -0.8049253821372986, 0.4562430679798126, -1.9478368759155273, -0.15387234091758728, -1.9320322275161743, -2.460960865020752, -1.1613414287567139, -0.8064655065536499, 1.1521092653274536, 0.13339807093143463, -0.7984154224395752, 1.1425279378890991, -0.39731624722480774, -1.852002501487732, 1.091343879699707, -2.2130675315856934 ]
https://github.com/huggingface/datasets/issues/5927
`IndexError` when indexing `Sequence` of `Array2D` with `None` values
Easy fix would be to add: ```python null_indices -= np.arange(len(null_indices)) ``` before L279, but I'm not sure it's the most intuitive way to fix it.
### Describe the bug Having `None` values in a `Sequence` of `ArrayND` fails. ### Steps to reproduce the bug ```python from datasets import Array2D, Dataset, Features, Sequence data = [ [ [[0]], None, None, ] ] feature = Sequence(Array2D((1, 1), dtype="int64")) dataset = Dataset.from_dict({"a": data}, features=Features({"a": feature})) dataset[0] # error raised only when indexing ``` ``` Traceback (most recent call last): File "/Users/quentingallouedec/gia/c.py", line 13, in <module> dataset[0] # error raised only when indexing File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2658, in __getitem__ return self._getitem(key) File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2643, in _getitem formatted_output = format_table( File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 634, in format_table return formatter(pa_table, query_type=query_type) File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 406, in __call__ return self.format_row(pa_table) File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 441, in format_row row = self.python_arrow_extractor().extract_row(pa_table) File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 144, in extract_row return _unnest(pa_table.to_pydict()) File "pyarrow/table.pxi", line 4146, in pyarrow.lib.Table.to_pydict File "pyarrow/table.pxi", line 1312, in pyarrow.lib.ChunkedArray.to_pylist File "pyarrow/array.pxi", line 1521, in pyarrow.lib.Array.to_pylist File "pyarrow/scalar.pxi", line 675, in pyarrow.lib.ListScalar.as_py File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/features/features.py", line 760, in to_pylist return self.to_numpy(zero_copy_only=zero_copy_only).tolist() File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/features/features.py", line 725, in to_numpy numpy_arr = np.insert(numpy_arr.astype(np.float64), null_indices, np.nan, axis=0) File "<__array_function__ internals>", line 200, in insert File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/numpy/lib/function_base.py", line 5426, in insert old_mask[indices] = False IndexError: index 3 is out of bounds for axis 0 with size 3 ``` AFAIK, the problem only occurs when you use a `Sequence` of `ArrayND`. I strongly suspect that the problem comes from this line, or `np.insert` is misused: https://github.com/huggingface/datasets/blob/02ee418831aba68d0be93227bce8b3f42ef8980f/src/datasets/features/features.py#L729 To put t simply, you want something that do that: ```python import numpy as np numpy_arr = np.zeros((1, 1, 1)) null_indices = np.array([1, 2]) np.insert(numpy_arr, null_indices, np.nan, axis=0) # raise an error, instead of outputting # array([[[ 0.]], # [[nan]], # [[nan]]]) ``` ### Expected behavior The previous code should not raise an error. ### Environment info - Python 3.10.11 - datasets 2.10.0 - pyarrow 12.0.0
110
25
`IndexError` when indexing `Sequence` of `Array2D` with `None` values ### Describe the bug Having `None` values in a `Sequence` of `ArrayND` fails. ### Steps to reproduce the bug ```python from datasets import Array2D, Dataset, Features, Sequence data = [ [ [[0]], None, None, ] ] feature = Sequence(Array2D((1, 1), dtype="int64")) dataset = Dataset.from_dict({"a": data}, features=Features({"a": feature})) dataset[0] # error raised only when indexing ``` ``` Traceback (most recent call last): File "/Users/quentingallouedec/gia/c.py", line 13, in <module> dataset[0] # error raised only when indexing File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2658, in __getitem__ return self._getitem(key) File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 2643, in _getitem formatted_output = format_table( File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 634, in format_table return formatter(pa_table, query_type=query_type) File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 406, in __call__ return self.format_row(pa_table) File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 441, in format_row row = self.python_arrow_extractor().extract_row(pa_table) File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/formatting/formatting.py", line 144, in extract_row return _unnest(pa_table.to_pydict()) File "pyarrow/table.pxi", line 4146, in pyarrow.lib.Table.to_pydict File "pyarrow/table.pxi", line 1312, in pyarrow.lib.ChunkedArray.to_pylist File "pyarrow/array.pxi", line 1521, in pyarrow.lib.Array.to_pylist File "pyarrow/scalar.pxi", line 675, in pyarrow.lib.ListScalar.as_py File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/features/features.py", line 760, in to_pylist return self.to_numpy(zero_copy_only=zero_copy_only).tolist() File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/datasets/features/features.py", line 725, in to_numpy numpy_arr = np.insert(numpy_arr.astype(np.float64), null_indices, np.nan, axis=0) File "<__array_function__ internals>", line 200, in insert File "/Users/quentingallouedec/gia/env/lib/python3.10/site-packages/numpy/lib/function_base.py", line 5426, in insert old_mask[indices] = False IndexError: index 3 is out of bounds for axis 0 with size 3 ``` AFAIK, the problem only occurs when you use a `Sequence` of `ArrayND`. I strongly suspect that the problem comes from this line, or `np.insert` is misused: https://github.com/huggingface/datasets/blob/02ee418831aba68d0be93227bce8b3f42ef8980f/src/datasets/features/features.py#L729 To put t simply, you want something that do that: ```python import numpy as np numpy_arr = np.zeros((1, 1, 1)) null_indices = np.array([1, 2]) np.insert(numpy_arr, null_indices, np.nan, axis=0) # raise an error, instead of outputting # array([[[ 0.]], # [[nan]], # [[nan]]]) ``` ### Expected behavior The previous code should not raise an error. ### Environment info - Python 3.10.11 - datasets 2.10.0 - pyarrow 12.0.0 Easy fix would be to add: ```python null_indices -= np.arange(len(null_indices)) ``` before L279, but I'm not sure it's the most intuitive way to fix it.
[ -1.210868239402771, -0.8622393608093262, -0.7345375418663025, 1.4423794746398926, -0.07342106103897095, -1.3733819723129272, 0.15904313325881958, -1.0515152215957642, 1.6494793891906738, -0.7620460391044617, 0.2587561011314392, -1.7206271886825562, -0.0957385003566742, -0.5657087564468384, -0.7526407837867737, -0.9056698083877563, -0.3321057856082916, -0.835983157157898, 1.0391066074371338, 2.46239972114563, 1.317671537399292, -1.351291298866272, 2.764676809310913, 0.6829032301902771, -0.35221976041793823, -0.9414171576499939, 0.5554794669151306, -0.011464283801615238, -1.181361436843872, -0.5144727826118469, -0.8801571130752563, -0.09529338032007217, -0.5536757707595825, -0.42132237553596497, -0.02394910156726837, 0.5518007278442383, -0.3737736940383911, -0.27233490347862244, -0.6148487329483032, -0.7502590417861938, 0.4873974025249481, -0.2851187586784363, 0.9056127667427063, -0.3380604684352875, 1.7827287912368774, -0.6743168830871582, 0.3693513572216034, 0.6951785087585449, 1.2937029600143433, 0.17415183782577515, 0.08402973413467407, 0.32977136969566345, 0.32759445905685425, -0.025459812954068184, 0.6117491126060486, 1.3085923194885254, 0.5682119131088257, 0.5437394976615906, 0.7584527730941772, -2.251558303833008, 1.3093754053115845, -0.9254149794578552, 0.24928146600723267, 1.2616592645645142, -0.8298582434654236, 0.39399057626724243, -1.7477655410766602, -0.10246876627206802, 0.6000390648841858, -2.306647777557373, 0.35534361004829407, -1.3794804811477661, -0.5775539875030518, 0.8925449252128601, 0.41224053502082825, -1.1630465984344482, 0.21457962691783905, -0.5238677859306335, 1.0517395734786987, 0.4300113618373871, 1.1164785623550415, -1.6706644296646118, -0.042184047400951385, -0.24902325868606567, 0.09945075213909149, -1.2617484331130981, -1.6782827377319336, 0.6129065155982971, 0.5250949859619141, 0.6950348615646362, -0.14577993750572205, 1.0864646434783936, -1.1299889087677002, 0.7714674472808838, -0.9890508055686951, -1.6352728605270386, -1.387176275253296, -2.3365185260772705, -2.2660446166992188, 0.7719439268112183, -0.5292290449142456, -0.5332871079444885, 2.05369234085083, -0.9511025547981262, -1.7615174055099487, 1.0356649160385132, 0.3569166958332062, 0.013072018511593342, 2.3562679290771484, 0.22941040992736816, -0.6798543930053711, 0.47629064321517944, -0.7691284418106079, 0.8176190257072449, -0.3246666491031647, 1.2011867761611938, 0.5000844597816467, -1.0003933906555176, 1.5419561862945557, -0.47861912846565247, 0.5785890817642212, -0.6837226748466492, -0.4817172586917877, -0.7426678538322449, 0.24538618326187134, 1.8906446695327759, -0.3787398636341095, 1.5074787139892578, -0.25551414489746094, -1.5361100435256958, -1.605635643005371, 0.827602207660675, 0.46426624059677124, -0.9180986285209656, 0.11908639967441559, -0.5250643491744995, 0.17704243957996368, -0.0766770988702774, 1.215834140777588, 1.2285562753677368, 0.7536730170249939, -0.2874387502670288, -0.8198820352554321, 0.22888986766338348, -0.11684587597846985, -0.763380765914917, -1.7600759267807007, -0.3601745665073395, 0.3157036304473877, 0.5559592843055725, -1.2593470811843872, 1.8632162809371948, 0.9071955680847168, 1.9923182725906372, 0.9581469297409058, -0.39684566855430603, 1.499445915222168, -0.020608652383089066, 1.886195182800293, -0.49549245834350586, 0.5585784316062927, -0.42901700735092163, -1.1935797929763794, 0.8816103339195251, -0.4078112840652466, -1.9876116514205933, -0.8038502335548401, -0.7996517419815063, -0.22558055818080902, -0.7761229276657104, 0.8655170798301697, -0.36733049154281616, -1.5004701614379883, 0.09278202801942825, -0.7579042315483093, 0.10427980124950409, -1.2775774002075195, 0.18934312462806702, 0.6990501284599304, -0.7014793753623962, -0.006031374912708998, -0.2794035077095032, -1.2787126302719116, -0.4272176921367645, 0.37081801891326904, 2.003403902053833, -0.6221056580543518, 0.999824583530426, 0.9713744521141052, -0.764011800289154, 0.11037193983793259, 0.2654772996902466, -0.3917439877986908, 0.7626976370811462, -1.0896316766738892, -0.4802977740764618, 1.1415799856185913, -0.11814174056053162, -0.7165603041648865, 1.362587809562683, 0.7803441286087036, -1.0627855062484741, -0.26863548159599304, -0.24830159544944763, -0.8366289734840393, 0.023721911013126373, -1.4140645265579224, -0.17092253267765045, 0.4740024507045746, -1.4340146780014038, -0.4041858911514282, -0.15226660668849945, 1.3689268827438354, -0.23969504237174988, 1.357348084449768, -0.29228484630584717, -0.15488290786743164, -0.32579517364501953, -0.45606476068496704, 0.11701726913452148, -0.16038964688777924, -0.593451201915741, 0.0956827700138092, -0.7512731552124023, 0.2881517708301544, 1.4932039976119995, 0.3292110562324524, 0.11865659058094025, 0.4882020652294159, 1.199962854385376, 0.4199557602405548, -0.023149244487285614, -0.909020721912384, -1.5655102729797363, 1.8847401142120361, -1.4613838195800781, 1.930728793144226, 0.7767590284347534, -0.06194228306412697, -1.7807508707046509, -1.9216262102127075, 1.2234240770339966, 1.093288779258728, 2.395869731903076, 0.47970888018608093, 0.41124802827835083, -0.7631120085716248, -0.7079402804374695, 0.29423463344573975, -1.0365933179855347, -0.622982919216156, 0.20335130393505096, 2.3650145530700684, 1.8152307271957397, -0.5760968923568726, -0.3111693561077118, -0.8828956484794617, 1.2929292917251587, -0.2418375015258789, 0.22902631759643555, 2.048266649246216, -0.33993303775787354, -0.9698273539543152, 1.240553855895996, -2.4195773601531982, 0.16664782166481018, 2.013869047164917, 0.1967628002166748, 0.1030936986207962, -1.2809745073318481, -0.6717645525932312, -0.2886859178543091, -0.5295422077178955, -1.2202401161193848, 0.505700945854187, -0.14237050712108612, -0.8224235773086548, -1.3761334419250488, 0.09902254492044449, -1.1433308124542236, -1.7471624612808228, 0.28941720724105835, 1.9688594341278076, 2.0908257961273193, -0.8509149551391602, 1.4601612091064453, -0.2975614368915558, -0.007960684597492218, 1.2880709171295166, 1.4010099172592163, 3.044645071029663, 1.7861273288726807, -1.2554583549499512, 0.702232837677002, -0.18802841007709503, -0.4986723065376282, 1.2822344303131104, -1.1598020792007446, 1.1268688440322876, -0.1358279138803482, -1.2179173231124878, -1.2189528942108154, 0.9866613745689392, 0.48810964822769165, 0.021803811192512512, -0.504655122756958, 1.2783440351486206, 0.13535049557685852, 1.3351701498031616, 0.6306851506233215, -0.407618910074234, 0.5868561267852783, -0.31715020537376404, -0.5419592261314392, 1.620620608329773, 0.18836456537246704, -1.5384689569473267, -2.434814929962158, -0.18228201568126678, -0.9197783470153809, 0.051772333681583405, -0.6233817934989929, -1.0587126016616821, 1.6083428859710693, 0.2986578941345215, -1.1445196866989136, -0.22635769844055176, -0.30287232995033264, -0.5170153379440308, 2.689370632171631, -1.2416353225708008, -0.13836075365543365, -0.9511221647262573, -0.5606254935264587, 1.6847726106643677, -1.2139657735824585, -0.17691512405872345, -1.0750222206115723, -0.5934118628501892, -1.3785134553909302, -0.47918370366096497, 0.04647362232208252, -0.9876941442489624, 0.7681560516357422, 0.1177154928445816, -1.1829506158828735, -0.31851494312286377, -0.9311383366584778, 1.0837407112121582, -0.14521977305412292, 0.25577864050865173, 1.9062758684158325, 0.36339113116264343, -0.43612292408943176, 0.7641206383705139, 1.279398798942566, 0.6450366377830505, -0.5784405469894409, 0.12392331659793854, -0.6582655310630798, 0.30552372336387634, -1.4575477838516235, 0.19307798147201538, -2.8749353885650635, 0.7582886219024658, -0.20412415266036987, -0.09230738878250122, -0.0549125038087368, -1.3277090787887573, 1.090771198272705, 2.5658137798309326, -1.1727135181427002, 0.4084664285182953, 0.404371440410614, 1.2122617959976196, -1.5965310335159302, 0.2933197021484375, -0.5516531467437744, 2.0644140243530273, 0.15816839039325714, 1.251129388809204, -0.46075743436813354, -2.2016868591308594, 0.6112152338027954, -1.2564853429794312, -1.0648329257965088, 0.884920597076416, -0.9083406329154968, 0.24605229496955872, -1.4415065050125122, -0.18219436705112457, -0.8775426745414734, -1.1559606790542603, 0.7880876064300537, 0.11929436028003693, 0.4149661064147949, -0.5898277759552002, 0.33021080493927, -2.166775703430176, -1.4344890117645264, -0.1712789237499237, -0.9570425748825073, 0.5738619565963745, -0.3426537811756134, 0.615979015827179, -0.09850990772247314, 0.09214065223932266, 0.3250690698623657, 1.5279244184494019, 3.3466124534606934, 0.16999059915542603, 0.24891069531440735, -0.20837514102458954, -0.9949877858161926, 1.426451325416565, 0.8877589106559753, -0.16441033780574799, -0.526064932346344, -1.0467177629470825, 1.3136600255966187, 1.9938162565231323, 1.2036702632904053, 0.0746845006942749, -0.8123564124107361, -0.7596263289451599, -0.02794911339879036, 0.20514345169067383, 0.4371574819087982, 0.919807493686676, 0.0921110138297081, 0.07615229487419128, 1.3709954023361206, 1.1324506998062134, -0.4283629059791565, 0.4513343572616577, -0.894199550151825, -0.3802049458026886, 0.42405107617378235, 0.15317922830581665, 0.10383348912000656, 0.5211911797523499, -1.029430866241455, -0.3756411075592041, -0.292123019695282, -0.8109374046325684, -0.7459713220596313, -0.3692610561847687, -0.4054844379425049, 1.6548782587051392, 0.019493162631988525, -0.5131010413169861, 0.10745128244161606, -0.6772232055664062, -0.08378976583480835, -1.1414128541946411, 0.08684002608060837, -0.09996973723173141, -0.08972638845443726, -0.12940412759780884, 1.6553901433944702, -0.9404634237289429, -2.0548861026763916, 0.15152950584888458, 0.3381232023239136, -0.3332024812698364, 0.20651647448539734, 1.7228182554244995, 0.5384914875030518, 1.3829433917999268, 1.2542599439620972, 1.012510895729065, -0.5740753412246704, -1.2296903133392334, 0.7329972982406616, 0.9935291409492493, -1.2608832120895386, 0.9287912249565125, -0.14619405567646027, -0.5372104644775391, 0.6219070553779602, 1.2577046155929565, 0.4081294536590576, -2.0679969787597656, 0.8320349454879761, -0.9559942483901978, 0.7421226501464844, 0.6747345924377441, 0.7715804576873779, 0.3021129071712494, 0.8884472250938416, -1.2866053581237793, -1.2255438566207886, -0.6937305331230164, -0.6600273847579956, 1.9531614780426025, -0.21214458346366882, 0.5574153065681458, -0.220147043466568, -1.2269830703735352, -0.11618396639823914, 0.791651725769043, 0.35726696252822876, -0.521368145942688, 0.8999890685081482, -0.64375239610672, -0.8755549788475037, -1.265079140663147, -0.4395504295825958, -1.0520281791687012, -0.9166815876960754, 1.0075922012329102, 0.800836980342865, 0.36214715242385864, 1.9514878988265991, 0.6090999841690063, 0.3371450901031494, -2.624281644821167, 0.8636845350265503, 0.30483517050743103, -0.0714498832821846, 0.7997209429740906, 0.30213212966918945, 1.2176334857940674, 0.004299575462937355, 0.6239497661590576, -2.371962547302246, 2.2228188514709473, -0.11947666853666306, 0.5655077695846558, 0.01923798769712448, -0.23064716160297394, 1.100029706954956, 0.568972647190094, 0.5219342708587646, -1.0733648538589478, 0.5792606472969055, -0.6321267485618591, 1.1245864629745483, 0.956224262714386, -0.9610776305198669, 0.06976055353879929, 1.517347812652588, 0.5793165564537048, -0.45927178859710693, -1.0005401372909546, -0.9130961298942566, 1.0258312225341797, 1.6754735708236694, -0.029509663581848145, -0.000045006163418293, 0.8902999758720398, 0.6308899521827698, -1.2217265367507935, 0.09710251539945602, -0.7061505317687988, -0.7352281808853149, 1.7146958112716675, 2.065819501876831, -0.19765272736549377, -0.15474149584770203, -0.7473078966140747, -1.2138526439666748, 0.7780110836029053, -0.13608108460903168, 0.07580621540546417, 0.7425559163093567, -0.6809029579162598, 1.1081010103225708, 0.627392053604126, 0.984651505947113, 0.17466342449188232, 0.3199104368686676, 0.3166125416755676, -0.4015834927558899, -1.1641532182693481, -0.303707480430603, -1.0604606866836548, -2.581657648086548, 0.3834691047668457, -0.24502307176589966, -1.4963147640228271, 0.008509653620421886, -1.062300682067871, 0.9364607334136963, -0.5759745836257935, -1.0659615993499756, -1.4244261980056763, 0.3244350850582123, -0.06532295793294907, 0.9594845175743103, -1.6305432319641113, -0.168437197804451, 1.2333072423934937, 0.8598434329032898, -0.6754398345947266, 0.8960839509963989, 0.25746822357177734, 1.0244884490966797, 0.8349990248680115, -0.4003702998161316, 0.6299329996109009, -0.06881538778543472, -1.3130431175231934, 0.4305962920188904, 1.2026711702346802, 0.14445064961910248, 1.4050402641296387, -0.36710208654403687, 0.047078199684619904, 0.4350239336490631, -0.6350880861282349, -0.5413229465484619, -0.4692554473876953, 0.5871543288230896, 0.059731774032115936, -1.059787392616272, -0.1265503317117691, -0.07159528136253357, -0.38356053829193115, 0.21873153746128082, -1.4848473072052002, -0.25493696331977844, -0.37767770886421204, -0.5598463416099548, -1.3044995069503784, 0.04821062088012695, 1.2958718538284302, -0.7472695708274841, -0.22809772193431854, 0.4566374123096466, 0.3368586301803589, 0.5043532848358154, 0.5400497317314148, -0.7370216846466064, -0.24417467415332794, -0.32457271218299866, -0.36114951968193054, 0.3118610680103302, 1.2882992029190063, -0.08955857902765274, -0.968571662902832, 0.6549324989318848, -0.2741151452064514, 0.18645165860652924, 2.0386524200439453, 0.04066597670316696, -0.7226934432983398, 0.31035274267196655, -0.6767793893814087, 1.775671124458313, 1.7219069004058838, 1.2509244680404663, -0.10420964658260345, -0.7343682050704956, 0.5627099275588989, -0.3500749170780182, -0.37712082266807556, 0.8787551522254944, 0.3143468499183655, -0.23236848413944244, -1.5070323944091797, 0.6905926465988159, 1.32631254196167, -0.7486351728439331, -0.7872398495674133, 0.050083935260772705, -0.9204952716827393, 1.2560200691223145, 0.5823790431022644, 0.31532272696495056, 0.23511317372322083, 1.481606125831604, 0.7927287817001343, -0.3849334716796875, 0.4982668459415436, 0.5578049421310425, -0.10405511409044266, -2.162336587905884, -1.032409429550171, 0.25101155042648315, -0.4132000207901001, -1.5946540832519531, 1.4031132459640503, -1.1624809503555298, -1.0308245420455933, 0.6231828927993774, 0.08858801424503326, 1.287446141242981, 0.3685007095336914, 1.6556682586669922, 2.08933162689209, 0.8301818370819092, 0.37331101298332214, 1.2108547687530518, -0.09936317056417465, -0.4327268898487091, 1.7555594444274902, -0.409341424703598, 0.49790987372398376, 0.9264514446258545, -0.308997243642807, -1.1112226247787476, -0.8255122303962708, -1.319898247718811, -0.7166759371757507, 1.2522284984588623, 0.05036262422800064, -1.0368976593017578, 0.2770804464817047, 1.580777883529663, 0.06960995495319366, -0.209446981549263, 0.7333515286445618, 0.38333380222320557, -0.747957706451416, -0.09065861999988556, -0.8582550883293152, 0.5290412306785583, -0.008708813227713108, -0.2965986132621765, 0.3327716588973999, 0.5114235877990723, 1.3799304962158203, -0.06520333886146545, 0.19164985418319702, 1.0725148916244507, -1.3760360479354858, 1.575290560722351, -0.6195037364959717, 0.29144710302352905, -2.410187244415283, 1.409474492073059, -0.7882556915283203, 1.9673912525177002, -2.5185956954956055, 0.44541940093040466, -0.4728448987007141, -0.5204201340675354, 0.31356170773506165, -0.3842298686504364, 0.12444369494915009, -0.11038479954004288, -1.0153427124023438, -0.005187021568417549, -0.7009007334709167, 0.5583412051200867, 1.2084013223648071, 1.4520974159240723, -1.0874847173690796, -0.3211539089679718, -1.7009763717651367, -0.12729884684085846, -0.7437158226966858, 0.2845238745212555, -1.9636366367340088, -0.18603219091892242, -1.984298825263977, -2.3740017414093018, -1.3192152976989746, -0.8314278721809387, 1.0919619798660278, 0.17606878280639648, -0.9933281540870667, 1.2195276021957397, -0.39587149024009705, -1.7343412637710571, 1.1580508947372437, -2.1284072399139404 ]
https://github.com/huggingface/datasets/issues/5923
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility
Based on https://github.com/rapidsai/cudf/issues/10187, this probably means your `pyarrow` installation is not compatible with `datasets`. Can you please execute the following commands in the terminal and paste the output here? ``` conda list | grep arrow ``` ``` python -c "import pyarrow; print(pyarrow.__file__)" ```
### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0
112
43
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility ### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0 Based on https://github.com/rapidsai/cudf/issues/10187, this probably means your `pyarrow` installation is not compatible with `datasets`. Can you please execute the following commands in the terminal and paste the output here? ``` conda list | grep arrow ``` ``` python -c "import pyarrow; print(pyarrow.__file__)" ```
[ -1.1750595569610596, -0.872355043888092, -0.6893664002418518, 1.387781023979187, -0.05072424188256264, -1.2870230674743652, 0.0344497412443161, -1.0810635089874268, 1.4963840246200562, -0.7009853720664978, 0.2459050863981247, -1.6988246440887451, -0.17471174895763397, -0.39148375391960144, -0.624787449836731, -0.9523163437843323, -0.31673672795295715, -1.0204801559448242, 1.1082258224487305, 2.5502476692199707, 1.3889238834381104, -1.3212910890579224, 2.865058183670044, 0.6503803133964539, -0.2960011959075928, -1.0127919912338257, 0.5857762098312378, -0.015445595607161522, -1.2200380563735962, -0.5422953367233276, -0.9421238899230957, -0.027667637914419174, -0.5372564196586609, -0.3619457483291626, 0.1447877138853073, 0.5073856711387634, -0.25112754106521606, -0.2189115285873413, -0.7204452753067017, -0.7201055288314819, 0.4885539412498474, -0.36743488907814026, 0.9766443371772766, -0.3501471281051636, 1.6458054780960083, -0.5848569273948669, 0.4477384686470032, 0.7677279114723206, 1.2413440942764282, 0.10416748374700546, 0.09003046154975891, 0.23134081065654755, 0.2728288769721985, -0.05936335027217865, 0.6838019490242004, 1.17380690574646, 0.5983589887619019, 0.592458188533783, 0.6357535719871521, -2.180600166320801, 1.319359302520752, -0.8115485310554504, 0.1676984578371048, 1.3202015161514282, -0.797451376914978, 0.3412318229675293, -1.783279299736023, -0.09002761542797089, 0.5931578874588013, -2.369415521621704, 0.2301120012998581, -1.2479976415634155, -0.5402237176895142, 0.8650517463684082, 0.3148905634880066, -1.262274146080017, 0.16053403913974762, -0.5300297141075134, 1.1745017766952515, 0.5671987533569336, 1.1653072834014893, -1.6533598899841309, -0.03844662755727768, -0.07451348006725311, 0.07058517634868622, -1.3087605237960815, -1.7036614418029785, 0.5133981108665466, 0.5511937737464905, 0.7548724412918091, -0.009126023389399052, 0.9807395339012146, -1.0776124000549316, 0.804884672164917, -0.8978801369667053, -1.563247799873352, -1.3623101711273193, -2.434401273727417, -2.3020005226135254, 0.8286305069923401, -0.6267974376678467, -0.5439102649688721, 2.0369837284088135, -1.001809000968933, -1.78556227684021, 1.0185762643814087, 0.36923691630363464, 0.14912529289722443, 2.4299304485321045, 0.266590416431427, -0.7981706261634827, 0.5071750283241272, -0.6248602867126465, 0.884880542755127, -0.38206449151039124, 1.2627617120742798, 0.47867512702941895, -0.9660075306892395, 1.6611889600753784, -0.4755641520023346, 0.6529018878936768, -0.6302794218063354, -0.44428086280822754, -0.8238851428031921, 0.21528643369674683, 1.7881159782409668, -0.40472614765167236, 1.4856375455856323, -0.2838832139968872, -1.5602318048477173, -1.5107381343841553, 0.7411220669746399, 0.47281351685523987, -0.9354370832443237, 0.032792434096336365, -0.5018276572227478, 0.1914076805114746, 0.010214352048933506, 1.0956060886383057, 1.1986933946609497, 0.7031829953193665, -0.27640262246131897, -0.8697603344917297, 0.3292030990123749, -0.15312325954437256, -0.5657059550285339, -1.8452813625335693, -0.2935332655906677, 0.25773340463638306, 0.6425368189811707, -1.2464022636413574, 1.8602750301361084, 0.8772105574607849, 2.0605781078338623, 0.9275188446044922, -0.4342765808105469, 1.4265034198760986, -0.007365197874605656, 1.8316878080368042, -0.4775323271751404, 0.5467652678489685, -0.32537248730659485, -1.1295372247695923, 0.8936623930931091, -0.40654727816581726, -1.885276198387146, -0.8248898983001709, -0.7019342184066772, -0.16088788211345673, -0.7414146065711975, 0.8817585110664368, -0.3172159194946289, -1.3997986316680908, 0.05380202829837799, -0.7155614495277405, 0.23751623928546906, -1.3644402027130127, 0.18657943606376648, 0.7235620021820068, -0.684629499912262, -0.0956794023513794, -0.3710242211818695, -1.3173291683197021, -0.5374034643173218, 0.26487836241722107, 2.0257315635681152, -0.4860055446624756, 0.9360833764076233, 0.9601439237594604, -0.8172714710235596, 0.17029264569282532, 0.2627914249897003, -0.36434823274612427, 0.7476751804351807, -1.137665867805481, -0.3975706696510315, 1.1002870798110962, -0.2665652632713318, -0.7837087512016296, 1.4737935066223145, 0.883584201335907, -1.1649166345596313, -0.3519567549228668, -0.2866075038909912, -0.8689969182014465, 0.0018865149468183517, -1.4665145874023438, -0.1767105758190155, 0.36809486150741577, -1.4648253917694092, -0.2821243107318878, -0.19211672246456146, 1.3677730560302734, -0.27610549330711365, 1.5096189975738525, -0.34566980600357056, -0.11258845776319504, -0.2852354943752289, -0.5506337285041809, 0.22893956303596497, -0.19413936138153076, -0.6012383103370667, 0.1929047703742981, -0.7853508591651917, 0.2133067548274994, 1.5054562091827393, 0.4094403386116028, 0.034521497786045074, 0.4495481550693512, 1.0428012609481812, 0.4293633699417114, -0.0656907930970192, -0.8010658621788025, -1.4483245611190796, 1.976365566253662, -1.4465253353118896, 1.8555413484573364, 0.8283754587173462, -0.09049838781356812, -1.8691377639770508, -1.8606023788452148, 1.2018147706985474, 1.1291627883911133, 2.348252296447754, 0.5082865953445435, 0.5247606635093689, -0.6829772591590881, -0.8381012082099915, 0.26235297322273254, -0.9547684788703918, -0.6542972922325134, 0.21043263375759125, 2.292192220687866, 1.79254150390625, -0.6069274544715881, -0.20424149930477142, -0.7960952520370483, 1.2437858581542969, -0.26373592019081116, 0.2609119713306427, 2.0624544620513916, -0.2987498939037323, -0.914650022983551, 1.3131695985794067, -2.4343342781066895, 0.32376334071159363, 2.076084852218628, 0.2502734065055847, 0.18252089619636536, -1.4365206956863403, -0.6898121237754822, -0.3319007456302643, -0.45286139845848083, -1.3116768598556519, 0.6102344989776611, -0.25252217054367065, -0.9168146252632141, -1.4643317461013794, 0.052232302725315094, -1.1696370840072632, -1.8029705286026, 0.37162068486213684, 1.9642869234085083, 2.12312388420105, -0.853437066078186, 1.3174641132354736, -0.2682470977306366, -0.07679073512554169, 1.3306000232696533, 1.3790863752365112, 3.0434203147888184, 1.8583388328552246, -1.254201889038086, 0.7690378427505493, -0.269942969083786, -0.4986380934715271, 1.1846462488174438, -1.1091653108596802, 0.9639306664466858, -0.12565143406391144, -1.2862064838409424, -1.1998530626296997, 1.0467619895935059, 0.5039051175117493, 0.020457662642002106, -0.4256038963794708, 1.3639154434204102, 0.18172435462474823, 1.4288251399993896, 0.5899699330329895, -0.35243454575538635, 0.5262327194213867, -0.30919957160949707, -0.5519760847091675, 1.680882453918457, 0.13587528467178345, -1.5419450998306274, -2.3145077228546143, -0.29153597354888916, -0.943009614944458, -0.013730967417359352, -0.6040357947349548, -1.0041807889938354, 1.577446460723877, 0.46126097440719604, -1.1257331371307373, -0.3058643639087677, -0.2854665219783783, -0.4474412202835083, 2.654167413711548, -1.2502591609954834, -0.08571840077638626, -0.9060359001159668, -0.3969232738018036, 1.6193519830703735, -1.2771997451782227, -0.2546002268791199, -1.0096927881240845, -0.6564884781837463, -1.3214157819747925, -0.45028945803642273, 0.012491383589804173, -1.0136982202529907, 0.6625512838363647, 0.22377465665340424, -1.0948079824447632, -0.28267866373062134, -0.9101532101631165, 1.0748692750930786, -0.050997938960790634, 0.28200680017471313, 1.8737537860870361, 0.33575719594955444, -0.4782799482345581, 0.7215929627418518, 1.2249977588653564, 0.5305382609367371, -0.6540080308914185, -0.030324116349220276, -0.758411169052124, 0.42496323585510254, -1.4203710556030273, 0.07236770540475845, -3.0275115966796875, 0.788528561592102, -0.2614382207393646, -0.2081330269575119, -0.19681522250175476, -1.2633126974105835, 1.098667860031128, 2.6260335445404053, -1.1613798141479492, 0.4545367956161499, 0.49701303243637085, 1.1645745038986206, -1.5782687664031982, 0.3425605893135071, -0.4719339907169342, 2.0447916984558105, 0.1288508027791977, 1.1684932708740234, -0.520348310470581, -2.217074155807495, 0.6713230013847351, -1.1564712524414062, -0.9917401075363159, 0.8605371117591858, -0.8868844509124756, 0.3218176066875458, -1.4151132106781006, -0.04366910085082054, -0.9328762292861938, -1.2251883745193481, 0.7403448820114136, 0.03954731673002243, 0.34061577916145325, -0.534202516078949, 0.38177719712257385, -2.112764358520508, -1.383205771446228, -0.28997084498405457, -0.9325435757637024, 0.6082605123519897, -0.39408016204833984, 0.5542063117027283, -0.02017294056713581, 0.19899295270442963, 0.34565022587776184, 1.4992488622665405, 3.4082047939300537, 0.15005989372730255, 0.2277795374393463, -0.0894959345459938, -1.1300114393234253, 1.4266924858093262, 0.8700501322746277, -0.17812931537628174, -0.5399506688117981, -0.9834437966346741, 1.3862895965576172, 1.9928640127182007, 1.1689419746398926, 0.20890259742736816, -0.9086987376213074, -0.8259507417678833, -0.004358928184956312, 0.13613641262054443, 0.4977065324783325, 1.021388292312622, -0.09253449738025665, 0.020298145711421967, 1.445764422416687, 1.1780815124511719, -0.24402619898319244, 0.41248172521591187, -1.0286256074905396, -0.37042075395584106, 0.3855906128883362, 0.15589557588100433, 0.07421298325061798, 0.48081472516059875, -1.0113595724105835, -0.32701078057289124, -0.20233014225959778, -0.8335141539573669, -0.8307355642318726, -0.35313206911087036, -0.3841683566570282, 1.6746679544448853, 0.08802872151136398, -0.5011151432991028, 0.1966741532087326, -0.6290798187255859, -0.06373517960309982, -1.2007180452346802, 0.10867433995008469, -0.09615752846002579, -0.10093043744564056, -0.18137136101722717, 1.6086639165878296, -0.9546861052513123, -2.11260986328125, 0.1667999029159546, 0.3977755308151245, -0.3243917226791382, 0.18789348006248474, 1.7439159154891968, 0.47766122221946716, 1.3686708211898804, 1.289391040802002, 0.9794402718544006, -0.5748443603515625, -1.2122337818145752, 0.816046953201294, 0.9575970768928528, -1.2384103536605835, 1.0391865968704224, -0.21240703761577606, -0.5981063842773438, 0.6606868505477905, 1.3850722312927246, 0.42033448815345764, -1.9725229740142822, 0.9853309988975525, -0.9164091944694519, 0.7300408482551575, 0.6817903518676758, 0.8847261071205139, 0.24672625958919525, 0.8826847672462463, -1.2819825410842896, -1.2318660020828247, -0.6920613050460815, -0.6250723004341125, 1.8119335174560547, -0.29751744866371155, 0.5489084124565125, -0.1777523159980774, -1.2014358043670654, -0.1557403951883316, 0.785269558429718, 0.3503505289554596, -0.366720587015152, 0.9489570260047913, -0.6536756753921509, -0.9841727018356323, -1.263553500175476, -0.38657012581825256, -1.042438268661499, -0.8334935307502747, 0.9918880462646484, 0.7772841453552246, 0.44985997676849365, 1.8605623245239258, 0.565755307674408, 0.38076284527778625, -2.563293695449829, 0.8701435327529907, 0.30132603645324707, -0.018275197595357895, 0.8565800189971924, 0.28950780630111694, 1.1414563655853271, -0.06345632672309875, 0.548891007900238, -2.2497379779815674, 2.190305471420288, -0.2570265233516693, 0.5736520886421204, 0.04028569906949997, -0.1742568165063858, 1.1104941368103027, 0.5955111384391785, 0.5824854969978333, -1.1375948190689087, 0.6962860226631165, -0.6074776649475098, 1.074785828590393, 0.9162005186080933, -0.8777722716331482, 0.14503349363803864, 1.3901619911193848, 0.4531029760837555, -0.4045161008834839, -1.0340676307678223, -0.8084247708320618, 1.0525258779525757, 1.7132664918899536, -0.08970686048269272, -0.06575773656368256, 0.8379601836204529, 0.6830393075942993, -1.2147167921066284, 0.014575286768376827, -0.7018356919288635, -0.7027712464332581, 1.7754933834075928, 1.9855526685714722, -0.08683722466230392, -0.23946650326251984, -0.7319841980934143, -1.3187650442123413, 0.787314236164093, -0.15460649132728577, 0.0011848853901028633, 0.7196998596191406, -0.7227076292037964, 1.1054364442825317, 0.5349274277687073, 1.0444693565368652, -0.0235745832324028, 0.32693272829055786, 0.2541464567184448, -0.3864043951034546, -1.1257721185684204, -0.31313633918762207, -1.112126350402832, -2.6029064655303955, 0.29059717059135437, -0.25644463300704956, -1.510977864265442, 0.05810048431158066, -1.1168855428695679, 0.9103170037269592, -0.550169825553894, -1.1013438701629639, -1.3721835613250732, 0.31358134746551514, -0.21042555570602417, 0.9128382802009583, -1.6016051769256592, -0.24974653124809265, 1.2710429430007935, 0.8817070722579956, -0.5356999039649963, 0.9265440106391907, 0.25685158371925354, 1.0181306600570679, 0.7386781573295593, -0.39894899725914, 0.5773172974586487, -0.04113663360476494, -1.320256233215332, 0.3259187936782837, 1.2915321588516235, 0.22969190776348114, 1.274787187576294, -0.4690888524055481, 0.1916220486164093, 0.39549392461776733, -0.684442937374115, -0.53776615858078, -0.30479520559310913, 0.7240350246429443, 0.022954586893320084, -1.1509089469909668, -0.19020184874534607, -0.2366836667060852, -0.2776508033275604, 0.22132988274097443, -1.464163064956665, -0.40606677532196045, -0.4170023202896118, -0.424586683511734, -1.4153286218643188, 0.11716590076684952, 1.2826205492019653, -0.8070477843284607, -0.3088156282901764, 0.346890926361084, 0.355557918548584, 0.568112850189209, 0.5728067755699158, -0.8535085916519165, -0.313128799200058, -0.39243534207344055, -0.2914375066757202, 0.20800712704658508, 1.1091556549072266, -0.022915903478860855, -0.9876508712768555, 0.6514925360679626, -0.3450114130973816, 0.18443363904953003, 2.0615482330322266, 0.02652362734079361, -0.7724434733390808, 0.3442292809486389, -0.6446077227592468, 1.6436845064163208, 1.7211625576019287, 1.292325496673584, -0.04524855315685272, -0.7546205520629883, 0.600374698638916, -0.2839244306087494, -0.34811609983444214, 0.8983412981033325, 0.3933351933956146, -0.29393649101257324, -1.4460186958312988, 0.5471788048744202, 1.2503893375396729, -0.6434788703918457, -0.7863115668296814, 0.01161509845405817, -0.9685826301574707, 1.3474531173706055, 0.58372962474823, 0.2706150710582733, 0.273845374584198, 1.5020023584365845, 0.7590696215629578, -0.5424851179122925, 0.4802945554256439, 0.5563621520996094, -0.24493271112442017, -2.1407110691070557, -0.8858527541160583, 0.2059946209192276, -0.35004526376724243, -1.5964337587356567, 1.4175999164581299, -1.1410425901412964, -1.029231309890747, 0.5842441916465759, 0.1385059356689453, 1.2833913564682007, 0.3592124879360199, 1.715608835220337, 2.077672004699707, 0.9016369581222534, 0.31985700130462646, 1.1123870611190796, -0.10046526044607162, -0.43383845686912537, 1.8672820329666138, -0.38612547516822815, 0.5971698760986328, 0.919601321220398, -0.4034416377544403, -1.031274676322937, -0.8907597661018372, -1.0222328901290894, -0.6407865881919861, 1.2082382440567017, 0.09594342112541199, -1.0768308639526367, 0.1731143742799759, 1.5369219779968262, 0.19865508377552032, -0.27817240357398987, 0.7148309946060181, 0.4331105947494507, -0.6914297938346863, -0.061470285058021545, -0.8540843725204468, 0.526462197303772, -0.08066104352474213, -0.24799902737140656, 0.26145413517951965, 0.5994328856468201, 1.3198156356811523, -0.06982666999101639, 0.12212740629911423, 1.107157588005066, -1.3585878610610962, 1.5130720138549805, -0.5821283459663391, 0.32311326265335083, -2.447573184967041, 1.478676676750183, -0.7476843595504761, 1.9594144821166992, -2.5147571563720703, 0.458039253950119, -0.4542093575000763, -0.4882422983646393, 0.23847658932209015, -0.5153620839118958, 0.11795192211866379, -0.14174453914165497, -0.8989810943603516, -0.07161400467157364, -0.7916466593742371, 0.6227806210517883, 1.1534370183944702, 1.4944005012512207, -1.085667610168457, -0.27520954608917236, -1.6841490268707275, -0.13050886988639832, -0.8952755331993103, 0.39193370938301086, -1.988182783126831, -0.24706171452999115, -2.071216106414795, -2.36833119392395, -1.357397437095642, -0.87067711353302, 1.0724836587905884, 0.24337993562221527, -0.902779757976532, 1.1979866027832031, -0.37602636218070984, -1.8266487121582031, 1.1818112134933472, -2.241697072982788 ]
https://github.com/huggingface/datasets/issues/5923
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility
> Based on [rapidsai/cudf#10187](https://github.com/rapidsai/cudf/issues/10187), this probably means your `pyarrow` installation is not compatible with `datasets`. > > Can you please execute the following commands in the terminal and paste the output here? > > ``` > conda list | grep arrow > ``` > > ``` > python -c "import pyarrow; print(pyarrow.__file__)" > ``` Here is the output to the first command: ``` arrow-cpp 11.0.0 py39h7f74497_0 pyarrow 12.0.0 pypi_0 pypi ``` and the second: ``` /Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/__init__.py ``` Thanks!
### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0
112
78
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility ### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0 > Based on [rapidsai/cudf#10187](https://github.com/rapidsai/cudf/issues/10187), this probably means your `pyarrow` installation is not compatible with `datasets`. > > Can you please execute the following commands in the terminal and paste the output here? > > ``` > conda list | grep arrow > ``` > > ``` > python -c "import pyarrow; print(pyarrow.__file__)" > ``` Here is the output to the first command: ``` arrow-cpp 11.0.0 py39h7f74497_0 pyarrow 12.0.0 pypi_0 pypi ``` and the second: ``` /Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/__init__.py ``` Thanks!
[ -1.1750595569610596, -0.872355043888092, -0.6893664002418518, 1.387781023979187, -0.05072424188256264, -1.2870230674743652, 0.0344497412443161, -1.0810635089874268, 1.4963840246200562, -0.7009853720664978, 0.2459050863981247, -1.6988246440887451, -0.17471174895763397, -0.39148375391960144, -0.624787449836731, -0.9523163437843323, -0.31673672795295715, -1.0204801559448242, 1.1082258224487305, 2.5502476692199707, 1.3889238834381104, -1.3212910890579224, 2.865058183670044, 0.6503803133964539, -0.2960011959075928, -1.0127919912338257, 0.5857762098312378, -0.015445595607161522, -1.2200380563735962, -0.5422953367233276, -0.9421238899230957, -0.027667637914419174, -0.5372564196586609, -0.3619457483291626, 0.1447877138853073, 0.5073856711387634, -0.25112754106521606, -0.2189115285873413, -0.7204452753067017, -0.7201055288314819, 0.4885539412498474, -0.36743488907814026, 0.9766443371772766, -0.3501471281051636, 1.6458054780960083, -0.5848569273948669, 0.4477384686470032, 0.7677279114723206, 1.2413440942764282, 0.10416748374700546, 0.09003046154975891, 0.23134081065654755, 0.2728288769721985, -0.05936335027217865, 0.6838019490242004, 1.17380690574646, 0.5983589887619019, 0.592458188533783, 0.6357535719871521, -2.180600166320801, 1.319359302520752, -0.8115485310554504, 0.1676984578371048, 1.3202015161514282, -0.797451376914978, 0.3412318229675293, -1.783279299736023, -0.09002761542797089, 0.5931578874588013, -2.369415521621704, 0.2301120012998581, -1.2479976415634155, -0.5402237176895142, 0.8650517463684082, 0.3148905634880066, -1.262274146080017, 0.16053403913974762, -0.5300297141075134, 1.1745017766952515, 0.5671987533569336, 1.1653072834014893, -1.6533598899841309, -0.03844662755727768, -0.07451348006725311, 0.07058517634868622, -1.3087605237960815, -1.7036614418029785, 0.5133981108665466, 0.5511937737464905, 0.7548724412918091, -0.009126023389399052, 0.9807395339012146, -1.0776124000549316, 0.804884672164917, -0.8978801369667053, -1.563247799873352, -1.3623101711273193, -2.434401273727417, -2.3020005226135254, 0.8286305069923401, -0.6267974376678467, -0.5439102649688721, 2.0369837284088135, -1.001809000968933, -1.78556227684021, 1.0185762643814087, 0.36923691630363464, 0.14912529289722443, 2.4299304485321045, 0.266590416431427, -0.7981706261634827, 0.5071750283241272, -0.6248602867126465, 0.884880542755127, -0.38206449151039124, 1.2627617120742798, 0.47867512702941895, -0.9660075306892395, 1.6611889600753784, -0.4755641520023346, 0.6529018878936768, -0.6302794218063354, -0.44428086280822754, -0.8238851428031921, 0.21528643369674683, 1.7881159782409668, -0.40472614765167236, 1.4856375455856323, -0.2838832139968872, -1.5602318048477173, -1.5107381343841553, 0.7411220669746399, 0.47281351685523987, -0.9354370832443237, 0.032792434096336365, -0.5018276572227478, 0.1914076805114746, 0.010214352048933506, 1.0956060886383057, 1.1986933946609497, 0.7031829953193665, -0.27640262246131897, -0.8697603344917297, 0.3292030990123749, -0.15312325954437256, -0.5657059550285339, -1.8452813625335693, -0.2935332655906677, 0.25773340463638306, 0.6425368189811707, -1.2464022636413574, 1.8602750301361084, 0.8772105574607849, 2.0605781078338623, 0.9275188446044922, -0.4342765808105469, 1.4265034198760986, -0.007365197874605656, 1.8316878080368042, -0.4775323271751404, 0.5467652678489685, -0.32537248730659485, -1.1295372247695923, 0.8936623930931091, -0.40654727816581726, -1.885276198387146, -0.8248898983001709, -0.7019342184066772, -0.16088788211345673, -0.7414146065711975, 0.8817585110664368, -0.3172159194946289, -1.3997986316680908, 0.05380202829837799, -0.7155614495277405, 0.23751623928546906, -1.3644402027130127, 0.18657943606376648, 0.7235620021820068, -0.684629499912262, -0.0956794023513794, -0.3710242211818695, -1.3173291683197021, -0.5374034643173218, 0.26487836241722107, 2.0257315635681152, -0.4860055446624756, 0.9360833764076233, 0.9601439237594604, -0.8172714710235596, 0.17029264569282532, 0.2627914249897003, -0.36434823274612427, 0.7476751804351807, -1.137665867805481, -0.3975706696510315, 1.1002870798110962, -0.2665652632713318, -0.7837087512016296, 1.4737935066223145, 0.883584201335907, -1.1649166345596313, -0.3519567549228668, -0.2866075038909912, -0.8689969182014465, 0.0018865149468183517, -1.4665145874023438, -0.1767105758190155, 0.36809486150741577, -1.4648253917694092, -0.2821243107318878, -0.19211672246456146, 1.3677730560302734, -0.27610549330711365, 1.5096189975738525, -0.34566980600357056, -0.11258845776319504, -0.2852354943752289, -0.5506337285041809, 0.22893956303596497, -0.19413936138153076, -0.6012383103370667, 0.1929047703742981, -0.7853508591651917, 0.2133067548274994, 1.5054562091827393, 0.4094403386116028, 0.034521497786045074, 0.4495481550693512, 1.0428012609481812, 0.4293633699417114, -0.0656907930970192, -0.8010658621788025, -1.4483245611190796, 1.976365566253662, -1.4465253353118896, 1.8555413484573364, 0.8283754587173462, -0.09049838781356812, -1.8691377639770508, -1.8606023788452148, 1.2018147706985474, 1.1291627883911133, 2.348252296447754, 0.5082865953445435, 0.5247606635093689, -0.6829772591590881, -0.8381012082099915, 0.26235297322273254, -0.9547684788703918, -0.6542972922325134, 0.21043263375759125, 2.292192220687866, 1.79254150390625, -0.6069274544715881, -0.20424149930477142, -0.7960952520370483, 1.2437858581542969, -0.26373592019081116, 0.2609119713306427, 2.0624544620513916, -0.2987498939037323, -0.914650022983551, 1.3131695985794067, -2.4343342781066895, 0.32376334071159363, 2.076084852218628, 0.2502734065055847, 0.18252089619636536, -1.4365206956863403, -0.6898121237754822, -0.3319007456302643, -0.45286139845848083, -1.3116768598556519, 0.6102344989776611, -0.25252217054367065, -0.9168146252632141, -1.4643317461013794, 0.052232302725315094, -1.1696370840072632, -1.8029705286026, 0.37162068486213684, 1.9642869234085083, 2.12312388420105, -0.853437066078186, 1.3174641132354736, -0.2682470977306366, -0.07679073512554169, 1.3306000232696533, 1.3790863752365112, 3.0434203147888184, 1.8583388328552246, -1.254201889038086, 0.7690378427505493, -0.269942969083786, -0.4986380934715271, 1.1846462488174438, -1.1091653108596802, 0.9639306664466858, -0.12565143406391144, -1.2862064838409424, -1.1998530626296997, 1.0467619895935059, 0.5039051175117493, 0.020457662642002106, -0.4256038963794708, 1.3639154434204102, 0.18172435462474823, 1.4288251399993896, 0.5899699330329895, -0.35243454575538635, 0.5262327194213867, -0.30919957160949707, -0.5519760847091675, 1.680882453918457, 0.13587528467178345, -1.5419450998306274, -2.3145077228546143, -0.29153597354888916, -0.943009614944458, -0.013730967417359352, -0.6040357947349548, -1.0041807889938354, 1.577446460723877, 0.46126097440719604, -1.1257331371307373, -0.3058643639087677, -0.2854665219783783, -0.4474412202835083, 2.654167413711548, -1.2502591609954834, -0.08571840077638626, -0.9060359001159668, -0.3969232738018036, 1.6193519830703735, -1.2771997451782227, -0.2546002268791199, -1.0096927881240845, -0.6564884781837463, -1.3214157819747925, -0.45028945803642273, 0.012491383589804173, -1.0136982202529907, 0.6625512838363647, 0.22377465665340424, -1.0948079824447632, -0.28267866373062134, -0.9101532101631165, 1.0748692750930786, -0.050997938960790634, 0.28200680017471313, 1.8737537860870361, 0.33575719594955444, -0.4782799482345581, 0.7215929627418518, 1.2249977588653564, 0.5305382609367371, -0.6540080308914185, -0.030324116349220276, -0.758411169052124, 0.42496323585510254, -1.4203710556030273, 0.07236770540475845, -3.0275115966796875, 0.788528561592102, -0.2614382207393646, -0.2081330269575119, -0.19681522250175476, -1.2633126974105835, 1.098667860031128, 2.6260335445404053, -1.1613798141479492, 0.4545367956161499, 0.49701303243637085, 1.1645745038986206, -1.5782687664031982, 0.3425605893135071, -0.4719339907169342, 2.0447916984558105, 0.1288508027791977, 1.1684932708740234, -0.520348310470581, -2.217074155807495, 0.6713230013847351, -1.1564712524414062, -0.9917401075363159, 0.8605371117591858, -0.8868844509124756, 0.3218176066875458, -1.4151132106781006, -0.04366910085082054, -0.9328762292861938, -1.2251883745193481, 0.7403448820114136, 0.03954731673002243, 0.34061577916145325, -0.534202516078949, 0.38177719712257385, -2.112764358520508, -1.383205771446228, -0.28997084498405457, -0.9325435757637024, 0.6082605123519897, -0.39408016204833984, 0.5542063117027283, -0.02017294056713581, 0.19899295270442963, 0.34565022587776184, 1.4992488622665405, 3.4082047939300537, 0.15005989372730255, 0.2277795374393463, -0.0894959345459938, -1.1300114393234253, 1.4266924858093262, 0.8700501322746277, -0.17812931537628174, -0.5399506688117981, -0.9834437966346741, 1.3862895965576172, 1.9928640127182007, 1.1689419746398926, 0.20890259742736816, -0.9086987376213074, -0.8259507417678833, -0.004358928184956312, 0.13613641262054443, 0.4977065324783325, 1.021388292312622, -0.09253449738025665, 0.020298145711421967, 1.445764422416687, 1.1780815124511719, -0.24402619898319244, 0.41248172521591187, -1.0286256074905396, -0.37042075395584106, 0.3855906128883362, 0.15589557588100433, 0.07421298325061798, 0.48081472516059875, -1.0113595724105835, -0.32701078057289124, -0.20233014225959778, -0.8335141539573669, -0.8307355642318726, -0.35313206911087036, -0.3841683566570282, 1.6746679544448853, 0.08802872151136398, -0.5011151432991028, 0.1966741532087326, -0.6290798187255859, -0.06373517960309982, -1.2007180452346802, 0.10867433995008469, -0.09615752846002579, -0.10093043744564056, -0.18137136101722717, 1.6086639165878296, -0.9546861052513123, -2.11260986328125, 0.1667999029159546, 0.3977755308151245, -0.3243917226791382, 0.18789348006248474, 1.7439159154891968, 0.47766122221946716, 1.3686708211898804, 1.289391040802002, 0.9794402718544006, -0.5748443603515625, -1.2122337818145752, 0.816046953201294, 0.9575970768928528, -1.2384103536605835, 1.0391865968704224, -0.21240703761577606, -0.5981063842773438, 0.6606868505477905, 1.3850722312927246, 0.42033448815345764, -1.9725229740142822, 0.9853309988975525, -0.9164091944694519, 0.7300408482551575, 0.6817903518676758, 0.8847261071205139, 0.24672625958919525, 0.8826847672462463, -1.2819825410842896, -1.2318660020828247, -0.6920613050460815, -0.6250723004341125, 1.8119335174560547, -0.29751744866371155, 0.5489084124565125, -0.1777523159980774, -1.2014358043670654, -0.1557403951883316, 0.785269558429718, 0.3503505289554596, -0.366720587015152, 0.9489570260047913, -0.6536756753921509, -0.9841727018356323, -1.263553500175476, -0.38657012581825256, -1.042438268661499, -0.8334935307502747, 0.9918880462646484, 0.7772841453552246, 0.44985997676849365, 1.8605623245239258, 0.565755307674408, 0.38076284527778625, -2.563293695449829, 0.8701435327529907, 0.30132603645324707, -0.018275197595357895, 0.8565800189971924, 0.28950780630111694, 1.1414563655853271, -0.06345632672309875, 0.548891007900238, -2.2497379779815674, 2.190305471420288, -0.2570265233516693, 0.5736520886421204, 0.04028569906949997, -0.1742568165063858, 1.1104941368103027, 0.5955111384391785, 0.5824854969978333, -1.1375948190689087, 0.6962860226631165, -0.6074776649475098, 1.074785828590393, 0.9162005186080933, -0.8777722716331482, 0.14503349363803864, 1.3901619911193848, 0.4531029760837555, -0.4045161008834839, -1.0340676307678223, -0.8084247708320618, 1.0525258779525757, 1.7132664918899536, -0.08970686048269272, -0.06575773656368256, 0.8379601836204529, 0.6830393075942993, -1.2147167921066284, 0.014575286768376827, -0.7018356919288635, -0.7027712464332581, 1.7754933834075928, 1.9855526685714722, -0.08683722466230392, -0.23946650326251984, -0.7319841980934143, -1.3187650442123413, 0.787314236164093, -0.15460649132728577, 0.0011848853901028633, 0.7196998596191406, -0.7227076292037964, 1.1054364442825317, 0.5349274277687073, 1.0444693565368652, -0.0235745832324028, 0.32693272829055786, 0.2541464567184448, -0.3864043951034546, -1.1257721185684204, -0.31313633918762207, -1.112126350402832, -2.6029064655303955, 0.29059717059135437, -0.25644463300704956, -1.510977864265442, 0.05810048431158066, -1.1168855428695679, 0.9103170037269592, -0.550169825553894, -1.1013438701629639, -1.3721835613250732, 0.31358134746551514, -0.21042555570602417, 0.9128382802009583, -1.6016051769256592, -0.24974653124809265, 1.2710429430007935, 0.8817070722579956, -0.5356999039649963, 0.9265440106391907, 0.25685158371925354, 1.0181306600570679, 0.7386781573295593, -0.39894899725914, 0.5773172974586487, -0.04113663360476494, -1.320256233215332, 0.3259187936782837, 1.2915321588516235, 0.22969190776348114, 1.274787187576294, -0.4690888524055481, 0.1916220486164093, 0.39549392461776733, -0.684442937374115, -0.53776615858078, -0.30479520559310913, 0.7240350246429443, 0.022954586893320084, -1.1509089469909668, -0.19020184874534607, -0.2366836667060852, -0.2776508033275604, 0.22132988274097443, -1.464163064956665, -0.40606677532196045, -0.4170023202896118, -0.424586683511734, -1.4153286218643188, 0.11716590076684952, 1.2826205492019653, -0.8070477843284607, -0.3088156282901764, 0.346890926361084, 0.355557918548584, 0.568112850189209, 0.5728067755699158, -0.8535085916519165, -0.313128799200058, -0.39243534207344055, -0.2914375066757202, 0.20800712704658508, 1.1091556549072266, -0.022915903478860855, -0.9876508712768555, 0.6514925360679626, -0.3450114130973816, 0.18443363904953003, 2.0615482330322266, 0.02652362734079361, -0.7724434733390808, 0.3442292809486389, -0.6446077227592468, 1.6436845064163208, 1.7211625576019287, 1.292325496673584, -0.04524855315685272, -0.7546205520629883, 0.600374698638916, -0.2839244306087494, -0.34811609983444214, 0.8983412981033325, 0.3933351933956146, -0.29393649101257324, -1.4460186958312988, 0.5471788048744202, 1.2503893375396729, -0.6434788703918457, -0.7863115668296814, 0.01161509845405817, -0.9685826301574707, 1.3474531173706055, 0.58372962474823, 0.2706150710582733, 0.273845374584198, 1.5020023584365845, 0.7590696215629578, -0.5424851179122925, 0.4802945554256439, 0.5563621520996094, -0.24493271112442017, -2.1407110691070557, -0.8858527541160583, 0.2059946209192276, -0.35004526376724243, -1.5964337587356567, 1.4175999164581299, -1.1410425901412964, -1.029231309890747, 0.5842441916465759, 0.1385059356689453, 1.2833913564682007, 0.3592124879360199, 1.715608835220337, 2.077672004699707, 0.9016369581222534, 0.31985700130462646, 1.1123870611190796, -0.10046526044607162, -0.43383845686912537, 1.8672820329666138, -0.38612547516822815, 0.5971698760986328, 0.919601321220398, -0.4034416377544403, -1.031274676322937, -0.8907597661018372, -1.0222328901290894, -0.6407865881919861, 1.2082382440567017, 0.09594342112541199, -1.0768308639526367, 0.1731143742799759, 1.5369219779968262, 0.19865508377552032, -0.27817240357398987, 0.7148309946060181, 0.4331105947494507, -0.6914297938346863, -0.061470285058021545, -0.8540843725204468, 0.526462197303772, -0.08066104352474213, -0.24799902737140656, 0.26145413517951965, 0.5994328856468201, 1.3198156356811523, -0.06982666999101639, 0.12212740629911423, 1.107157588005066, -1.3585878610610962, 1.5130720138549805, -0.5821283459663391, 0.32311326265335083, -2.447573184967041, 1.478676676750183, -0.7476843595504761, 1.9594144821166992, -2.5147571563720703, 0.458039253950119, -0.4542093575000763, -0.4882422983646393, 0.23847658932209015, -0.5153620839118958, 0.11795192211866379, -0.14174453914165497, -0.8989810943603516, -0.07161400467157364, -0.7916466593742371, 0.6227806210517883, 1.1534370183944702, 1.4944005012512207, -1.085667610168457, -0.27520954608917236, -1.6841490268707275, -0.13050886988639832, -0.8952755331993103, 0.39193370938301086, -1.988182783126831, -0.24706171452999115, -2.071216106414795, -2.36833119392395, -1.357397437095642, -0.87067711353302, 1.0724836587905884, 0.24337993562221527, -0.902779757976532, 1.1979866027832031, -0.37602636218070984, -1.8266487121582031, 1.1818112134933472, -2.241697072982788 ]
https://github.com/huggingface/datasets/issues/5923
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility
RuntimeError: Failed to import transformers.trainer because of the following error (look up to see its traceback): pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject
### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0
112
32
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility ### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0 RuntimeError: Failed to import transformers.trainer because of the following error (look up to see its traceback): pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject
[ -1.1750595569610596, -0.872355043888092, -0.6893664002418518, 1.387781023979187, -0.05072424188256264, -1.2870230674743652, 0.0344497412443161, -1.0810635089874268, 1.4963840246200562, -0.7009853720664978, 0.2459050863981247, -1.6988246440887451, -0.17471174895763397, -0.39148375391960144, -0.624787449836731, -0.9523163437843323, -0.31673672795295715, -1.0204801559448242, 1.1082258224487305, 2.5502476692199707, 1.3889238834381104, -1.3212910890579224, 2.865058183670044, 0.6503803133964539, -0.2960011959075928, -1.0127919912338257, 0.5857762098312378, -0.015445595607161522, -1.2200380563735962, -0.5422953367233276, -0.9421238899230957, -0.027667637914419174, -0.5372564196586609, -0.3619457483291626, 0.1447877138853073, 0.5073856711387634, -0.25112754106521606, -0.2189115285873413, -0.7204452753067017, -0.7201055288314819, 0.4885539412498474, -0.36743488907814026, 0.9766443371772766, -0.3501471281051636, 1.6458054780960083, -0.5848569273948669, 0.4477384686470032, 0.7677279114723206, 1.2413440942764282, 0.10416748374700546, 0.09003046154975891, 0.23134081065654755, 0.2728288769721985, -0.05936335027217865, 0.6838019490242004, 1.17380690574646, 0.5983589887619019, 0.592458188533783, 0.6357535719871521, -2.180600166320801, 1.319359302520752, -0.8115485310554504, 0.1676984578371048, 1.3202015161514282, -0.797451376914978, 0.3412318229675293, -1.783279299736023, -0.09002761542797089, 0.5931578874588013, -2.369415521621704, 0.2301120012998581, -1.2479976415634155, -0.5402237176895142, 0.8650517463684082, 0.3148905634880066, -1.262274146080017, 0.16053403913974762, -0.5300297141075134, 1.1745017766952515, 0.5671987533569336, 1.1653072834014893, -1.6533598899841309, -0.03844662755727768, -0.07451348006725311, 0.07058517634868622, -1.3087605237960815, -1.7036614418029785, 0.5133981108665466, 0.5511937737464905, 0.7548724412918091, -0.009126023389399052, 0.9807395339012146, -1.0776124000549316, 0.804884672164917, -0.8978801369667053, -1.563247799873352, -1.3623101711273193, -2.434401273727417, -2.3020005226135254, 0.8286305069923401, -0.6267974376678467, -0.5439102649688721, 2.0369837284088135, -1.001809000968933, -1.78556227684021, 1.0185762643814087, 0.36923691630363464, 0.14912529289722443, 2.4299304485321045, 0.266590416431427, -0.7981706261634827, 0.5071750283241272, -0.6248602867126465, 0.884880542755127, -0.38206449151039124, 1.2627617120742798, 0.47867512702941895, -0.9660075306892395, 1.6611889600753784, -0.4755641520023346, 0.6529018878936768, -0.6302794218063354, -0.44428086280822754, -0.8238851428031921, 0.21528643369674683, 1.7881159782409668, -0.40472614765167236, 1.4856375455856323, -0.2838832139968872, -1.5602318048477173, -1.5107381343841553, 0.7411220669746399, 0.47281351685523987, -0.9354370832443237, 0.032792434096336365, -0.5018276572227478, 0.1914076805114746, 0.010214352048933506, 1.0956060886383057, 1.1986933946609497, 0.7031829953193665, -0.27640262246131897, -0.8697603344917297, 0.3292030990123749, -0.15312325954437256, -0.5657059550285339, -1.8452813625335693, -0.2935332655906677, 0.25773340463638306, 0.6425368189811707, -1.2464022636413574, 1.8602750301361084, 0.8772105574607849, 2.0605781078338623, 0.9275188446044922, -0.4342765808105469, 1.4265034198760986, -0.007365197874605656, 1.8316878080368042, -0.4775323271751404, 0.5467652678489685, -0.32537248730659485, -1.1295372247695923, 0.8936623930931091, -0.40654727816581726, -1.885276198387146, -0.8248898983001709, -0.7019342184066772, -0.16088788211345673, -0.7414146065711975, 0.8817585110664368, -0.3172159194946289, -1.3997986316680908, 0.05380202829837799, -0.7155614495277405, 0.23751623928546906, -1.3644402027130127, 0.18657943606376648, 0.7235620021820068, -0.684629499912262, -0.0956794023513794, -0.3710242211818695, -1.3173291683197021, -0.5374034643173218, 0.26487836241722107, 2.0257315635681152, -0.4860055446624756, 0.9360833764076233, 0.9601439237594604, -0.8172714710235596, 0.17029264569282532, 0.2627914249897003, -0.36434823274612427, 0.7476751804351807, -1.137665867805481, -0.3975706696510315, 1.1002870798110962, -0.2665652632713318, -0.7837087512016296, 1.4737935066223145, 0.883584201335907, -1.1649166345596313, -0.3519567549228668, -0.2866075038909912, -0.8689969182014465, 0.0018865149468183517, -1.4665145874023438, -0.1767105758190155, 0.36809486150741577, -1.4648253917694092, -0.2821243107318878, -0.19211672246456146, 1.3677730560302734, -0.27610549330711365, 1.5096189975738525, -0.34566980600357056, -0.11258845776319504, -0.2852354943752289, -0.5506337285041809, 0.22893956303596497, -0.19413936138153076, -0.6012383103370667, 0.1929047703742981, -0.7853508591651917, 0.2133067548274994, 1.5054562091827393, 0.4094403386116028, 0.034521497786045074, 0.4495481550693512, 1.0428012609481812, 0.4293633699417114, -0.0656907930970192, -0.8010658621788025, -1.4483245611190796, 1.976365566253662, -1.4465253353118896, 1.8555413484573364, 0.8283754587173462, -0.09049838781356812, -1.8691377639770508, -1.8606023788452148, 1.2018147706985474, 1.1291627883911133, 2.348252296447754, 0.5082865953445435, 0.5247606635093689, -0.6829772591590881, -0.8381012082099915, 0.26235297322273254, -0.9547684788703918, -0.6542972922325134, 0.21043263375759125, 2.292192220687866, 1.79254150390625, -0.6069274544715881, -0.20424149930477142, -0.7960952520370483, 1.2437858581542969, -0.26373592019081116, 0.2609119713306427, 2.0624544620513916, -0.2987498939037323, -0.914650022983551, 1.3131695985794067, -2.4343342781066895, 0.32376334071159363, 2.076084852218628, 0.2502734065055847, 0.18252089619636536, -1.4365206956863403, -0.6898121237754822, -0.3319007456302643, -0.45286139845848083, -1.3116768598556519, 0.6102344989776611, -0.25252217054367065, -0.9168146252632141, -1.4643317461013794, 0.052232302725315094, -1.1696370840072632, -1.8029705286026, 0.37162068486213684, 1.9642869234085083, 2.12312388420105, -0.853437066078186, 1.3174641132354736, -0.2682470977306366, -0.07679073512554169, 1.3306000232696533, 1.3790863752365112, 3.0434203147888184, 1.8583388328552246, -1.254201889038086, 0.7690378427505493, -0.269942969083786, -0.4986380934715271, 1.1846462488174438, -1.1091653108596802, 0.9639306664466858, -0.12565143406391144, -1.2862064838409424, -1.1998530626296997, 1.0467619895935059, 0.5039051175117493, 0.020457662642002106, -0.4256038963794708, 1.3639154434204102, 0.18172435462474823, 1.4288251399993896, 0.5899699330329895, -0.35243454575538635, 0.5262327194213867, -0.30919957160949707, -0.5519760847091675, 1.680882453918457, 0.13587528467178345, -1.5419450998306274, -2.3145077228546143, -0.29153597354888916, -0.943009614944458, -0.013730967417359352, -0.6040357947349548, -1.0041807889938354, 1.577446460723877, 0.46126097440719604, -1.1257331371307373, -0.3058643639087677, -0.2854665219783783, -0.4474412202835083, 2.654167413711548, -1.2502591609954834, -0.08571840077638626, -0.9060359001159668, -0.3969232738018036, 1.6193519830703735, -1.2771997451782227, -0.2546002268791199, -1.0096927881240845, -0.6564884781837463, -1.3214157819747925, -0.45028945803642273, 0.012491383589804173, -1.0136982202529907, 0.6625512838363647, 0.22377465665340424, -1.0948079824447632, -0.28267866373062134, -0.9101532101631165, 1.0748692750930786, -0.050997938960790634, 0.28200680017471313, 1.8737537860870361, 0.33575719594955444, -0.4782799482345581, 0.7215929627418518, 1.2249977588653564, 0.5305382609367371, -0.6540080308914185, -0.030324116349220276, -0.758411169052124, 0.42496323585510254, -1.4203710556030273, 0.07236770540475845, -3.0275115966796875, 0.788528561592102, -0.2614382207393646, -0.2081330269575119, -0.19681522250175476, -1.2633126974105835, 1.098667860031128, 2.6260335445404053, -1.1613798141479492, 0.4545367956161499, 0.49701303243637085, 1.1645745038986206, -1.5782687664031982, 0.3425605893135071, -0.4719339907169342, 2.0447916984558105, 0.1288508027791977, 1.1684932708740234, -0.520348310470581, -2.217074155807495, 0.6713230013847351, -1.1564712524414062, -0.9917401075363159, 0.8605371117591858, -0.8868844509124756, 0.3218176066875458, -1.4151132106781006, -0.04366910085082054, -0.9328762292861938, -1.2251883745193481, 0.7403448820114136, 0.03954731673002243, 0.34061577916145325, -0.534202516078949, 0.38177719712257385, -2.112764358520508, -1.383205771446228, -0.28997084498405457, -0.9325435757637024, 0.6082605123519897, -0.39408016204833984, 0.5542063117027283, -0.02017294056713581, 0.19899295270442963, 0.34565022587776184, 1.4992488622665405, 3.4082047939300537, 0.15005989372730255, 0.2277795374393463, -0.0894959345459938, -1.1300114393234253, 1.4266924858093262, 0.8700501322746277, -0.17812931537628174, -0.5399506688117981, -0.9834437966346741, 1.3862895965576172, 1.9928640127182007, 1.1689419746398926, 0.20890259742736816, -0.9086987376213074, -0.8259507417678833, -0.004358928184956312, 0.13613641262054443, 0.4977065324783325, 1.021388292312622, -0.09253449738025665, 0.020298145711421967, 1.445764422416687, 1.1780815124511719, -0.24402619898319244, 0.41248172521591187, -1.0286256074905396, -0.37042075395584106, 0.3855906128883362, 0.15589557588100433, 0.07421298325061798, 0.48081472516059875, -1.0113595724105835, -0.32701078057289124, -0.20233014225959778, -0.8335141539573669, -0.8307355642318726, -0.35313206911087036, -0.3841683566570282, 1.6746679544448853, 0.08802872151136398, -0.5011151432991028, 0.1966741532087326, -0.6290798187255859, -0.06373517960309982, -1.2007180452346802, 0.10867433995008469, -0.09615752846002579, -0.10093043744564056, -0.18137136101722717, 1.6086639165878296, -0.9546861052513123, -2.11260986328125, 0.1667999029159546, 0.3977755308151245, -0.3243917226791382, 0.18789348006248474, 1.7439159154891968, 0.47766122221946716, 1.3686708211898804, 1.289391040802002, 0.9794402718544006, -0.5748443603515625, -1.2122337818145752, 0.816046953201294, 0.9575970768928528, -1.2384103536605835, 1.0391865968704224, -0.21240703761577606, -0.5981063842773438, 0.6606868505477905, 1.3850722312927246, 0.42033448815345764, -1.9725229740142822, 0.9853309988975525, -0.9164091944694519, 0.7300408482551575, 0.6817903518676758, 0.8847261071205139, 0.24672625958919525, 0.8826847672462463, -1.2819825410842896, -1.2318660020828247, -0.6920613050460815, -0.6250723004341125, 1.8119335174560547, -0.29751744866371155, 0.5489084124565125, -0.1777523159980774, -1.2014358043670654, -0.1557403951883316, 0.785269558429718, 0.3503505289554596, -0.366720587015152, 0.9489570260047913, -0.6536756753921509, -0.9841727018356323, -1.263553500175476, -0.38657012581825256, -1.042438268661499, -0.8334935307502747, 0.9918880462646484, 0.7772841453552246, 0.44985997676849365, 1.8605623245239258, 0.565755307674408, 0.38076284527778625, -2.563293695449829, 0.8701435327529907, 0.30132603645324707, -0.018275197595357895, 0.8565800189971924, 0.28950780630111694, 1.1414563655853271, -0.06345632672309875, 0.548891007900238, -2.2497379779815674, 2.190305471420288, -0.2570265233516693, 0.5736520886421204, 0.04028569906949997, -0.1742568165063858, 1.1104941368103027, 0.5955111384391785, 0.5824854969978333, -1.1375948190689087, 0.6962860226631165, -0.6074776649475098, 1.074785828590393, 0.9162005186080933, -0.8777722716331482, 0.14503349363803864, 1.3901619911193848, 0.4531029760837555, -0.4045161008834839, -1.0340676307678223, -0.8084247708320618, 1.0525258779525757, 1.7132664918899536, -0.08970686048269272, -0.06575773656368256, 0.8379601836204529, 0.6830393075942993, -1.2147167921066284, 0.014575286768376827, -0.7018356919288635, -0.7027712464332581, 1.7754933834075928, 1.9855526685714722, -0.08683722466230392, -0.23946650326251984, -0.7319841980934143, -1.3187650442123413, 0.787314236164093, -0.15460649132728577, 0.0011848853901028633, 0.7196998596191406, -0.7227076292037964, 1.1054364442825317, 0.5349274277687073, 1.0444693565368652, -0.0235745832324028, 0.32693272829055786, 0.2541464567184448, -0.3864043951034546, -1.1257721185684204, -0.31313633918762207, -1.112126350402832, -2.6029064655303955, 0.29059717059135437, -0.25644463300704956, -1.510977864265442, 0.05810048431158066, -1.1168855428695679, 0.9103170037269592, -0.550169825553894, -1.1013438701629639, -1.3721835613250732, 0.31358134746551514, -0.21042555570602417, 0.9128382802009583, -1.6016051769256592, -0.24974653124809265, 1.2710429430007935, 0.8817070722579956, -0.5356999039649963, 0.9265440106391907, 0.25685158371925354, 1.0181306600570679, 0.7386781573295593, -0.39894899725914, 0.5773172974586487, -0.04113663360476494, -1.320256233215332, 0.3259187936782837, 1.2915321588516235, 0.22969190776348114, 1.274787187576294, -0.4690888524055481, 0.1916220486164093, 0.39549392461776733, -0.684442937374115, -0.53776615858078, -0.30479520559310913, 0.7240350246429443, 0.022954586893320084, -1.1509089469909668, -0.19020184874534607, -0.2366836667060852, -0.2776508033275604, 0.22132988274097443, -1.464163064956665, -0.40606677532196045, -0.4170023202896118, -0.424586683511734, -1.4153286218643188, 0.11716590076684952, 1.2826205492019653, -0.8070477843284607, -0.3088156282901764, 0.346890926361084, 0.355557918548584, 0.568112850189209, 0.5728067755699158, -0.8535085916519165, -0.313128799200058, -0.39243534207344055, -0.2914375066757202, 0.20800712704658508, 1.1091556549072266, -0.022915903478860855, -0.9876508712768555, 0.6514925360679626, -0.3450114130973816, 0.18443363904953003, 2.0615482330322266, 0.02652362734079361, -0.7724434733390808, 0.3442292809486389, -0.6446077227592468, 1.6436845064163208, 1.7211625576019287, 1.292325496673584, -0.04524855315685272, -0.7546205520629883, 0.600374698638916, -0.2839244306087494, -0.34811609983444214, 0.8983412981033325, 0.3933351933956146, -0.29393649101257324, -1.4460186958312988, 0.5471788048744202, 1.2503893375396729, -0.6434788703918457, -0.7863115668296814, 0.01161509845405817, -0.9685826301574707, 1.3474531173706055, 0.58372962474823, 0.2706150710582733, 0.273845374584198, 1.5020023584365845, 0.7590696215629578, -0.5424851179122925, 0.4802945554256439, 0.5563621520996094, -0.24493271112442017, -2.1407110691070557, -0.8858527541160583, 0.2059946209192276, -0.35004526376724243, -1.5964337587356567, 1.4175999164581299, -1.1410425901412964, -1.029231309890747, 0.5842441916465759, 0.1385059356689453, 1.2833913564682007, 0.3592124879360199, 1.715608835220337, 2.077672004699707, 0.9016369581222534, 0.31985700130462646, 1.1123870611190796, -0.10046526044607162, -0.43383845686912537, 1.8672820329666138, -0.38612547516822815, 0.5971698760986328, 0.919601321220398, -0.4034416377544403, -1.031274676322937, -0.8907597661018372, -1.0222328901290894, -0.6407865881919861, 1.2082382440567017, 0.09594342112541199, -1.0768308639526367, 0.1731143742799759, 1.5369219779968262, 0.19865508377552032, -0.27817240357398987, 0.7148309946060181, 0.4331105947494507, -0.6914297938346863, -0.061470285058021545, -0.8540843725204468, 0.526462197303772, -0.08066104352474213, -0.24799902737140656, 0.26145413517951965, 0.5994328856468201, 1.3198156356811523, -0.06982666999101639, 0.12212740629911423, 1.107157588005066, -1.3585878610610962, 1.5130720138549805, -0.5821283459663391, 0.32311326265335083, -2.447573184967041, 1.478676676750183, -0.7476843595504761, 1.9594144821166992, -2.5147571563720703, 0.458039253950119, -0.4542093575000763, -0.4882422983646393, 0.23847658932209015, -0.5153620839118958, 0.11795192211866379, -0.14174453914165497, -0.8989810943603516, -0.07161400467157364, -0.7916466593742371, 0.6227806210517883, 1.1534370183944702, 1.4944005012512207, -1.085667610168457, -0.27520954608917236, -1.6841490268707275, -0.13050886988639832, -0.8952755331993103, 0.39193370938301086, -1.988182783126831, -0.24706171452999115, -2.071216106414795, -2.36833119392395, -1.357397437095642, -0.87067711353302, 1.0724836587905884, 0.24337993562221527, -0.902779757976532, 1.1979866027832031, -0.37602636218070984, -1.8266487121582031, 1.1818112134933472, -2.241697072982788 ]
https://github.com/huggingface/datasets/issues/5923
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility
I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem. Do we need to update dependencies?
### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0
112
32
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility ### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0 I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem. Do we need to update dependencies?
[ -1.1750595569610596, -0.872355043888092, -0.6893664002418518, 1.387781023979187, -0.05072424188256264, -1.2870230674743652, 0.0344497412443161, -1.0810635089874268, 1.4963840246200562, -0.7009853720664978, 0.2459050863981247, -1.6988246440887451, -0.17471174895763397, -0.39148375391960144, -0.624787449836731, -0.9523163437843323, -0.31673672795295715, -1.0204801559448242, 1.1082258224487305, 2.5502476692199707, 1.3889238834381104, -1.3212910890579224, 2.865058183670044, 0.6503803133964539, -0.2960011959075928, -1.0127919912338257, 0.5857762098312378, -0.015445595607161522, -1.2200380563735962, -0.5422953367233276, -0.9421238899230957, -0.027667637914419174, -0.5372564196586609, -0.3619457483291626, 0.1447877138853073, 0.5073856711387634, -0.25112754106521606, -0.2189115285873413, -0.7204452753067017, -0.7201055288314819, 0.4885539412498474, -0.36743488907814026, 0.9766443371772766, -0.3501471281051636, 1.6458054780960083, -0.5848569273948669, 0.4477384686470032, 0.7677279114723206, 1.2413440942764282, 0.10416748374700546, 0.09003046154975891, 0.23134081065654755, 0.2728288769721985, -0.05936335027217865, 0.6838019490242004, 1.17380690574646, 0.5983589887619019, 0.592458188533783, 0.6357535719871521, -2.180600166320801, 1.319359302520752, -0.8115485310554504, 0.1676984578371048, 1.3202015161514282, -0.797451376914978, 0.3412318229675293, -1.783279299736023, -0.09002761542797089, 0.5931578874588013, -2.369415521621704, 0.2301120012998581, -1.2479976415634155, -0.5402237176895142, 0.8650517463684082, 0.3148905634880066, -1.262274146080017, 0.16053403913974762, -0.5300297141075134, 1.1745017766952515, 0.5671987533569336, 1.1653072834014893, -1.6533598899841309, -0.03844662755727768, -0.07451348006725311, 0.07058517634868622, -1.3087605237960815, -1.7036614418029785, 0.5133981108665466, 0.5511937737464905, 0.7548724412918091, -0.009126023389399052, 0.9807395339012146, -1.0776124000549316, 0.804884672164917, -0.8978801369667053, -1.563247799873352, -1.3623101711273193, -2.434401273727417, -2.3020005226135254, 0.8286305069923401, -0.6267974376678467, -0.5439102649688721, 2.0369837284088135, -1.001809000968933, -1.78556227684021, 1.0185762643814087, 0.36923691630363464, 0.14912529289722443, 2.4299304485321045, 0.266590416431427, -0.7981706261634827, 0.5071750283241272, -0.6248602867126465, 0.884880542755127, -0.38206449151039124, 1.2627617120742798, 0.47867512702941895, -0.9660075306892395, 1.6611889600753784, -0.4755641520023346, 0.6529018878936768, -0.6302794218063354, -0.44428086280822754, -0.8238851428031921, 0.21528643369674683, 1.7881159782409668, -0.40472614765167236, 1.4856375455856323, -0.2838832139968872, -1.5602318048477173, -1.5107381343841553, 0.7411220669746399, 0.47281351685523987, -0.9354370832443237, 0.032792434096336365, -0.5018276572227478, 0.1914076805114746, 0.010214352048933506, 1.0956060886383057, 1.1986933946609497, 0.7031829953193665, -0.27640262246131897, -0.8697603344917297, 0.3292030990123749, -0.15312325954437256, -0.5657059550285339, -1.8452813625335693, -0.2935332655906677, 0.25773340463638306, 0.6425368189811707, -1.2464022636413574, 1.8602750301361084, 0.8772105574607849, 2.0605781078338623, 0.9275188446044922, -0.4342765808105469, 1.4265034198760986, -0.007365197874605656, 1.8316878080368042, -0.4775323271751404, 0.5467652678489685, -0.32537248730659485, -1.1295372247695923, 0.8936623930931091, -0.40654727816581726, -1.885276198387146, -0.8248898983001709, -0.7019342184066772, -0.16088788211345673, -0.7414146065711975, 0.8817585110664368, -0.3172159194946289, -1.3997986316680908, 0.05380202829837799, -0.7155614495277405, 0.23751623928546906, -1.3644402027130127, 0.18657943606376648, 0.7235620021820068, -0.684629499912262, -0.0956794023513794, -0.3710242211818695, -1.3173291683197021, -0.5374034643173218, 0.26487836241722107, 2.0257315635681152, -0.4860055446624756, 0.9360833764076233, 0.9601439237594604, -0.8172714710235596, 0.17029264569282532, 0.2627914249897003, -0.36434823274612427, 0.7476751804351807, -1.137665867805481, -0.3975706696510315, 1.1002870798110962, -0.2665652632713318, -0.7837087512016296, 1.4737935066223145, 0.883584201335907, -1.1649166345596313, -0.3519567549228668, -0.2866075038909912, -0.8689969182014465, 0.0018865149468183517, -1.4665145874023438, -0.1767105758190155, 0.36809486150741577, -1.4648253917694092, -0.2821243107318878, -0.19211672246456146, 1.3677730560302734, -0.27610549330711365, 1.5096189975738525, -0.34566980600357056, -0.11258845776319504, -0.2852354943752289, -0.5506337285041809, 0.22893956303596497, -0.19413936138153076, -0.6012383103370667, 0.1929047703742981, -0.7853508591651917, 0.2133067548274994, 1.5054562091827393, 0.4094403386116028, 0.034521497786045074, 0.4495481550693512, 1.0428012609481812, 0.4293633699417114, -0.0656907930970192, -0.8010658621788025, -1.4483245611190796, 1.976365566253662, -1.4465253353118896, 1.8555413484573364, 0.8283754587173462, -0.09049838781356812, -1.8691377639770508, -1.8606023788452148, 1.2018147706985474, 1.1291627883911133, 2.348252296447754, 0.5082865953445435, 0.5247606635093689, -0.6829772591590881, -0.8381012082099915, 0.26235297322273254, -0.9547684788703918, -0.6542972922325134, 0.21043263375759125, 2.292192220687866, 1.79254150390625, -0.6069274544715881, -0.20424149930477142, -0.7960952520370483, 1.2437858581542969, -0.26373592019081116, 0.2609119713306427, 2.0624544620513916, -0.2987498939037323, -0.914650022983551, 1.3131695985794067, -2.4343342781066895, 0.32376334071159363, 2.076084852218628, 0.2502734065055847, 0.18252089619636536, -1.4365206956863403, -0.6898121237754822, -0.3319007456302643, -0.45286139845848083, -1.3116768598556519, 0.6102344989776611, -0.25252217054367065, -0.9168146252632141, -1.4643317461013794, 0.052232302725315094, -1.1696370840072632, -1.8029705286026, 0.37162068486213684, 1.9642869234085083, 2.12312388420105, -0.853437066078186, 1.3174641132354736, -0.2682470977306366, -0.07679073512554169, 1.3306000232696533, 1.3790863752365112, 3.0434203147888184, 1.8583388328552246, -1.254201889038086, 0.7690378427505493, -0.269942969083786, -0.4986380934715271, 1.1846462488174438, -1.1091653108596802, 0.9639306664466858, -0.12565143406391144, -1.2862064838409424, -1.1998530626296997, 1.0467619895935059, 0.5039051175117493, 0.020457662642002106, -0.4256038963794708, 1.3639154434204102, 0.18172435462474823, 1.4288251399993896, 0.5899699330329895, -0.35243454575538635, 0.5262327194213867, -0.30919957160949707, -0.5519760847091675, 1.680882453918457, 0.13587528467178345, -1.5419450998306274, -2.3145077228546143, -0.29153597354888916, -0.943009614944458, -0.013730967417359352, -0.6040357947349548, -1.0041807889938354, 1.577446460723877, 0.46126097440719604, -1.1257331371307373, -0.3058643639087677, -0.2854665219783783, -0.4474412202835083, 2.654167413711548, -1.2502591609954834, -0.08571840077638626, -0.9060359001159668, -0.3969232738018036, 1.6193519830703735, -1.2771997451782227, -0.2546002268791199, -1.0096927881240845, -0.6564884781837463, -1.3214157819747925, -0.45028945803642273, 0.012491383589804173, -1.0136982202529907, 0.6625512838363647, 0.22377465665340424, -1.0948079824447632, -0.28267866373062134, -0.9101532101631165, 1.0748692750930786, -0.050997938960790634, 0.28200680017471313, 1.8737537860870361, 0.33575719594955444, -0.4782799482345581, 0.7215929627418518, 1.2249977588653564, 0.5305382609367371, -0.6540080308914185, -0.030324116349220276, -0.758411169052124, 0.42496323585510254, -1.4203710556030273, 0.07236770540475845, -3.0275115966796875, 0.788528561592102, -0.2614382207393646, -0.2081330269575119, -0.19681522250175476, -1.2633126974105835, 1.098667860031128, 2.6260335445404053, -1.1613798141479492, 0.4545367956161499, 0.49701303243637085, 1.1645745038986206, -1.5782687664031982, 0.3425605893135071, -0.4719339907169342, 2.0447916984558105, 0.1288508027791977, 1.1684932708740234, -0.520348310470581, -2.217074155807495, 0.6713230013847351, -1.1564712524414062, -0.9917401075363159, 0.8605371117591858, -0.8868844509124756, 0.3218176066875458, -1.4151132106781006, -0.04366910085082054, -0.9328762292861938, -1.2251883745193481, 0.7403448820114136, 0.03954731673002243, 0.34061577916145325, -0.534202516078949, 0.38177719712257385, -2.112764358520508, -1.383205771446228, -0.28997084498405457, -0.9325435757637024, 0.6082605123519897, -0.39408016204833984, 0.5542063117027283, -0.02017294056713581, 0.19899295270442963, 0.34565022587776184, 1.4992488622665405, 3.4082047939300537, 0.15005989372730255, 0.2277795374393463, -0.0894959345459938, -1.1300114393234253, 1.4266924858093262, 0.8700501322746277, -0.17812931537628174, -0.5399506688117981, -0.9834437966346741, 1.3862895965576172, 1.9928640127182007, 1.1689419746398926, 0.20890259742736816, -0.9086987376213074, -0.8259507417678833, -0.004358928184956312, 0.13613641262054443, 0.4977065324783325, 1.021388292312622, -0.09253449738025665, 0.020298145711421967, 1.445764422416687, 1.1780815124511719, -0.24402619898319244, 0.41248172521591187, -1.0286256074905396, -0.37042075395584106, 0.3855906128883362, 0.15589557588100433, 0.07421298325061798, 0.48081472516059875, -1.0113595724105835, -0.32701078057289124, -0.20233014225959778, -0.8335141539573669, -0.8307355642318726, -0.35313206911087036, -0.3841683566570282, 1.6746679544448853, 0.08802872151136398, -0.5011151432991028, 0.1966741532087326, -0.6290798187255859, -0.06373517960309982, -1.2007180452346802, 0.10867433995008469, -0.09615752846002579, -0.10093043744564056, -0.18137136101722717, 1.6086639165878296, -0.9546861052513123, -2.11260986328125, 0.1667999029159546, 0.3977755308151245, -0.3243917226791382, 0.18789348006248474, 1.7439159154891968, 0.47766122221946716, 1.3686708211898804, 1.289391040802002, 0.9794402718544006, -0.5748443603515625, -1.2122337818145752, 0.816046953201294, 0.9575970768928528, -1.2384103536605835, 1.0391865968704224, -0.21240703761577606, -0.5981063842773438, 0.6606868505477905, 1.3850722312927246, 0.42033448815345764, -1.9725229740142822, 0.9853309988975525, -0.9164091944694519, 0.7300408482551575, 0.6817903518676758, 0.8847261071205139, 0.24672625958919525, 0.8826847672462463, -1.2819825410842896, -1.2318660020828247, -0.6920613050460815, -0.6250723004341125, 1.8119335174560547, -0.29751744866371155, 0.5489084124565125, -0.1777523159980774, -1.2014358043670654, -0.1557403951883316, 0.785269558429718, 0.3503505289554596, -0.366720587015152, 0.9489570260047913, -0.6536756753921509, -0.9841727018356323, -1.263553500175476, -0.38657012581825256, -1.042438268661499, -0.8334935307502747, 0.9918880462646484, 0.7772841453552246, 0.44985997676849365, 1.8605623245239258, 0.565755307674408, 0.38076284527778625, -2.563293695449829, 0.8701435327529907, 0.30132603645324707, -0.018275197595357895, 0.8565800189971924, 0.28950780630111694, 1.1414563655853271, -0.06345632672309875, 0.548891007900238, -2.2497379779815674, 2.190305471420288, -0.2570265233516693, 0.5736520886421204, 0.04028569906949997, -0.1742568165063858, 1.1104941368103027, 0.5955111384391785, 0.5824854969978333, -1.1375948190689087, 0.6962860226631165, -0.6074776649475098, 1.074785828590393, 0.9162005186080933, -0.8777722716331482, 0.14503349363803864, 1.3901619911193848, 0.4531029760837555, -0.4045161008834839, -1.0340676307678223, -0.8084247708320618, 1.0525258779525757, 1.7132664918899536, -0.08970686048269272, -0.06575773656368256, 0.8379601836204529, 0.6830393075942993, -1.2147167921066284, 0.014575286768376827, -0.7018356919288635, -0.7027712464332581, 1.7754933834075928, 1.9855526685714722, -0.08683722466230392, -0.23946650326251984, -0.7319841980934143, -1.3187650442123413, 0.787314236164093, -0.15460649132728577, 0.0011848853901028633, 0.7196998596191406, -0.7227076292037964, 1.1054364442825317, 0.5349274277687073, 1.0444693565368652, -0.0235745832324028, 0.32693272829055786, 0.2541464567184448, -0.3864043951034546, -1.1257721185684204, -0.31313633918762207, -1.112126350402832, -2.6029064655303955, 0.29059717059135437, -0.25644463300704956, -1.510977864265442, 0.05810048431158066, -1.1168855428695679, 0.9103170037269592, -0.550169825553894, -1.1013438701629639, -1.3721835613250732, 0.31358134746551514, -0.21042555570602417, 0.9128382802009583, -1.6016051769256592, -0.24974653124809265, 1.2710429430007935, 0.8817070722579956, -0.5356999039649963, 0.9265440106391907, 0.25685158371925354, 1.0181306600570679, 0.7386781573295593, -0.39894899725914, 0.5773172974586487, -0.04113663360476494, -1.320256233215332, 0.3259187936782837, 1.2915321588516235, 0.22969190776348114, 1.274787187576294, -0.4690888524055481, 0.1916220486164093, 0.39549392461776733, -0.684442937374115, -0.53776615858078, -0.30479520559310913, 0.7240350246429443, 0.022954586893320084, -1.1509089469909668, -0.19020184874534607, -0.2366836667060852, -0.2776508033275604, 0.22132988274097443, -1.464163064956665, -0.40606677532196045, -0.4170023202896118, -0.424586683511734, -1.4153286218643188, 0.11716590076684952, 1.2826205492019653, -0.8070477843284607, -0.3088156282901764, 0.346890926361084, 0.355557918548584, 0.568112850189209, 0.5728067755699158, -0.8535085916519165, -0.313128799200058, -0.39243534207344055, -0.2914375066757202, 0.20800712704658508, 1.1091556549072266, -0.022915903478860855, -0.9876508712768555, 0.6514925360679626, -0.3450114130973816, 0.18443363904953003, 2.0615482330322266, 0.02652362734079361, -0.7724434733390808, 0.3442292809486389, -0.6446077227592468, 1.6436845064163208, 1.7211625576019287, 1.292325496673584, -0.04524855315685272, -0.7546205520629883, 0.600374698638916, -0.2839244306087494, -0.34811609983444214, 0.8983412981033325, 0.3933351933956146, -0.29393649101257324, -1.4460186958312988, 0.5471788048744202, 1.2503893375396729, -0.6434788703918457, -0.7863115668296814, 0.01161509845405817, -0.9685826301574707, 1.3474531173706055, 0.58372962474823, 0.2706150710582733, 0.273845374584198, 1.5020023584365845, 0.7590696215629578, -0.5424851179122925, 0.4802945554256439, 0.5563621520996094, -0.24493271112442017, -2.1407110691070557, -0.8858527541160583, 0.2059946209192276, -0.35004526376724243, -1.5964337587356567, 1.4175999164581299, -1.1410425901412964, -1.029231309890747, 0.5842441916465759, 0.1385059356689453, 1.2833913564682007, 0.3592124879360199, 1.715608835220337, 2.077672004699707, 0.9016369581222534, 0.31985700130462646, 1.1123870611190796, -0.10046526044607162, -0.43383845686912537, 1.8672820329666138, -0.38612547516822815, 0.5971698760986328, 0.919601321220398, -0.4034416377544403, -1.031274676322937, -0.8907597661018372, -1.0222328901290894, -0.6407865881919861, 1.2082382440567017, 0.09594342112541199, -1.0768308639526367, 0.1731143742799759, 1.5369219779968262, 0.19865508377552032, -0.27817240357398987, 0.7148309946060181, 0.4331105947494507, -0.6914297938346863, -0.061470285058021545, -0.8540843725204468, 0.526462197303772, -0.08066104352474213, -0.24799902737140656, 0.26145413517951965, 0.5994328856468201, 1.3198156356811523, -0.06982666999101639, 0.12212740629911423, 1.107157588005066, -1.3585878610610962, 1.5130720138549805, -0.5821283459663391, 0.32311326265335083, -2.447573184967041, 1.478676676750183, -0.7476843595504761, 1.9594144821166992, -2.5147571563720703, 0.458039253950119, -0.4542093575000763, -0.4882422983646393, 0.23847658932209015, -0.5153620839118958, 0.11795192211866379, -0.14174453914165497, -0.8989810943603516, -0.07161400467157364, -0.7916466593742371, 0.6227806210517883, 1.1534370183944702, 1.4944005012512207, -1.085667610168457, -0.27520954608917236, -1.6841490268707275, -0.13050886988639832, -0.8952755331993103, 0.39193370938301086, -1.988182783126831, -0.24706171452999115, -2.071216106414795, -2.36833119392395, -1.357397437095642, -0.87067711353302, 1.0724836587905884, 0.24337993562221527, -0.902779757976532, 1.1979866027832031, -0.37602636218070984, -1.8266487121582031, 1.1818112134933472, -2.241697072982788 ]
https://github.com/huggingface/datasets/issues/5923
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility
Please note that our CI properly passes all tests with `pyarrow-12.0.0`, for Python 3.7 and Python 3.10, for Ubuntu and Windows: see for example https://github.com/huggingface/datasets/actions/runs/5157324334/jobs/9289582291
### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0
112
25
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility ### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0 Please note that our CI properly passes all tests with `pyarrow-12.0.0`, for Python 3.7 and Python 3.10, for Ubuntu and Windows: see for example https://github.com/huggingface/datasets/actions/runs/5157324334/jobs/9289582291
[ -1.1750595569610596, -0.872355043888092, -0.6893664002418518, 1.387781023979187, -0.05072424188256264, -1.2870230674743652, 0.0344497412443161, -1.0810635089874268, 1.4963840246200562, -0.7009853720664978, 0.2459050863981247, -1.6988246440887451, -0.17471174895763397, -0.39148375391960144, -0.624787449836731, -0.9523163437843323, -0.31673672795295715, -1.0204801559448242, 1.1082258224487305, 2.5502476692199707, 1.3889238834381104, -1.3212910890579224, 2.865058183670044, 0.6503803133964539, -0.2960011959075928, -1.0127919912338257, 0.5857762098312378, -0.015445595607161522, -1.2200380563735962, -0.5422953367233276, -0.9421238899230957, -0.027667637914419174, -0.5372564196586609, -0.3619457483291626, 0.1447877138853073, 0.5073856711387634, -0.25112754106521606, -0.2189115285873413, -0.7204452753067017, -0.7201055288314819, 0.4885539412498474, -0.36743488907814026, 0.9766443371772766, -0.3501471281051636, 1.6458054780960083, -0.5848569273948669, 0.4477384686470032, 0.7677279114723206, 1.2413440942764282, 0.10416748374700546, 0.09003046154975891, 0.23134081065654755, 0.2728288769721985, -0.05936335027217865, 0.6838019490242004, 1.17380690574646, 0.5983589887619019, 0.592458188533783, 0.6357535719871521, -2.180600166320801, 1.319359302520752, -0.8115485310554504, 0.1676984578371048, 1.3202015161514282, -0.797451376914978, 0.3412318229675293, -1.783279299736023, -0.09002761542797089, 0.5931578874588013, -2.369415521621704, 0.2301120012998581, -1.2479976415634155, -0.5402237176895142, 0.8650517463684082, 0.3148905634880066, -1.262274146080017, 0.16053403913974762, -0.5300297141075134, 1.1745017766952515, 0.5671987533569336, 1.1653072834014893, -1.6533598899841309, -0.03844662755727768, -0.07451348006725311, 0.07058517634868622, -1.3087605237960815, -1.7036614418029785, 0.5133981108665466, 0.5511937737464905, 0.7548724412918091, -0.009126023389399052, 0.9807395339012146, -1.0776124000549316, 0.804884672164917, -0.8978801369667053, -1.563247799873352, -1.3623101711273193, -2.434401273727417, -2.3020005226135254, 0.8286305069923401, -0.6267974376678467, -0.5439102649688721, 2.0369837284088135, -1.001809000968933, -1.78556227684021, 1.0185762643814087, 0.36923691630363464, 0.14912529289722443, 2.4299304485321045, 0.266590416431427, -0.7981706261634827, 0.5071750283241272, -0.6248602867126465, 0.884880542755127, -0.38206449151039124, 1.2627617120742798, 0.47867512702941895, -0.9660075306892395, 1.6611889600753784, -0.4755641520023346, 0.6529018878936768, -0.6302794218063354, -0.44428086280822754, -0.8238851428031921, 0.21528643369674683, 1.7881159782409668, -0.40472614765167236, 1.4856375455856323, -0.2838832139968872, -1.5602318048477173, -1.5107381343841553, 0.7411220669746399, 0.47281351685523987, -0.9354370832443237, 0.032792434096336365, -0.5018276572227478, 0.1914076805114746, 0.010214352048933506, 1.0956060886383057, 1.1986933946609497, 0.7031829953193665, -0.27640262246131897, -0.8697603344917297, 0.3292030990123749, -0.15312325954437256, -0.5657059550285339, -1.8452813625335693, -0.2935332655906677, 0.25773340463638306, 0.6425368189811707, -1.2464022636413574, 1.8602750301361084, 0.8772105574607849, 2.0605781078338623, 0.9275188446044922, -0.4342765808105469, 1.4265034198760986, -0.007365197874605656, 1.8316878080368042, -0.4775323271751404, 0.5467652678489685, -0.32537248730659485, -1.1295372247695923, 0.8936623930931091, -0.40654727816581726, -1.885276198387146, -0.8248898983001709, -0.7019342184066772, -0.16088788211345673, -0.7414146065711975, 0.8817585110664368, -0.3172159194946289, -1.3997986316680908, 0.05380202829837799, -0.7155614495277405, 0.23751623928546906, -1.3644402027130127, 0.18657943606376648, 0.7235620021820068, -0.684629499912262, -0.0956794023513794, -0.3710242211818695, -1.3173291683197021, -0.5374034643173218, 0.26487836241722107, 2.0257315635681152, -0.4860055446624756, 0.9360833764076233, 0.9601439237594604, -0.8172714710235596, 0.17029264569282532, 0.2627914249897003, -0.36434823274612427, 0.7476751804351807, -1.137665867805481, -0.3975706696510315, 1.1002870798110962, -0.2665652632713318, -0.7837087512016296, 1.4737935066223145, 0.883584201335907, -1.1649166345596313, -0.3519567549228668, -0.2866075038909912, -0.8689969182014465, 0.0018865149468183517, -1.4665145874023438, -0.1767105758190155, 0.36809486150741577, -1.4648253917694092, -0.2821243107318878, -0.19211672246456146, 1.3677730560302734, -0.27610549330711365, 1.5096189975738525, -0.34566980600357056, -0.11258845776319504, -0.2852354943752289, -0.5506337285041809, 0.22893956303596497, -0.19413936138153076, -0.6012383103370667, 0.1929047703742981, -0.7853508591651917, 0.2133067548274994, 1.5054562091827393, 0.4094403386116028, 0.034521497786045074, 0.4495481550693512, 1.0428012609481812, 0.4293633699417114, -0.0656907930970192, -0.8010658621788025, -1.4483245611190796, 1.976365566253662, -1.4465253353118896, 1.8555413484573364, 0.8283754587173462, -0.09049838781356812, -1.8691377639770508, -1.8606023788452148, 1.2018147706985474, 1.1291627883911133, 2.348252296447754, 0.5082865953445435, 0.5247606635093689, -0.6829772591590881, -0.8381012082099915, 0.26235297322273254, -0.9547684788703918, -0.6542972922325134, 0.21043263375759125, 2.292192220687866, 1.79254150390625, -0.6069274544715881, -0.20424149930477142, -0.7960952520370483, 1.2437858581542969, -0.26373592019081116, 0.2609119713306427, 2.0624544620513916, -0.2987498939037323, -0.914650022983551, 1.3131695985794067, -2.4343342781066895, 0.32376334071159363, 2.076084852218628, 0.2502734065055847, 0.18252089619636536, -1.4365206956863403, -0.6898121237754822, -0.3319007456302643, -0.45286139845848083, -1.3116768598556519, 0.6102344989776611, -0.25252217054367065, -0.9168146252632141, -1.4643317461013794, 0.052232302725315094, -1.1696370840072632, -1.8029705286026, 0.37162068486213684, 1.9642869234085083, 2.12312388420105, -0.853437066078186, 1.3174641132354736, -0.2682470977306366, -0.07679073512554169, 1.3306000232696533, 1.3790863752365112, 3.0434203147888184, 1.8583388328552246, -1.254201889038086, 0.7690378427505493, -0.269942969083786, -0.4986380934715271, 1.1846462488174438, -1.1091653108596802, 0.9639306664466858, -0.12565143406391144, -1.2862064838409424, -1.1998530626296997, 1.0467619895935059, 0.5039051175117493, 0.020457662642002106, -0.4256038963794708, 1.3639154434204102, 0.18172435462474823, 1.4288251399993896, 0.5899699330329895, -0.35243454575538635, 0.5262327194213867, -0.30919957160949707, -0.5519760847091675, 1.680882453918457, 0.13587528467178345, -1.5419450998306274, -2.3145077228546143, -0.29153597354888916, -0.943009614944458, -0.013730967417359352, -0.6040357947349548, -1.0041807889938354, 1.577446460723877, 0.46126097440719604, -1.1257331371307373, -0.3058643639087677, -0.2854665219783783, -0.4474412202835083, 2.654167413711548, -1.2502591609954834, -0.08571840077638626, -0.9060359001159668, -0.3969232738018036, 1.6193519830703735, -1.2771997451782227, -0.2546002268791199, -1.0096927881240845, -0.6564884781837463, -1.3214157819747925, -0.45028945803642273, 0.012491383589804173, -1.0136982202529907, 0.6625512838363647, 0.22377465665340424, -1.0948079824447632, -0.28267866373062134, -0.9101532101631165, 1.0748692750930786, -0.050997938960790634, 0.28200680017471313, 1.8737537860870361, 0.33575719594955444, -0.4782799482345581, 0.7215929627418518, 1.2249977588653564, 0.5305382609367371, -0.6540080308914185, -0.030324116349220276, -0.758411169052124, 0.42496323585510254, -1.4203710556030273, 0.07236770540475845, -3.0275115966796875, 0.788528561592102, -0.2614382207393646, -0.2081330269575119, -0.19681522250175476, -1.2633126974105835, 1.098667860031128, 2.6260335445404053, -1.1613798141479492, 0.4545367956161499, 0.49701303243637085, 1.1645745038986206, -1.5782687664031982, 0.3425605893135071, -0.4719339907169342, 2.0447916984558105, 0.1288508027791977, 1.1684932708740234, -0.520348310470581, -2.217074155807495, 0.6713230013847351, -1.1564712524414062, -0.9917401075363159, 0.8605371117591858, -0.8868844509124756, 0.3218176066875458, -1.4151132106781006, -0.04366910085082054, -0.9328762292861938, -1.2251883745193481, 0.7403448820114136, 0.03954731673002243, 0.34061577916145325, -0.534202516078949, 0.38177719712257385, -2.112764358520508, -1.383205771446228, -0.28997084498405457, -0.9325435757637024, 0.6082605123519897, -0.39408016204833984, 0.5542063117027283, -0.02017294056713581, 0.19899295270442963, 0.34565022587776184, 1.4992488622665405, 3.4082047939300537, 0.15005989372730255, 0.2277795374393463, -0.0894959345459938, -1.1300114393234253, 1.4266924858093262, 0.8700501322746277, -0.17812931537628174, -0.5399506688117981, -0.9834437966346741, 1.3862895965576172, 1.9928640127182007, 1.1689419746398926, 0.20890259742736816, -0.9086987376213074, -0.8259507417678833, -0.004358928184956312, 0.13613641262054443, 0.4977065324783325, 1.021388292312622, -0.09253449738025665, 0.020298145711421967, 1.445764422416687, 1.1780815124511719, -0.24402619898319244, 0.41248172521591187, -1.0286256074905396, -0.37042075395584106, 0.3855906128883362, 0.15589557588100433, 0.07421298325061798, 0.48081472516059875, -1.0113595724105835, -0.32701078057289124, -0.20233014225959778, -0.8335141539573669, -0.8307355642318726, -0.35313206911087036, -0.3841683566570282, 1.6746679544448853, 0.08802872151136398, -0.5011151432991028, 0.1966741532087326, -0.6290798187255859, -0.06373517960309982, -1.2007180452346802, 0.10867433995008469, -0.09615752846002579, -0.10093043744564056, -0.18137136101722717, 1.6086639165878296, -0.9546861052513123, -2.11260986328125, 0.1667999029159546, 0.3977755308151245, -0.3243917226791382, 0.18789348006248474, 1.7439159154891968, 0.47766122221946716, 1.3686708211898804, 1.289391040802002, 0.9794402718544006, -0.5748443603515625, -1.2122337818145752, 0.816046953201294, 0.9575970768928528, -1.2384103536605835, 1.0391865968704224, -0.21240703761577606, -0.5981063842773438, 0.6606868505477905, 1.3850722312927246, 0.42033448815345764, -1.9725229740142822, 0.9853309988975525, -0.9164091944694519, 0.7300408482551575, 0.6817903518676758, 0.8847261071205139, 0.24672625958919525, 0.8826847672462463, -1.2819825410842896, -1.2318660020828247, -0.6920613050460815, -0.6250723004341125, 1.8119335174560547, -0.29751744866371155, 0.5489084124565125, -0.1777523159980774, -1.2014358043670654, -0.1557403951883316, 0.785269558429718, 0.3503505289554596, -0.366720587015152, 0.9489570260047913, -0.6536756753921509, -0.9841727018356323, -1.263553500175476, -0.38657012581825256, -1.042438268661499, -0.8334935307502747, 0.9918880462646484, 0.7772841453552246, 0.44985997676849365, 1.8605623245239258, 0.565755307674408, 0.38076284527778625, -2.563293695449829, 0.8701435327529907, 0.30132603645324707, -0.018275197595357895, 0.8565800189971924, 0.28950780630111694, 1.1414563655853271, -0.06345632672309875, 0.548891007900238, -2.2497379779815674, 2.190305471420288, -0.2570265233516693, 0.5736520886421204, 0.04028569906949997, -0.1742568165063858, 1.1104941368103027, 0.5955111384391785, 0.5824854969978333, -1.1375948190689087, 0.6962860226631165, -0.6074776649475098, 1.074785828590393, 0.9162005186080933, -0.8777722716331482, 0.14503349363803864, 1.3901619911193848, 0.4531029760837555, -0.4045161008834839, -1.0340676307678223, -0.8084247708320618, 1.0525258779525757, 1.7132664918899536, -0.08970686048269272, -0.06575773656368256, 0.8379601836204529, 0.6830393075942993, -1.2147167921066284, 0.014575286768376827, -0.7018356919288635, -0.7027712464332581, 1.7754933834075928, 1.9855526685714722, -0.08683722466230392, -0.23946650326251984, -0.7319841980934143, -1.3187650442123413, 0.787314236164093, -0.15460649132728577, 0.0011848853901028633, 0.7196998596191406, -0.7227076292037964, 1.1054364442825317, 0.5349274277687073, 1.0444693565368652, -0.0235745832324028, 0.32693272829055786, 0.2541464567184448, -0.3864043951034546, -1.1257721185684204, -0.31313633918762207, -1.112126350402832, -2.6029064655303955, 0.29059717059135437, -0.25644463300704956, -1.510977864265442, 0.05810048431158066, -1.1168855428695679, 0.9103170037269592, -0.550169825553894, -1.1013438701629639, -1.3721835613250732, 0.31358134746551514, -0.21042555570602417, 0.9128382802009583, -1.6016051769256592, -0.24974653124809265, 1.2710429430007935, 0.8817070722579956, -0.5356999039649963, 0.9265440106391907, 0.25685158371925354, 1.0181306600570679, 0.7386781573295593, -0.39894899725914, 0.5773172974586487, -0.04113663360476494, -1.320256233215332, 0.3259187936782837, 1.2915321588516235, 0.22969190776348114, 1.274787187576294, -0.4690888524055481, 0.1916220486164093, 0.39549392461776733, -0.684442937374115, -0.53776615858078, -0.30479520559310913, 0.7240350246429443, 0.022954586893320084, -1.1509089469909668, -0.19020184874534607, -0.2366836667060852, -0.2776508033275604, 0.22132988274097443, -1.464163064956665, -0.40606677532196045, -0.4170023202896118, -0.424586683511734, -1.4153286218643188, 0.11716590076684952, 1.2826205492019653, -0.8070477843284607, -0.3088156282901764, 0.346890926361084, 0.355557918548584, 0.568112850189209, 0.5728067755699158, -0.8535085916519165, -0.313128799200058, -0.39243534207344055, -0.2914375066757202, 0.20800712704658508, 1.1091556549072266, -0.022915903478860855, -0.9876508712768555, 0.6514925360679626, -0.3450114130973816, 0.18443363904953003, 2.0615482330322266, 0.02652362734079361, -0.7724434733390808, 0.3442292809486389, -0.6446077227592468, 1.6436845064163208, 1.7211625576019287, 1.292325496673584, -0.04524855315685272, -0.7546205520629883, 0.600374698638916, -0.2839244306087494, -0.34811609983444214, 0.8983412981033325, 0.3933351933956146, -0.29393649101257324, -1.4460186958312988, 0.5471788048744202, 1.2503893375396729, -0.6434788703918457, -0.7863115668296814, 0.01161509845405817, -0.9685826301574707, 1.3474531173706055, 0.58372962474823, 0.2706150710582733, 0.273845374584198, 1.5020023584365845, 0.7590696215629578, -0.5424851179122925, 0.4802945554256439, 0.5563621520996094, -0.24493271112442017, -2.1407110691070557, -0.8858527541160583, 0.2059946209192276, -0.35004526376724243, -1.5964337587356567, 1.4175999164581299, -1.1410425901412964, -1.029231309890747, 0.5842441916465759, 0.1385059356689453, 1.2833913564682007, 0.3592124879360199, 1.715608835220337, 2.077672004699707, 0.9016369581222534, 0.31985700130462646, 1.1123870611190796, -0.10046526044607162, -0.43383845686912537, 1.8672820329666138, -0.38612547516822815, 0.5971698760986328, 0.919601321220398, -0.4034416377544403, -1.031274676322937, -0.8907597661018372, -1.0222328901290894, -0.6407865881919861, 1.2082382440567017, 0.09594342112541199, -1.0768308639526367, 0.1731143742799759, 1.5369219779968262, 0.19865508377552032, -0.27817240357398987, 0.7148309946060181, 0.4331105947494507, -0.6914297938346863, -0.061470285058021545, -0.8540843725204468, 0.526462197303772, -0.08066104352474213, -0.24799902737140656, 0.26145413517951965, 0.5994328856468201, 1.3198156356811523, -0.06982666999101639, 0.12212740629911423, 1.107157588005066, -1.3585878610610962, 1.5130720138549805, -0.5821283459663391, 0.32311326265335083, -2.447573184967041, 1.478676676750183, -0.7476843595504761, 1.9594144821166992, -2.5147571563720703, 0.458039253950119, -0.4542093575000763, -0.4882422983646393, 0.23847658932209015, -0.5153620839118958, 0.11795192211866379, -0.14174453914165497, -0.8989810943603516, -0.07161400467157364, -0.7916466593742371, 0.6227806210517883, 1.1534370183944702, 1.4944005012512207, -1.085667610168457, -0.27520954608917236, -1.6841490268707275, -0.13050886988639832, -0.8952755331993103, 0.39193370938301086, -1.988182783126831, -0.24706171452999115, -2.071216106414795, -2.36833119392395, -1.357397437095642, -0.87067711353302, 1.0724836587905884, 0.24337993562221527, -0.902779757976532, 1.1979866027832031, -0.37602636218070984, -1.8266487121582031, 1.1818112134933472, -2.241697072982788 ]
https://github.com/huggingface/datasets/issues/5923
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility
For conda with python3.8.16 this solved my problem! thanks! > I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem. > > Do we need to update dependencies? I can work on that if no one else is working on it.
### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0
112
57
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility ### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0 For conda with python3.8.16 this solved my problem! thanks! > I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem. > > Do we need to update dependencies? I can work on that if no one else is working on it.
[ -1.1750595569610596, -0.872355043888092, -0.6893664002418518, 1.387781023979187, -0.05072424188256264, -1.2870230674743652, 0.0344497412443161, -1.0810635089874268, 1.4963840246200562, -0.7009853720664978, 0.2459050863981247, -1.6988246440887451, -0.17471174895763397, -0.39148375391960144, -0.624787449836731, -0.9523163437843323, -0.31673672795295715, -1.0204801559448242, 1.1082258224487305, 2.5502476692199707, 1.3889238834381104, -1.3212910890579224, 2.865058183670044, 0.6503803133964539, -0.2960011959075928, -1.0127919912338257, 0.5857762098312378, -0.015445595607161522, -1.2200380563735962, -0.5422953367233276, -0.9421238899230957, -0.027667637914419174, -0.5372564196586609, -0.3619457483291626, 0.1447877138853073, 0.5073856711387634, -0.25112754106521606, -0.2189115285873413, -0.7204452753067017, -0.7201055288314819, 0.4885539412498474, -0.36743488907814026, 0.9766443371772766, -0.3501471281051636, 1.6458054780960083, -0.5848569273948669, 0.4477384686470032, 0.7677279114723206, 1.2413440942764282, 0.10416748374700546, 0.09003046154975891, 0.23134081065654755, 0.2728288769721985, -0.05936335027217865, 0.6838019490242004, 1.17380690574646, 0.5983589887619019, 0.592458188533783, 0.6357535719871521, -2.180600166320801, 1.319359302520752, -0.8115485310554504, 0.1676984578371048, 1.3202015161514282, -0.797451376914978, 0.3412318229675293, -1.783279299736023, -0.09002761542797089, 0.5931578874588013, -2.369415521621704, 0.2301120012998581, -1.2479976415634155, -0.5402237176895142, 0.8650517463684082, 0.3148905634880066, -1.262274146080017, 0.16053403913974762, -0.5300297141075134, 1.1745017766952515, 0.5671987533569336, 1.1653072834014893, -1.6533598899841309, -0.03844662755727768, -0.07451348006725311, 0.07058517634868622, -1.3087605237960815, -1.7036614418029785, 0.5133981108665466, 0.5511937737464905, 0.7548724412918091, -0.009126023389399052, 0.9807395339012146, -1.0776124000549316, 0.804884672164917, -0.8978801369667053, -1.563247799873352, -1.3623101711273193, -2.434401273727417, -2.3020005226135254, 0.8286305069923401, -0.6267974376678467, -0.5439102649688721, 2.0369837284088135, -1.001809000968933, -1.78556227684021, 1.0185762643814087, 0.36923691630363464, 0.14912529289722443, 2.4299304485321045, 0.266590416431427, -0.7981706261634827, 0.5071750283241272, -0.6248602867126465, 0.884880542755127, -0.38206449151039124, 1.2627617120742798, 0.47867512702941895, -0.9660075306892395, 1.6611889600753784, -0.4755641520023346, 0.6529018878936768, -0.6302794218063354, -0.44428086280822754, -0.8238851428031921, 0.21528643369674683, 1.7881159782409668, -0.40472614765167236, 1.4856375455856323, -0.2838832139968872, -1.5602318048477173, -1.5107381343841553, 0.7411220669746399, 0.47281351685523987, -0.9354370832443237, 0.032792434096336365, -0.5018276572227478, 0.1914076805114746, 0.010214352048933506, 1.0956060886383057, 1.1986933946609497, 0.7031829953193665, -0.27640262246131897, -0.8697603344917297, 0.3292030990123749, -0.15312325954437256, -0.5657059550285339, -1.8452813625335693, -0.2935332655906677, 0.25773340463638306, 0.6425368189811707, -1.2464022636413574, 1.8602750301361084, 0.8772105574607849, 2.0605781078338623, 0.9275188446044922, -0.4342765808105469, 1.4265034198760986, -0.007365197874605656, 1.8316878080368042, -0.4775323271751404, 0.5467652678489685, -0.32537248730659485, -1.1295372247695923, 0.8936623930931091, -0.40654727816581726, -1.885276198387146, -0.8248898983001709, -0.7019342184066772, -0.16088788211345673, -0.7414146065711975, 0.8817585110664368, -0.3172159194946289, -1.3997986316680908, 0.05380202829837799, -0.7155614495277405, 0.23751623928546906, -1.3644402027130127, 0.18657943606376648, 0.7235620021820068, -0.684629499912262, -0.0956794023513794, -0.3710242211818695, -1.3173291683197021, -0.5374034643173218, 0.26487836241722107, 2.0257315635681152, -0.4860055446624756, 0.9360833764076233, 0.9601439237594604, -0.8172714710235596, 0.17029264569282532, 0.2627914249897003, -0.36434823274612427, 0.7476751804351807, -1.137665867805481, -0.3975706696510315, 1.1002870798110962, -0.2665652632713318, -0.7837087512016296, 1.4737935066223145, 0.883584201335907, -1.1649166345596313, -0.3519567549228668, -0.2866075038909912, -0.8689969182014465, 0.0018865149468183517, -1.4665145874023438, -0.1767105758190155, 0.36809486150741577, -1.4648253917694092, -0.2821243107318878, -0.19211672246456146, 1.3677730560302734, -0.27610549330711365, 1.5096189975738525, -0.34566980600357056, -0.11258845776319504, -0.2852354943752289, -0.5506337285041809, 0.22893956303596497, -0.19413936138153076, -0.6012383103370667, 0.1929047703742981, -0.7853508591651917, 0.2133067548274994, 1.5054562091827393, 0.4094403386116028, 0.034521497786045074, 0.4495481550693512, 1.0428012609481812, 0.4293633699417114, -0.0656907930970192, -0.8010658621788025, -1.4483245611190796, 1.976365566253662, -1.4465253353118896, 1.8555413484573364, 0.8283754587173462, -0.09049838781356812, -1.8691377639770508, -1.8606023788452148, 1.2018147706985474, 1.1291627883911133, 2.348252296447754, 0.5082865953445435, 0.5247606635093689, -0.6829772591590881, -0.8381012082099915, 0.26235297322273254, -0.9547684788703918, -0.6542972922325134, 0.21043263375759125, 2.292192220687866, 1.79254150390625, -0.6069274544715881, -0.20424149930477142, -0.7960952520370483, 1.2437858581542969, -0.26373592019081116, 0.2609119713306427, 2.0624544620513916, -0.2987498939037323, -0.914650022983551, 1.3131695985794067, -2.4343342781066895, 0.32376334071159363, 2.076084852218628, 0.2502734065055847, 0.18252089619636536, -1.4365206956863403, -0.6898121237754822, -0.3319007456302643, -0.45286139845848083, -1.3116768598556519, 0.6102344989776611, -0.25252217054367065, -0.9168146252632141, -1.4643317461013794, 0.052232302725315094, -1.1696370840072632, -1.8029705286026, 0.37162068486213684, 1.9642869234085083, 2.12312388420105, -0.853437066078186, 1.3174641132354736, -0.2682470977306366, -0.07679073512554169, 1.3306000232696533, 1.3790863752365112, 3.0434203147888184, 1.8583388328552246, -1.254201889038086, 0.7690378427505493, -0.269942969083786, -0.4986380934715271, 1.1846462488174438, -1.1091653108596802, 0.9639306664466858, -0.12565143406391144, -1.2862064838409424, -1.1998530626296997, 1.0467619895935059, 0.5039051175117493, 0.020457662642002106, -0.4256038963794708, 1.3639154434204102, 0.18172435462474823, 1.4288251399993896, 0.5899699330329895, -0.35243454575538635, 0.5262327194213867, -0.30919957160949707, -0.5519760847091675, 1.680882453918457, 0.13587528467178345, -1.5419450998306274, -2.3145077228546143, -0.29153597354888916, -0.943009614944458, -0.013730967417359352, -0.6040357947349548, -1.0041807889938354, 1.577446460723877, 0.46126097440719604, -1.1257331371307373, -0.3058643639087677, -0.2854665219783783, -0.4474412202835083, 2.654167413711548, -1.2502591609954834, -0.08571840077638626, -0.9060359001159668, -0.3969232738018036, 1.6193519830703735, -1.2771997451782227, -0.2546002268791199, -1.0096927881240845, -0.6564884781837463, -1.3214157819747925, -0.45028945803642273, 0.012491383589804173, -1.0136982202529907, 0.6625512838363647, 0.22377465665340424, -1.0948079824447632, -0.28267866373062134, -0.9101532101631165, 1.0748692750930786, -0.050997938960790634, 0.28200680017471313, 1.8737537860870361, 0.33575719594955444, -0.4782799482345581, 0.7215929627418518, 1.2249977588653564, 0.5305382609367371, -0.6540080308914185, -0.030324116349220276, -0.758411169052124, 0.42496323585510254, -1.4203710556030273, 0.07236770540475845, -3.0275115966796875, 0.788528561592102, -0.2614382207393646, -0.2081330269575119, -0.19681522250175476, -1.2633126974105835, 1.098667860031128, 2.6260335445404053, -1.1613798141479492, 0.4545367956161499, 0.49701303243637085, 1.1645745038986206, -1.5782687664031982, 0.3425605893135071, -0.4719339907169342, 2.0447916984558105, 0.1288508027791977, 1.1684932708740234, -0.520348310470581, -2.217074155807495, 0.6713230013847351, -1.1564712524414062, -0.9917401075363159, 0.8605371117591858, -0.8868844509124756, 0.3218176066875458, -1.4151132106781006, -0.04366910085082054, -0.9328762292861938, -1.2251883745193481, 0.7403448820114136, 0.03954731673002243, 0.34061577916145325, -0.534202516078949, 0.38177719712257385, -2.112764358520508, -1.383205771446228, -0.28997084498405457, -0.9325435757637024, 0.6082605123519897, -0.39408016204833984, 0.5542063117027283, -0.02017294056713581, 0.19899295270442963, 0.34565022587776184, 1.4992488622665405, 3.4082047939300537, 0.15005989372730255, 0.2277795374393463, -0.0894959345459938, -1.1300114393234253, 1.4266924858093262, 0.8700501322746277, -0.17812931537628174, -0.5399506688117981, -0.9834437966346741, 1.3862895965576172, 1.9928640127182007, 1.1689419746398926, 0.20890259742736816, -0.9086987376213074, -0.8259507417678833, -0.004358928184956312, 0.13613641262054443, 0.4977065324783325, 1.021388292312622, -0.09253449738025665, 0.020298145711421967, 1.445764422416687, 1.1780815124511719, -0.24402619898319244, 0.41248172521591187, -1.0286256074905396, -0.37042075395584106, 0.3855906128883362, 0.15589557588100433, 0.07421298325061798, 0.48081472516059875, -1.0113595724105835, -0.32701078057289124, -0.20233014225959778, -0.8335141539573669, -0.8307355642318726, -0.35313206911087036, -0.3841683566570282, 1.6746679544448853, 0.08802872151136398, -0.5011151432991028, 0.1966741532087326, -0.6290798187255859, -0.06373517960309982, -1.2007180452346802, 0.10867433995008469, -0.09615752846002579, -0.10093043744564056, -0.18137136101722717, 1.6086639165878296, -0.9546861052513123, -2.11260986328125, 0.1667999029159546, 0.3977755308151245, -0.3243917226791382, 0.18789348006248474, 1.7439159154891968, 0.47766122221946716, 1.3686708211898804, 1.289391040802002, 0.9794402718544006, -0.5748443603515625, -1.2122337818145752, 0.816046953201294, 0.9575970768928528, -1.2384103536605835, 1.0391865968704224, -0.21240703761577606, -0.5981063842773438, 0.6606868505477905, 1.3850722312927246, 0.42033448815345764, -1.9725229740142822, 0.9853309988975525, -0.9164091944694519, 0.7300408482551575, 0.6817903518676758, 0.8847261071205139, 0.24672625958919525, 0.8826847672462463, -1.2819825410842896, -1.2318660020828247, -0.6920613050460815, -0.6250723004341125, 1.8119335174560547, -0.29751744866371155, 0.5489084124565125, -0.1777523159980774, -1.2014358043670654, -0.1557403951883316, 0.785269558429718, 0.3503505289554596, -0.366720587015152, 0.9489570260047913, -0.6536756753921509, -0.9841727018356323, -1.263553500175476, -0.38657012581825256, -1.042438268661499, -0.8334935307502747, 0.9918880462646484, 0.7772841453552246, 0.44985997676849365, 1.8605623245239258, 0.565755307674408, 0.38076284527778625, -2.563293695449829, 0.8701435327529907, 0.30132603645324707, -0.018275197595357895, 0.8565800189971924, 0.28950780630111694, 1.1414563655853271, -0.06345632672309875, 0.548891007900238, -2.2497379779815674, 2.190305471420288, -0.2570265233516693, 0.5736520886421204, 0.04028569906949997, -0.1742568165063858, 1.1104941368103027, 0.5955111384391785, 0.5824854969978333, -1.1375948190689087, 0.6962860226631165, -0.6074776649475098, 1.074785828590393, 0.9162005186080933, -0.8777722716331482, 0.14503349363803864, 1.3901619911193848, 0.4531029760837555, -0.4045161008834839, -1.0340676307678223, -0.8084247708320618, 1.0525258779525757, 1.7132664918899536, -0.08970686048269272, -0.06575773656368256, 0.8379601836204529, 0.6830393075942993, -1.2147167921066284, 0.014575286768376827, -0.7018356919288635, -0.7027712464332581, 1.7754933834075928, 1.9855526685714722, -0.08683722466230392, -0.23946650326251984, -0.7319841980934143, -1.3187650442123413, 0.787314236164093, -0.15460649132728577, 0.0011848853901028633, 0.7196998596191406, -0.7227076292037964, 1.1054364442825317, 0.5349274277687073, 1.0444693565368652, -0.0235745832324028, 0.32693272829055786, 0.2541464567184448, -0.3864043951034546, -1.1257721185684204, -0.31313633918762207, -1.112126350402832, -2.6029064655303955, 0.29059717059135437, -0.25644463300704956, -1.510977864265442, 0.05810048431158066, -1.1168855428695679, 0.9103170037269592, -0.550169825553894, -1.1013438701629639, -1.3721835613250732, 0.31358134746551514, -0.21042555570602417, 0.9128382802009583, -1.6016051769256592, -0.24974653124809265, 1.2710429430007935, 0.8817070722579956, -0.5356999039649963, 0.9265440106391907, 0.25685158371925354, 1.0181306600570679, 0.7386781573295593, -0.39894899725914, 0.5773172974586487, -0.04113663360476494, -1.320256233215332, 0.3259187936782837, 1.2915321588516235, 0.22969190776348114, 1.274787187576294, -0.4690888524055481, 0.1916220486164093, 0.39549392461776733, -0.684442937374115, -0.53776615858078, -0.30479520559310913, 0.7240350246429443, 0.022954586893320084, -1.1509089469909668, -0.19020184874534607, -0.2366836667060852, -0.2776508033275604, 0.22132988274097443, -1.464163064956665, -0.40606677532196045, -0.4170023202896118, -0.424586683511734, -1.4153286218643188, 0.11716590076684952, 1.2826205492019653, -0.8070477843284607, -0.3088156282901764, 0.346890926361084, 0.355557918548584, 0.568112850189209, 0.5728067755699158, -0.8535085916519165, -0.313128799200058, -0.39243534207344055, -0.2914375066757202, 0.20800712704658508, 1.1091556549072266, -0.022915903478860855, -0.9876508712768555, 0.6514925360679626, -0.3450114130973816, 0.18443363904953003, 2.0615482330322266, 0.02652362734079361, -0.7724434733390808, 0.3442292809486389, -0.6446077227592468, 1.6436845064163208, 1.7211625576019287, 1.292325496673584, -0.04524855315685272, -0.7546205520629883, 0.600374698638916, -0.2839244306087494, -0.34811609983444214, 0.8983412981033325, 0.3933351933956146, -0.29393649101257324, -1.4460186958312988, 0.5471788048744202, 1.2503893375396729, -0.6434788703918457, -0.7863115668296814, 0.01161509845405817, -0.9685826301574707, 1.3474531173706055, 0.58372962474823, 0.2706150710582733, 0.273845374584198, 1.5020023584365845, 0.7590696215629578, -0.5424851179122925, 0.4802945554256439, 0.5563621520996094, -0.24493271112442017, -2.1407110691070557, -0.8858527541160583, 0.2059946209192276, -0.35004526376724243, -1.5964337587356567, 1.4175999164581299, -1.1410425901412964, -1.029231309890747, 0.5842441916465759, 0.1385059356689453, 1.2833913564682007, 0.3592124879360199, 1.715608835220337, 2.077672004699707, 0.9016369581222534, 0.31985700130462646, 1.1123870611190796, -0.10046526044607162, -0.43383845686912537, 1.8672820329666138, -0.38612547516822815, 0.5971698760986328, 0.919601321220398, -0.4034416377544403, -1.031274676322937, -0.8907597661018372, -1.0222328901290894, -0.6407865881919861, 1.2082382440567017, 0.09594342112541199, -1.0768308639526367, 0.1731143742799759, 1.5369219779968262, 0.19865508377552032, -0.27817240357398987, 0.7148309946060181, 0.4331105947494507, -0.6914297938346863, -0.061470285058021545, -0.8540843725204468, 0.526462197303772, -0.08066104352474213, -0.24799902737140656, 0.26145413517951965, 0.5994328856468201, 1.3198156356811523, -0.06982666999101639, 0.12212740629911423, 1.107157588005066, -1.3585878610610962, 1.5130720138549805, -0.5821283459663391, 0.32311326265335083, -2.447573184967041, 1.478676676750183, -0.7476843595504761, 1.9594144821166992, -2.5147571563720703, 0.458039253950119, -0.4542093575000763, -0.4882422983646393, 0.23847658932209015, -0.5153620839118958, 0.11795192211866379, -0.14174453914165497, -0.8989810943603516, -0.07161400467157364, -0.7916466593742371, 0.6227806210517883, 1.1534370183944702, 1.4944005012512207, -1.085667610168457, -0.27520954608917236, -1.6841490268707275, -0.13050886988639832, -0.8952755331993103, 0.39193370938301086, -1.988182783126831, -0.24706171452999115, -2.071216106414795, -2.36833119392395, -1.357397437095642, -0.87067711353302, 1.0724836587905884, 0.24337993562221527, -0.902779757976532, 1.1979866027832031, -0.37602636218070984, -1.8266487121582031, 1.1818112134933472, -2.241697072982788 ]
https://github.com/huggingface/datasets/issues/5923
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility
Thanks for replying. I am not sure about those environments but it seems like pyarrow-12.0.0 does not work for conda with python 3.8.16. > Please note that our CI properly passes all tests with `pyarrow-12.0.0`, for Python 3.7 and Python 3.10, for Ubuntu and Windows: see for example https://github.com/huggingface/datasets/actions/runs/5157324334/jobs/9289582291
### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0
112
49
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility ### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0 Thanks for replying. I am not sure about those environments but it seems like pyarrow-12.0.0 does not work for conda with python 3.8.16. > Please note that our CI properly passes all tests with `pyarrow-12.0.0`, for Python 3.7 and Python 3.10, for Ubuntu and Windows: see for example https://github.com/huggingface/datasets/actions/runs/5157324334/jobs/9289582291
[ -1.1750595569610596, -0.872355043888092, -0.6893664002418518, 1.387781023979187, -0.05072424188256264, -1.2870230674743652, 0.0344497412443161, -1.0810635089874268, 1.4963840246200562, -0.7009853720664978, 0.2459050863981247, -1.6988246440887451, -0.17471174895763397, -0.39148375391960144, -0.624787449836731, -0.9523163437843323, -0.31673672795295715, -1.0204801559448242, 1.1082258224487305, 2.5502476692199707, 1.3889238834381104, -1.3212910890579224, 2.865058183670044, 0.6503803133964539, -0.2960011959075928, -1.0127919912338257, 0.5857762098312378, -0.015445595607161522, -1.2200380563735962, -0.5422953367233276, -0.9421238899230957, -0.027667637914419174, -0.5372564196586609, -0.3619457483291626, 0.1447877138853073, 0.5073856711387634, -0.25112754106521606, -0.2189115285873413, -0.7204452753067017, -0.7201055288314819, 0.4885539412498474, -0.36743488907814026, 0.9766443371772766, -0.3501471281051636, 1.6458054780960083, -0.5848569273948669, 0.4477384686470032, 0.7677279114723206, 1.2413440942764282, 0.10416748374700546, 0.09003046154975891, 0.23134081065654755, 0.2728288769721985, -0.05936335027217865, 0.6838019490242004, 1.17380690574646, 0.5983589887619019, 0.592458188533783, 0.6357535719871521, -2.180600166320801, 1.319359302520752, -0.8115485310554504, 0.1676984578371048, 1.3202015161514282, -0.797451376914978, 0.3412318229675293, -1.783279299736023, -0.09002761542797089, 0.5931578874588013, -2.369415521621704, 0.2301120012998581, -1.2479976415634155, -0.5402237176895142, 0.8650517463684082, 0.3148905634880066, -1.262274146080017, 0.16053403913974762, -0.5300297141075134, 1.1745017766952515, 0.5671987533569336, 1.1653072834014893, -1.6533598899841309, -0.03844662755727768, -0.07451348006725311, 0.07058517634868622, -1.3087605237960815, -1.7036614418029785, 0.5133981108665466, 0.5511937737464905, 0.7548724412918091, -0.009126023389399052, 0.9807395339012146, -1.0776124000549316, 0.804884672164917, -0.8978801369667053, -1.563247799873352, -1.3623101711273193, -2.434401273727417, -2.3020005226135254, 0.8286305069923401, -0.6267974376678467, -0.5439102649688721, 2.0369837284088135, -1.001809000968933, -1.78556227684021, 1.0185762643814087, 0.36923691630363464, 0.14912529289722443, 2.4299304485321045, 0.266590416431427, -0.7981706261634827, 0.5071750283241272, -0.6248602867126465, 0.884880542755127, -0.38206449151039124, 1.2627617120742798, 0.47867512702941895, -0.9660075306892395, 1.6611889600753784, -0.4755641520023346, 0.6529018878936768, -0.6302794218063354, -0.44428086280822754, -0.8238851428031921, 0.21528643369674683, 1.7881159782409668, -0.40472614765167236, 1.4856375455856323, -0.2838832139968872, -1.5602318048477173, -1.5107381343841553, 0.7411220669746399, 0.47281351685523987, -0.9354370832443237, 0.032792434096336365, -0.5018276572227478, 0.1914076805114746, 0.010214352048933506, 1.0956060886383057, 1.1986933946609497, 0.7031829953193665, -0.27640262246131897, -0.8697603344917297, 0.3292030990123749, -0.15312325954437256, -0.5657059550285339, -1.8452813625335693, -0.2935332655906677, 0.25773340463638306, 0.6425368189811707, -1.2464022636413574, 1.8602750301361084, 0.8772105574607849, 2.0605781078338623, 0.9275188446044922, -0.4342765808105469, 1.4265034198760986, -0.007365197874605656, 1.8316878080368042, -0.4775323271751404, 0.5467652678489685, -0.32537248730659485, -1.1295372247695923, 0.8936623930931091, -0.40654727816581726, -1.885276198387146, -0.8248898983001709, -0.7019342184066772, -0.16088788211345673, -0.7414146065711975, 0.8817585110664368, -0.3172159194946289, -1.3997986316680908, 0.05380202829837799, -0.7155614495277405, 0.23751623928546906, -1.3644402027130127, 0.18657943606376648, 0.7235620021820068, -0.684629499912262, -0.0956794023513794, -0.3710242211818695, -1.3173291683197021, -0.5374034643173218, 0.26487836241722107, 2.0257315635681152, -0.4860055446624756, 0.9360833764076233, 0.9601439237594604, -0.8172714710235596, 0.17029264569282532, 0.2627914249897003, -0.36434823274612427, 0.7476751804351807, -1.137665867805481, -0.3975706696510315, 1.1002870798110962, -0.2665652632713318, -0.7837087512016296, 1.4737935066223145, 0.883584201335907, -1.1649166345596313, -0.3519567549228668, -0.2866075038909912, -0.8689969182014465, 0.0018865149468183517, -1.4665145874023438, -0.1767105758190155, 0.36809486150741577, -1.4648253917694092, -0.2821243107318878, -0.19211672246456146, 1.3677730560302734, -0.27610549330711365, 1.5096189975738525, -0.34566980600357056, -0.11258845776319504, -0.2852354943752289, -0.5506337285041809, 0.22893956303596497, -0.19413936138153076, -0.6012383103370667, 0.1929047703742981, -0.7853508591651917, 0.2133067548274994, 1.5054562091827393, 0.4094403386116028, 0.034521497786045074, 0.4495481550693512, 1.0428012609481812, 0.4293633699417114, -0.0656907930970192, -0.8010658621788025, -1.4483245611190796, 1.976365566253662, -1.4465253353118896, 1.8555413484573364, 0.8283754587173462, -0.09049838781356812, -1.8691377639770508, -1.8606023788452148, 1.2018147706985474, 1.1291627883911133, 2.348252296447754, 0.5082865953445435, 0.5247606635093689, -0.6829772591590881, -0.8381012082099915, 0.26235297322273254, -0.9547684788703918, -0.6542972922325134, 0.21043263375759125, 2.292192220687866, 1.79254150390625, -0.6069274544715881, -0.20424149930477142, -0.7960952520370483, 1.2437858581542969, -0.26373592019081116, 0.2609119713306427, 2.0624544620513916, -0.2987498939037323, -0.914650022983551, 1.3131695985794067, -2.4343342781066895, 0.32376334071159363, 2.076084852218628, 0.2502734065055847, 0.18252089619636536, -1.4365206956863403, -0.6898121237754822, -0.3319007456302643, -0.45286139845848083, -1.3116768598556519, 0.6102344989776611, -0.25252217054367065, -0.9168146252632141, -1.4643317461013794, 0.052232302725315094, -1.1696370840072632, -1.8029705286026, 0.37162068486213684, 1.9642869234085083, 2.12312388420105, -0.853437066078186, 1.3174641132354736, -0.2682470977306366, -0.07679073512554169, 1.3306000232696533, 1.3790863752365112, 3.0434203147888184, 1.8583388328552246, -1.254201889038086, 0.7690378427505493, -0.269942969083786, -0.4986380934715271, 1.1846462488174438, -1.1091653108596802, 0.9639306664466858, -0.12565143406391144, -1.2862064838409424, -1.1998530626296997, 1.0467619895935059, 0.5039051175117493, 0.020457662642002106, -0.4256038963794708, 1.3639154434204102, 0.18172435462474823, 1.4288251399993896, 0.5899699330329895, -0.35243454575538635, 0.5262327194213867, -0.30919957160949707, -0.5519760847091675, 1.680882453918457, 0.13587528467178345, -1.5419450998306274, -2.3145077228546143, -0.29153597354888916, -0.943009614944458, -0.013730967417359352, -0.6040357947349548, -1.0041807889938354, 1.577446460723877, 0.46126097440719604, -1.1257331371307373, -0.3058643639087677, -0.2854665219783783, -0.4474412202835083, 2.654167413711548, -1.2502591609954834, -0.08571840077638626, -0.9060359001159668, -0.3969232738018036, 1.6193519830703735, -1.2771997451782227, -0.2546002268791199, -1.0096927881240845, -0.6564884781837463, -1.3214157819747925, -0.45028945803642273, 0.012491383589804173, -1.0136982202529907, 0.6625512838363647, 0.22377465665340424, -1.0948079824447632, -0.28267866373062134, -0.9101532101631165, 1.0748692750930786, -0.050997938960790634, 0.28200680017471313, 1.8737537860870361, 0.33575719594955444, -0.4782799482345581, 0.7215929627418518, 1.2249977588653564, 0.5305382609367371, -0.6540080308914185, -0.030324116349220276, -0.758411169052124, 0.42496323585510254, -1.4203710556030273, 0.07236770540475845, -3.0275115966796875, 0.788528561592102, -0.2614382207393646, -0.2081330269575119, -0.19681522250175476, -1.2633126974105835, 1.098667860031128, 2.6260335445404053, -1.1613798141479492, 0.4545367956161499, 0.49701303243637085, 1.1645745038986206, -1.5782687664031982, 0.3425605893135071, -0.4719339907169342, 2.0447916984558105, 0.1288508027791977, 1.1684932708740234, -0.520348310470581, -2.217074155807495, 0.6713230013847351, -1.1564712524414062, -0.9917401075363159, 0.8605371117591858, -0.8868844509124756, 0.3218176066875458, -1.4151132106781006, -0.04366910085082054, -0.9328762292861938, -1.2251883745193481, 0.7403448820114136, 0.03954731673002243, 0.34061577916145325, -0.534202516078949, 0.38177719712257385, -2.112764358520508, -1.383205771446228, -0.28997084498405457, -0.9325435757637024, 0.6082605123519897, -0.39408016204833984, 0.5542063117027283, -0.02017294056713581, 0.19899295270442963, 0.34565022587776184, 1.4992488622665405, 3.4082047939300537, 0.15005989372730255, 0.2277795374393463, -0.0894959345459938, -1.1300114393234253, 1.4266924858093262, 0.8700501322746277, -0.17812931537628174, -0.5399506688117981, -0.9834437966346741, 1.3862895965576172, 1.9928640127182007, 1.1689419746398926, 0.20890259742736816, -0.9086987376213074, -0.8259507417678833, -0.004358928184956312, 0.13613641262054443, 0.4977065324783325, 1.021388292312622, -0.09253449738025665, 0.020298145711421967, 1.445764422416687, 1.1780815124511719, -0.24402619898319244, 0.41248172521591187, -1.0286256074905396, -0.37042075395584106, 0.3855906128883362, 0.15589557588100433, 0.07421298325061798, 0.48081472516059875, -1.0113595724105835, -0.32701078057289124, -0.20233014225959778, -0.8335141539573669, -0.8307355642318726, -0.35313206911087036, -0.3841683566570282, 1.6746679544448853, 0.08802872151136398, -0.5011151432991028, 0.1966741532087326, -0.6290798187255859, -0.06373517960309982, -1.2007180452346802, 0.10867433995008469, -0.09615752846002579, -0.10093043744564056, -0.18137136101722717, 1.6086639165878296, -0.9546861052513123, -2.11260986328125, 0.1667999029159546, 0.3977755308151245, -0.3243917226791382, 0.18789348006248474, 1.7439159154891968, 0.47766122221946716, 1.3686708211898804, 1.289391040802002, 0.9794402718544006, -0.5748443603515625, -1.2122337818145752, 0.816046953201294, 0.9575970768928528, -1.2384103536605835, 1.0391865968704224, -0.21240703761577606, -0.5981063842773438, 0.6606868505477905, 1.3850722312927246, 0.42033448815345764, -1.9725229740142822, 0.9853309988975525, -0.9164091944694519, 0.7300408482551575, 0.6817903518676758, 0.8847261071205139, 0.24672625958919525, 0.8826847672462463, -1.2819825410842896, -1.2318660020828247, -0.6920613050460815, -0.6250723004341125, 1.8119335174560547, -0.29751744866371155, 0.5489084124565125, -0.1777523159980774, -1.2014358043670654, -0.1557403951883316, 0.785269558429718, 0.3503505289554596, -0.366720587015152, 0.9489570260047913, -0.6536756753921509, -0.9841727018356323, -1.263553500175476, -0.38657012581825256, -1.042438268661499, -0.8334935307502747, 0.9918880462646484, 0.7772841453552246, 0.44985997676849365, 1.8605623245239258, 0.565755307674408, 0.38076284527778625, -2.563293695449829, 0.8701435327529907, 0.30132603645324707, -0.018275197595357895, 0.8565800189971924, 0.28950780630111694, 1.1414563655853271, -0.06345632672309875, 0.548891007900238, -2.2497379779815674, 2.190305471420288, -0.2570265233516693, 0.5736520886421204, 0.04028569906949997, -0.1742568165063858, 1.1104941368103027, 0.5955111384391785, 0.5824854969978333, -1.1375948190689087, 0.6962860226631165, -0.6074776649475098, 1.074785828590393, 0.9162005186080933, -0.8777722716331482, 0.14503349363803864, 1.3901619911193848, 0.4531029760837555, -0.4045161008834839, -1.0340676307678223, -0.8084247708320618, 1.0525258779525757, 1.7132664918899536, -0.08970686048269272, -0.06575773656368256, 0.8379601836204529, 0.6830393075942993, -1.2147167921066284, 0.014575286768376827, -0.7018356919288635, -0.7027712464332581, 1.7754933834075928, 1.9855526685714722, -0.08683722466230392, -0.23946650326251984, -0.7319841980934143, -1.3187650442123413, 0.787314236164093, -0.15460649132728577, 0.0011848853901028633, 0.7196998596191406, -0.7227076292037964, 1.1054364442825317, 0.5349274277687073, 1.0444693565368652, -0.0235745832324028, 0.32693272829055786, 0.2541464567184448, -0.3864043951034546, -1.1257721185684204, -0.31313633918762207, -1.112126350402832, -2.6029064655303955, 0.29059717059135437, -0.25644463300704956, -1.510977864265442, 0.05810048431158066, -1.1168855428695679, 0.9103170037269592, -0.550169825553894, -1.1013438701629639, -1.3721835613250732, 0.31358134746551514, -0.21042555570602417, 0.9128382802009583, -1.6016051769256592, -0.24974653124809265, 1.2710429430007935, 0.8817070722579956, -0.5356999039649963, 0.9265440106391907, 0.25685158371925354, 1.0181306600570679, 0.7386781573295593, -0.39894899725914, 0.5773172974586487, -0.04113663360476494, -1.320256233215332, 0.3259187936782837, 1.2915321588516235, 0.22969190776348114, 1.274787187576294, -0.4690888524055481, 0.1916220486164093, 0.39549392461776733, -0.684442937374115, -0.53776615858078, -0.30479520559310913, 0.7240350246429443, 0.022954586893320084, -1.1509089469909668, -0.19020184874534607, -0.2366836667060852, -0.2776508033275604, 0.22132988274097443, -1.464163064956665, -0.40606677532196045, -0.4170023202896118, -0.424586683511734, -1.4153286218643188, 0.11716590076684952, 1.2826205492019653, -0.8070477843284607, -0.3088156282901764, 0.346890926361084, 0.355557918548584, 0.568112850189209, 0.5728067755699158, -0.8535085916519165, -0.313128799200058, -0.39243534207344055, -0.2914375066757202, 0.20800712704658508, 1.1091556549072266, -0.022915903478860855, -0.9876508712768555, 0.6514925360679626, -0.3450114130973816, 0.18443363904953003, 2.0615482330322266, 0.02652362734079361, -0.7724434733390808, 0.3442292809486389, -0.6446077227592468, 1.6436845064163208, 1.7211625576019287, 1.292325496673584, -0.04524855315685272, -0.7546205520629883, 0.600374698638916, -0.2839244306087494, -0.34811609983444214, 0.8983412981033325, 0.3933351933956146, -0.29393649101257324, -1.4460186958312988, 0.5471788048744202, 1.2503893375396729, -0.6434788703918457, -0.7863115668296814, 0.01161509845405817, -0.9685826301574707, 1.3474531173706055, 0.58372962474823, 0.2706150710582733, 0.273845374584198, 1.5020023584365845, 0.7590696215629578, -0.5424851179122925, 0.4802945554256439, 0.5563621520996094, -0.24493271112442017, -2.1407110691070557, -0.8858527541160583, 0.2059946209192276, -0.35004526376724243, -1.5964337587356567, 1.4175999164581299, -1.1410425901412964, -1.029231309890747, 0.5842441916465759, 0.1385059356689453, 1.2833913564682007, 0.3592124879360199, 1.715608835220337, 2.077672004699707, 0.9016369581222534, 0.31985700130462646, 1.1123870611190796, -0.10046526044607162, -0.43383845686912537, 1.8672820329666138, -0.38612547516822815, 0.5971698760986328, 0.919601321220398, -0.4034416377544403, -1.031274676322937, -0.8907597661018372, -1.0222328901290894, -0.6407865881919861, 1.2082382440567017, 0.09594342112541199, -1.0768308639526367, 0.1731143742799759, 1.5369219779968262, 0.19865508377552032, -0.27817240357398987, 0.7148309946060181, 0.4331105947494507, -0.6914297938346863, -0.061470285058021545, -0.8540843725204468, 0.526462197303772, -0.08066104352474213, -0.24799902737140656, 0.26145413517951965, 0.5994328856468201, 1.3198156356811523, -0.06982666999101639, 0.12212740629911423, 1.107157588005066, -1.3585878610610962, 1.5130720138549805, -0.5821283459663391, 0.32311326265335083, -2.447573184967041, 1.478676676750183, -0.7476843595504761, 1.9594144821166992, -2.5147571563720703, 0.458039253950119, -0.4542093575000763, -0.4882422983646393, 0.23847658932209015, -0.5153620839118958, 0.11795192211866379, -0.14174453914165497, -0.8989810943603516, -0.07161400467157364, -0.7916466593742371, 0.6227806210517883, 1.1534370183944702, 1.4944005012512207, -1.085667610168457, -0.27520954608917236, -1.6841490268707275, -0.13050886988639832, -0.8952755331993103, 0.39193370938301086, -1.988182783126831, -0.24706171452999115, -2.071216106414795, -2.36833119392395, -1.357397437095642, -0.87067711353302, 1.0724836587905884, 0.24337993562221527, -0.902779757976532, 1.1979866027832031, -0.37602636218070984, -1.8266487121582031, 1.1818112134933472, -2.241697072982788 ]
https://github.com/huggingface/datasets/issues/5923
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility
Got the same error with: ``` arrow-cpp 11.0.0 py310h7516544_0 pyarrow 12.0.0 pypi_0 pypi python 3.10.11 h7a1cb2a_2 datasets 2.13.0 pyhd8ed1ab_0 conda-forge ```
### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0
112
21
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility ### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0 Got the same error with: ``` arrow-cpp 11.0.0 py310h7516544_0 pyarrow 12.0.0 pypi_0 pypi python 3.10.11 h7a1cb2a_2 datasets 2.13.0 pyhd8ed1ab_0 conda-forge ```
[ -1.1750595569610596, -0.872355043888092, -0.6893664002418518, 1.387781023979187, -0.05072424188256264, -1.2870230674743652, 0.0344497412443161, -1.0810635089874268, 1.4963840246200562, -0.7009853720664978, 0.2459050863981247, -1.6988246440887451, -0.17471174895763397, -0.39148375391960144, -0.624787449836731, -0.9523163437843323, -0.31673672795295715, -1.0204801559448242, 1.1082258224487305, 2.5502476692199707, 1.3889238834381104, -1.3212910890579224, 2.865058183670044, 0.6503803133964539, -0.2960011959075928, -1.0127919912338257, 0.5857762098312378, -0.015445595607161522, -1.2200380563735962, -0.5422953367233276, -0.9421238899230957, -0.027667637914419174, -0.5372564196586609, -0.3619457483291626, 0.1447877138853073, 0.5073856711387634, -0.25112754106521606, -0.2189115285873413, -0.7204452753067017, -0.7201055288314819, 0.4885539412498474, -0.36743488907814026, 0.9766443371772766, -0.3501471281051636, 1.6458054780960083, -0.5848569273948669, 0.4477384686470032, 0.7677279114723206, 1.2413440942764282, 0.10416748374700546, 0.09003046154975891, 0.23134081065654755, 0.2728288769721985, -0.05936335027217865, 0.6838019490242004, 1.17380690574646, 0.5983589887619019, 0.592458188533783, 0.6357535719871521, -2.180600166320801, 1.319359302520752, -0.8115485310554504, 0.1676984578371048, 1.3202015161514282, -0.797451376914978, 0.3412318229675293, -1.783279299736023, -0.09002761542797089, 0.5931578874588013, -2.369415521621704, 0.2301120012998581, -1.2479976415634155, -0.5402237176895142, 0.8650517463684082, 0.3148905634880066, -1.262274146080017, 0.16053403913974762, -0.5300297141075134, 1.1745017766952515, 0.5671987533569336, 1.1653072834014893, -1.6533598899841309, -0.03844662755727768, -0.07451348006725311, 0.07058517634868622, -1.3087605237960815, -1.7036614418029785, 0.5133981108665466, 0.5511937737464905, 0.7548724412918091, -0.009126023389399052, 0.9807395339012146, -1.0776124000549316, 0.804884672164917, -0.8978801369667053, -1.563247799873352, -1.3623101711273193, -2.434401273727417, -2.3020005226135254, 0.8286305069923401, -0.6267974376678467, -0.5439102649688721, 2.0369837284088135, -1.001809000968933, -1.78556227684021, 1.0185762643814087, 0.36923691630363464, 0.14912529289722443, 2.4299304485321045, 0.266590416431427, -0.7981706261634827, 0.5071750283241272, -0.6248602867126465, 0.884880542755127, -0.38206449151039124, 1.2627617120742798, 0.47867512702941895, -0.9660075306892395, 1.6611889600753784, -0.4755641520023346, 0.6529018878936768, -0.6302794218063354, -0.44428086280822754, -0.8238851428031921, 0.21528643369674683, 1.7881159782409668, -0.40472614765167236, 1.4856375455856323, -0.2838832139968872, -1.5602318048477173, -1.5107381343841553, 0.7411220669746399, 0.47281351685523987, -0.9354370832443237, 0.032792434096336365, -0.5018276572227478, 0.1914076805114746, 0.010214352048933506, 1.0956060886383057, 1.1986933946609497, 0.7031829953193665, -0.27640262246131897, -0.8697603344917297, 0.3292030990123749, -0.15312325954437256, -0.5657059550285339, -1.8452813625335693, -0.2935332655906677, 0.25773340463638306, 0.6425368189811707, -1.2464022636413574, 1.8602750301361084, 0.8772105574607849, 2.0605781078338623, 0.9275188446044922, -0.4342765808105469, 1.4265034198760986, -0.007365197874605656, 1.8316878080368042, -0.4775323271751404, 0.5467652678489685, -0.32537248730659485, -1.1295372247695923, 0.8936623930931091, -0.40654727816581726, -1.885276198387146, -0.8248898983001709, -0.7019342184066772, -0.16088788211345673, -0.7414146065711975, 0.8817585110664368, -0.3172159194946289, -1.3997986316680908, 0.05380202829837799, -0.7155614495277405, 0.23751623928546906, -1.3644402027130127, 0.18657943606376648, 0.7235620021820068, -0.684629499912262, -0.0956794023513794, -0.3710242211818695, -1.3173291683197021, -0.5374034643173218, 0.26487836241722107, 2.0257315635681152, -0.4860055446624756, 0.9360833764076233, 0.9601439237594604, -0.8172714710235596, 0.17029264569282532, 0.2627914249897003, -0.36434823274612427, 0.7476751804351807, -1.137665867805481, -0.3975706696510315, 1.1002870798110962, -0.2665652632713318, -0.7837087512016296, 1.4737935066223145, 0.883584201335907, -1.1649166345596313, -0.3519567549228668, -0.2866075038909912, -0.8689969182014465, 0.0018865149468183517, -1.4665145874023438, -0.1767105758190155, 0.36809486150741577, -1.4648253917694092, -0.2821243107318878, -0.19211672246456146, 1.3677730560302734, -0.27610549330711365, 1.5096189975738525, -0.34566980600357056, -0.11258845776319504, -0.2852354943752289, -0.5506337285041809, 0.22893956303596497, -0.19413936138153076, -0.6012383103370667, 0.1929047703742981, -0.7853508591651917, 0.2133067548274994, 1.5054562091827393, 0.4094403386116028, 0.034521497786045074, 0.4495481550693512, 1.0428012609481812, 0.4293633699417114, -0.0656907930970192, -0.8010658621788025, -1.4483245611190796, 1.976365566253662, -1.4465253353118896, 1.8555413484573364, 0.8283754587173462, -0.09049838781356812, -1.8691377639770508, -1.8606023788452148, 1.2018147706985474, 1.1291627883911133, 2.348252296447754, 0.5082865953445435, 0.5247606635093689, -0.6829772591590881, -0.8381012082099915, 0.26235297322273254, -0.9547684788703918, -0.6542972922325134, 0.21043263375759125, 2.292192220687866, 1.79254150390625, -0.6069274544715881, -0.20424149930477142, -0.7960952520370483, 1.2437858581542969, -0.26373592019081116, 0.2609119713306427, 2.0624544620513916, -0.2987498939037323, -0.914650022983551, 1.3131695985794067, -2.4343342781066895, 0.32376334071159363, 2.076084852218628, 0.2502734065055847, 0.18252089619636536, -1.4365206956863403, -0.6898121237754822, -0.3319007456302643, -0.45286139845848083, -1.3116768598556519, 0.6102344989776611, -0.25252217054367065, -0.9168146252632141, -1.4643317461013794, 0.052232302725315094, -1.1696370840072632, -1.8029705286026, 0.37162068486213684, 1.9642869234085083, 2.12312388420105, -0.853437066078186, 1.3174641132354736, -0.2682470977306366, -0.07679073512554169, 1.3306000232696533, 1.3790863752365112, 3.0434203147888184, 1.8583388328552246, -1.254201889038086, 0.7690378427505493, -0.269942969083786, -0.4986380934715271, 1.1846462488174438, -1.1091653108596802, 0.9639306664466858, -0.12565143406391144, -1.2862064838409424, -1.1998530626296997, 1.0467619895935059, 0.5039051175117493, 0.020457662642002106, -0.4256038963794708, 1.3639154434204102, 0.18172435462474823, 1.4288251399993896, 0.5899699330329895, -0.35243454575538635, 0.5262327194213867, -0.30919957160949707, -0.5519760847091675, 1.680882453918457, 0.13587528467178345, -1.5419450998306274, -2.3145077228546143, -0.29153597354888916, -0.943009614944458, -0.013730967417359352, -0.6040357947349548, -1.0041807889938354, 1.577446460723877, 0.46126097440719604, -1.1257331371307373, -0.3058643639087677, -0.2854665219783783, -0.4474412202835083, 2.654167413711548, -1.2502591609954834, -0.08571840077638626, -0.9060359001159668, -0.3969232738018036, 1.6193519830703735, -1.2771997451782227, -0.2546002268791199, -1.0096927881240845, -0.6564884781837463, -1.3214157819747925, -0.45028945803642273, 0.012491383589804173, -1.0136982202529907, 0.6625512838363647, 0.22377465665340424, -1.0948079824447632, -0.28267866373062134, -0.9101532101631165, 1.0748692750930786, -0.050997938960790634, 0.28200680017471313, 1.8737537860870361, 0.33575719594955444, -0.4782799482345581, 0.7215929627418518, 1.2249977588653564, 0.5305382609367371, -0.6540080308914185, -0.030324116349220276, -0.758411169052124, 0.42496323585510254, -1.4203710556030273, 0.07236770540475845, -3.0275115966796875, 0.788528561592102, -0.2614382207393646, -0.2081330269575119, -0.19681522250175476, -1.2633126974105835, 1.098667860031128, 2.6260335445404053, -1.1613798141479492, 0.4545367956161499, 0.49701303243637085, 1.1645745038986206, -1.5782687664031982, 0.3425605893135071, -0.4719339907169342, 2.0447916984558105, 0.1288508027791977, 1.1684932708740234, -0.520348310470581, -2.217074155807495, 0.6713230013847351, -1.1564712524414062, -0.9917401075363159, 0.8605371117591858, -0.8868844509124756, 0.3218176066875458, -1.4151132106781006, -0.04366910085082054, -0.9328762292861938, -1.2251883745193481, 0.7403448820114136, 0.03954731673002243, 0.34061577916145325, -0.534202516078949, 0.38177719712257385, -2.112764358520508, -1.383205771446228, -0.28997084498405457, -0.9325435757637024, 0.6082605123519897, -0.39408016204833984, 0.5542063117027283, -0.02017294056713581, 0.19899295270442963, 0.34565022587776184, 1.4992488622665405, 3.4082047939300537, 0.15005989372730255, 0.2277795374393463, -0.0894959345459938, -1.1300114393234253, 1.4266924858093262, 0.8700501322746277, -0.17812931537628174, -0.5399506688117981, -0.9834437966346741, 1.3862895965576172, 1.9928640127182007, 1.1689419746398926, 0.20890259742736816, -0.9086987376213074, -0.8259507417678833, -0.004358928184956312, 0.13613641262054443, 0.4977065324783325, 1.021388292312622, -0.09253449738025665, 0.020298145711421967, 1.445764422416687, 1.1780815124511719, -0.24402619898319244, 0.41248172521591187, -1.0286256074905396, -0.37042075395584106, 0.3855906128883362, 0.15589557588100433, 0.07421298325061798, 0.48081472516059875, -1.0113595724105835, -0.32701078057289124, -0.20233014225959778, -0.8335141539573669, -0.8307355642318726, -0.35313206911087036, -0.3841683566570282, 1.6746679544448853, 0.08802872151136398, -0.5011151432991028, 0.1966741532087326, -0.6290798187255859, -0.06373517960309982, -1.2007180452346802, 0.10867433995008469, -0.09615752846002579, -0.10093043744564056, -0.18137136101722717, 1.6086639165878296, -0.9546861052513123, -2.11260986328125, 0.1667999029159546, 0.3977755308151245, -0.3243917226791382, 0.18789348006248474, 1.7439159154891968, 0.47766122221946716, 1.3686708211898804, 1.289391040802002, 0.9794402718544006, -0.5748443603515625, -1.2122337818145752, 0.816046953201294, 0.9575970768928528, -1.2384103536605835, 1.0391865968704224, -0.21240703761577606, -0.5981063842773438, 0.6606868505477905, 1.3850722312927246, 0.42033448815345764, -1.9725229740142822, 0.9853309988975525, -0.9164091944694519, 0.7300408482551575, 0.6817903518676758, 0.8847261071205139, 0.24672625958919525, 0.8826847672462463, -1.2819825410842896, -1.2318660020828247, -0.6920613050460815, -0.6250723004341125, 1.8119335174560547, -0.29751744866371155, 0.5489084124565125, -0.1777523159980774, -1.2014358043670654, -0.1557403951883316, 0.785269558429718, 0.3503505289554596, -0.366720587015152, 0.9489570260047913, -0.6536756753921509, -0.9841727018356323, -1.263553500175476, -0.38657012581825256, -1.042438268661499, -0.8334935307502747, 0.9918880462646484, 0.7772841453552246, 0.44985997676849365, 1.8605623245239258, 0.565755307674408, 0.38076284527778625, -2.563293695449829, 0.8701435327529907, 0.30132603645324707, -0.018275197595357895, 0.8565800189971924, 0.28950780630111694, 1.1414563655853271, -0.06345632672309875, 0.548891007900238, -2.2497379779815674, 2.190305471420288, -0.2570265233516693, 0.5736520886421204, 0.04028569906949997, -0.1742568165063858, 1.1104941368103027, 0.5955111384391785, 0.5824854969978333, -1.1375948190689087, 0.6962860226631165, -0.6074776649475098, 1.074785828590393, 0.9162005186080933, -0.8777722716331482, 0.14503349363803864, 1.3901619911193848, 0.4531029760837555, -0.4045161008834839, -1.0340676307678223, -0.8084247708320618, 1.0525258779525757, 1.7132664918899536, -0.08970686048269272, -0.06575773656368256, 0.8379601836204529, 0.6830393075942993, -1.2147167921066284, 0.014575286768376827, -0.7018356919288635, -0.7027712464332581, 1.7754933834075928, 1.9855526685714722, -0.08683722466230392, -0.23946650326251984, -0.7319841980934143, -1.3187650442123413, 0.787314236164093, -0.15460649132728577, 0.0011848853901028633, 0.7196998596191406, -0.7227076292037964, 1.1054364442825317, 0.5349274277687073, 1.0444693565368652, -0.0235745832324028, 0.32693272829055786, 0.2541464567184448, -0.3864043951034546, -1.1257721185684204, -0.31313633918762207, -1.112126350402832, -2.6029064655303955, 0.29059717059135437, -0.25644463300704956, -1.510977864265442, 0.05810048431158066, -1.1168855428695679, 0.9103170037269592, -0.550169825553894, -1.1013438701629639, -1.3721835613250732, 0.31358134746551514, -0.21042555570602417, 0.9128382802009583, -1.6016051769256592, -0.24974653124809265, 1.2710429430007935, 0.8817070722579956, -0.5356999039649963, 0.9265440106391907, 0.25685158371925354, 1.0181306600570679, 0.7386781573295593, -0.39894899725914, 0.5773172974586487, -0.04113663360476494, -1.320256233215332, 0.3259187936782837, 1.2915321588516235, 0.22969190776348114, 1.274787187576294, -0.4690888524055481, 0.1916220486164093, 0.39549392461776733, -0.684442937374115, -0.53776615858078, -0.30479520559310913, 0.7240350246429443, 0.022954586893320084, -1.1509089469909668, -0.19020184874534607, -0.2366836667060852, -0.2776508033275604, 0.22132988274097443, -1.464163064956665, -0.40606677532196045, -0.4170023202896118, -0.424586683511734, -1.4153286218643188, 0.11716590076684952, 1.2826205492019653, -0.8070477843284607, -0.3088156282901764, 0.346890926361084, 0.355557918548584, 0.568112850189209, 0.5728067755699158, -0.8535085916519165, -0.313128799200058, -0.39243534207344055, -0.2914375066757202, 0.20800712704658508, 1.1091556549072266, -0.022915903478860855, -0.9876508712768555, 0.6514925360679626, -0.3450114130973816, 0.18443363904953003, 2.0615482330322266, 0.02652362734079361, -0.7724434733390808, 0.3442292809486389, -0.6446077227592468, 1.6436845064163208, 1.7211625576019287, 1.292325496673584, -0.04524855315685272, -0.7546205520629883, 0.600374698638916, -0.2839244306087494, -0.34811609983444214, 0.8983412981033325, 0.3933351933956146, -0.29393649101257324, -1.4460186958312988, 0.5471788048744202, 1.2503893375396729, -0.6434788703918457, -0.7863115668296814, 0.01161509845405817, -0.9685826301574707, 1.3474531173706055, 0.58372962474823, 0.2706150710582733, 0.273845374584198, 1.5020023584365845, 0.7590696215629578, -0.5424851179122925, 0.4802945554256439, 0.5563621520996094, -0.24493271112442017, -2.1407110691070557, -0.8858527541160583, 0.2059946209192276, -0.35004526376724243, -1.5964337587356567, 1.4175999164581299, -1.1410425901412964, -1.029231309890747, 0.5842441916465759, 0.1385059356689453, 1.2833913564682007, 0.3592124879360199, 1.715608835220337, 2.077672004699707, 0.9016369581222534, 0.31985700130462646, 1.1123870611190796, -0.10046526044607162, -0.43383845686912537, 1.8672820329666138, -0.38612547516822815, 0.5971698760986328, 0.919601321220398, -0.4034416377544403, -1.031274676322937, -0.8907597661018372, -1.0222328901290894, -0.6407865881919861, 1.2082382440567017, 0.09594342112541199, -1.0768308639526367, 0.1731143742799759, 1.5369219779968262, 0.19865508377552032, -0.27817240357398987, 0.7148309946060181, 0.4331105947494507, -0.6914297938346863, -0.061470285058021545, -0.8540843725204468, 0.526462197303772, -0.08066104352474213, -0.24799902737140656, 0.26145413517951965, 0.5994328856468201, 1.3198156356811523, -0.06982666999101639, 0.12212740629911423, 1.107157588005066, -1.3585878610610962, 1.5130720138549805, -0.5821283459663391, 0.32311326265335083, -2.447573184967041, 1.478676676750183, -0.7476843595504761, 1.9594144821166992, -2.5147571563720703, 0.458039253950119, -0.4542093575000763, -0.4882422983646393, 0.23847658932209015, -0.5153620839118958, 0.11795192211866379, -0.14174453914165497, -0.8989810943603516, -0.07161400467157364, -0.7916466593742371, 0.6227806210517883, 1.1534370183944702, 1.4944005012512207, -1.085667610168457, -0.27520954608917236, -1.6841490268707275, -0.13050886988639832, -0.8952755331993103, 0.39193370938301086, -1.988182783126831, -0.24706171452999115, -2.071216106414795, -2.36833119392395, -1.357397437095642, -0.87067711353302, 1.0724836587905884, 0.24337993562221527, -0.902779757976532, 1.1979866027832031, -0.37602636218070984, -1.8266487121582031, 1.1818112134933472, -2.241697072982788 ]
https://github.com/huggingface/datasets/issues/5923
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility
> I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem. > > Do we need to update dependencies? This solved the issue for me as well.
### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0
112
43
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility ### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0 > I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem. > > Do we need to update dependencies? This solved the issue for me as well.
[ -1.1750595569610596, -0.872355043888092, -0.6893664002418518, 1.387781023979187, -0.05072424188256264, -1.2870230674743652, 0.0344497412443161, -1.0810635089874268, 1.4963840246200562, -0.7009853720664978, 0.2459050863981247, -1.6988246440887451, -0.17471174895763397, -0.39148375391960144, -0.624787449836731, -0.9523163437843323, -0.31673672795295715, -1.0204801559448242, 1.1082258224487305, 2.5502476692199707, 1.3889238834381104, -1.3212910890579224, 2.865058183670044, 0.6503803133964539, -0.2960011959075928, -1.0127919912338257, 0.5857762098312378, -0.015445595607161522, -1.2200380563735962, -0.5422953367233276, -0.9421238899230957, -0.027667637914419174, -0.5372564196586609, -0.3619457483291626, 0.1447877138853073, 0.5073856711387634, -0.25112754106521606, -0.2189115285873413, -0.7204452753067017, -0.7201055288314819, 0.4885539412498474, -0.36743488907814026, 0.9766443371772766, -0.3501471281051636, 1.6458054780960083, -0.5848569273948669, 0.4477384686470032, 0.7677279114723206, 1.2413440942764282, 0.10416748374700546, 0.09003046154975891, 0.23134081065654755, 0.2728288769721985, -0.05936335027217865, 0.6838019490242004, 1.17380690574646, 0.5983589887619019, 0.592458188533783, 0.6357535719871521, -2.180600166320801, 1.319359302520752, -0.8115485310554504, 0.1676984578371048, 1.3202015161514282, -0.797451376914978, 0.3412318229675293, -1.783279299736023, -0.09002761542797089, 0.5931578874588013, -2.369415521621704, 0.2301120012998581, -1.2479976415634155, -0.5402237176895142, 0.8650517463684082, 0.3148905634880066, -1.262274146080017, 0.16053403913974762, -0.5300297141075134, 1.1745017766952515, 0.5671987533569336, 1.1653072834014893, -1.6533598899841309, -0.03844662755727768, -0.07451348006725311, 0.07058517634868622, -1.3087605237960815, -1.7036614418029785, 0.5133981108665466, 0.5511937737464905, 0.7548724412918091, -0.009126023389399052, 0.9807395339012146, -1.0776124000549316, 0.804884672164917, -0.8978801369667053, -1.563247799873352, -1.3623101711273193, -2.434401273727417, -2.3020005226135254, 0.8286305069923401, -0.6267974376678467, -0.5439102649688721, 2.0369837284088135, -1.001809000968933, -1.78556227684021, 1.0185762643814087, 0.36923691630363464, 0.14912529289722443, 2.4299304485321045, 0.266590416431427, -0.7981706261634827, 0.5071750283241272, -0.6248602867126465, 0.884880542755127, -0.38206449151039124, 1.2627617120742798, 0.47867512702941895, -0.9660075306892395, 1.6611889600753784, -0.4755641520023346, 0.6529018878936768, -0.6302794218063354, -0.44428086280822754, -0.8238851428031921, 0.21528643369674683, 1.7881159782409668, -0.40472614765167236, 1.4856375455856323, -0.2838832139968872, -1.5602318048477173, -1.5107381343841553, 0.7411220669746399, 0.47281351685523987, -0.9354370832443237, 0.032792434096336365, -0.5018276572227478, 0.1914076805114746, 0.010214352048933506, 1.0956060886383057, 1.1986933946609497, 0.7031829953193665, -0.27640262246131897, -0.8697603344917297, 0.3292030990123749, -0.15312325954437256, -0.5657059550285339, -1.8452813625335693, -0.2935332655906677, 0.25773340463638306, 0.6425368189811707, -1.2464022636413574, 1.8602750301361084, 0.8772105574607849, 2.0605781078338623, 0.9275188446044922, -0.4342765808105469, 1.4265034198760986, -0.007365197874605656, 1.8316878080368042, -0.4775323271751404, 0.5467652678489685, -0.32537248730659485, -1.1295372247695923, 0.8936623930931091, -0.40654727816581726, -1.885276198387146, -0.8248898983001709, -0.7019342184066772, -0.16088788211345673, -0.7414146065711975, 0.8817585110664368, -0.3172159194946289, -1.3997986316680908, 0.05380202829837799, -0.7155614495277405, 0.23751623928546906, -1.3644402027130127, 0.18657943606376648, 0.7235620021820068, -0.684629499912262, -0.0956794023513794, -0.3710242211818695, -1.3173291683197021, -0.5374034643173218, 0.26487836241722107, 2.0257315635681152, -0.4860055446624756, 0.9360833764076233, 0.9601439237594604, -0.8172714710235596, 0.17029264569282532, 0.2627914249897003, -0.36434823274612427, 0.7476751804351807, -1.137665867805481, -0.3975706696510315, 1.1002870798110962, -0.2665652632713318, -0.7837087512016296, 1.4737935066223145, 0.883584201335907, -1.1649166345596313, -0.3519567549228668, -0.2866075038909912, -0.8689969182014465, 0.0018865149468183517, -1.4665145874023438, -0.1767105758190155, 0.36809486150741577, -1.4648253917694092, -0.2821243107318878, -0.19211672246456146, 1.3677730560302734, -0.27610549330711365, 1.5096189975738525, -0.34566980600357056, -0.11258845776319504, -0.2852354943752289, -0.5506337285041809, 0.22893956303596497, -0.19413936138153076, -0.6012383103370667, 0.1929047703742981, -0.7853508591651917, 0.2133067548274994, 1.5054562091827393, 0.4094403386116028, 0.034521497786045074, 0.4495481550693512, 1.0428012609481812, 0.4293633699417114, -0.0656907930970192, -0.8010658621788025, -1.4483245611190796, 1.976365566253662, -1.4465253353118896, 1.8555413484573364, 0.8283754587173462, -0.09049838781356812, -1.8691377639770508, -1.8606023788452148, 1.2018147706985474, 1.1291627883911133, 2.348252296447754, 0.5082865953445435, 0.5247606635093689, -0.6829772591590881, -0.8381012082099915, 0.26235297322273254, -0.9547684788703918, -0.6542972922325134, 0.21043263375759125, 2.292192220687866, 1.79254150390625, -0.6069274544715881, -0.20424149930477142, -0.7960952520370483, 1.2437858581542969, -0.26373592019081116, 0.2609119713306427, 2.0624544620513916, -0.2987498939037323, -0.914650022983551, 1.3131695985794067, -2.4343342781066895, 0.32376334071159363, 2.076084852218628, 0.2502734065055847, 0.18252089619636536, -1.4365206956863403, -0.6898121237754822, -0.3319007456302643, -0.45286139845848083, -1.3116768598556519, 0.6102344989776611, -0.25252217054367065, -0.9168146252632141, -1.4643317461013794, 0.052232302725315094, -1.1696370840072632, -1.8029705286026, 0.37162068486213684, 1.9642869234085083, 2.12312388420105, -0.853437066078186, 1.3174641132354736, -0.2682470977306366, -0.07679073512554169, 1.3306000232696533, 1.3790863752365112, 3.0434203147888184, 1.8583388328552246, -1.254201889038086, 0.7690378427505493, -0.269942969083786, -0.4986380934715271, 1.1846462488174438, -1.1091653108596802, 0.9639306664466858, -0.12565143406391144, -1.2862064838409424, -1.1998530626296997, 1.0467619895935059, 0.5039051175117493, 0.020457662642002106, -0.4256038963794708, 1.3639154434204102, 0.18172435462474823, 1.4288251399993896, 0.5899699330329895, -0.35243454575538635, 0.5262327194213867, -0.30919957160949707, -0.5519760847091675, 1.680882453918457, 0.13587528467178345, -1.5419450998306274, -2.3145077228546143, -0.29153597354888916, -0.943009614944458, -0.013730967417359352, -0.6040357947349548, -1.0041807889938354, 1.577446460723877, 0.46126097440719604, -1.1257331371307373, -0.3058643639087677, -0.2854665219783783, -0.4474412202835083, 2.654167413711548, -1.2502591609954834, -0.08571840077638626, -0.9060359001159668, -0.3969232738018036, 1.6193519830703735, -1.2771997451782227, -0.2546002268791199, -1.0096927881240845, -0.6564884781837463, -1.3214157819747925, -0.45028945803642273, 0.012491383589804173, -1.0136982202529907, 0.6625512838363647, 0.22377465665340424, -1.0948079824447632, -0.28267866373062134, -0.9101532101631165, 1.0748692750930786, -0.050997938960790634, 0.28200680017471313, 1.8737537860870361, 0.33575719594955444, -0.4782799482345581, 0.7215929627418518, 1.2249977588653564, 0.5305382609367371, -0.6540080308914185, -0.030324116349220276, -0.758411169052124, 0.42496323585510254, -1.4203710556030273, 0.07236770540475845, -3.0275115966796875, 0.788528561592102, -0.2614382207393646, -0.2081330269575119, -0.19681522250175476, -1.2633126974105835, 1.098667860031128, 2.6260335445404053, -1.1613798141479492, 0.4545367956161499, 0.49701303243637085, 1.1645745038986206, -1.5782687664031982, 0.3425605893135071, -0.4719339907169342, 2.0447916984558105, 0.1288508027791977, 1.1684932708740234, -0.520348310470581, -2.217074155807495, 0.6713230013847351, -1.1564712524414062, -0.9917401075363159, 0.8605371117591858, -0.8868844509124756, 0.3218176066875458, -1.4151132106781006, -0.04366910085082054, -0.9328762292861938, -1.2251883745193481, 0.7403448820114136, 0.03954731673002243, 0.34061577916145325, -0.534202516078949, 0.38177719712257385, -2.112764358520508, -1.383205771446228, -0.28997084498405457, -0.9325435757637024, 0.6082605123519897, -0.39408016204833984, 0.5542063117027283, -0.02017294056713581, 0.19899295270442963, 0.34565022587776184, 1.4992488622665405, 3.4082047939300537, 0.15005989372730255, 0.2277795374393463, -0.0894959345459938, -1.1300114393234253, 1.4266924858093262, 0.8700501322746277, -0.17812931537628174, -0.5399506688117981, -0.9834437966346741, 1.3862895965576172, 1.9928640127182007, 1.1689419746398926, 0.20890259742736816, -0.9086987376213074, -0.8259507417678833, -0.004358928184956312, 0.13613641262054443, 0.4977065324783325, 1.021388292312622, -0.09253449738025665, 0.020298145711421967, 1.445764422416687, 1.1780815124511719, -0.24402619898319244, 0.41248172521591187, -1.0286256074905396, -0.37042075395584106, 0.3855906128883362, 0.15589557588100433, 0.07421298325061798, 0.48081472516059875, -1.0113595724105835, -0.32701078057289124, -0.20233014225959778, -0.8335141539573669, -0.8307355642318726, -0.35313206911087036, -0.3841683566570282, 1.6746679544448853, 0.08802872151136398, -0.5011151432991028, 0.1966741532087326, -0.6290798187255859, -0.06373517960309982, -1.2007180452346802, 0.10867433995008469, -0.09615752846002579, -0.10093043744564056, -0.18137136101722717, 1.6086639165878296, -0.9546861052513123, -2.11260986328125, 0.1667999029159546, 0.3977755308151245, -0.3243917226791382, 0.18789348006248474, 1.7439159154891968, 0.47766122221946716, 1.3686708211898804, 1.289391040802002, 0.9794402718544006, -0.5748443603515625, -1.2122337818145752, 0.816046953201294, 0.9575970768928528, -1.2384103536605835, 1.0391865968704224, -0.21240703761577606, -0.5981063842773438, 0.6606868505477905, 1.3850722312927246, 0.42033448815345764, -1.9725229740142822, 0.9853309988975525, -0.9164091944694519, 0.7300408482551575, 0.6817903518676758, 0.8847261071205139, 0.24672625958919525, 0.8826847672462463, -1.2819825410842896, -1.2318660020828247, -0.6920613050460815, -0.6250723004341125, 1.8119335174560547, -0.29751744866371155, 0.5489084124565125, -0.1777523159980774, -1.2014358043670654, -0.1557403951883316, 0.785269558429718, 0.3503505289554596, -0.366720587015152, 0.9489570260047913, -0.6536756753921509, -0.9841727018356323, -1.263553500175476, -0.38657012581825256, -1.042438268661499, -0.8334935307502747, 0.9918880462646484, 0.7772841453552246, 0.44985997676849365, 1.8605623245239258, 0.565755307674408, 0.38076284527778625, -2.563293695449829, 0.8701435327529907, 0.30132603645324707, -0.018275197595357895, 0.8565800189971924, 0.28950780630111694, 1.1414563655853271, -0.06345632672309875, 0.548891007900238, -2.2497379779815674, 2.190305471420288, -0.2570265233516693, 0.5736520886421204, 0.04028569906949997, -0.1742568165063858, 1.1104941368103027, 0.5955111384391785, 0.5824854969978333, -1.1375948190689087, 0.6962860226631165, -0.6074776649475098, 1.074785828590393, 0.9162005186080933, -0.8777722716331482, 0.14503349363803864, 1.3901619911193848, 0.4531029760837555, -0.4045161008834839, -1.0340676307678223, -0.8084247708320618, 1.0525258779525757, 1.7132664918899536, -0.08970686048269272, -0.06575773656368256, 0.8379601836204529, 0.6830393075942993, -1.2147167921066284, 0.014575286768376827, -0.7018356919288635, -0.7027712464332581, 1.7754933834075928, 1.9855526685714722, -0.08683722466230392, -0.23946650326251984, -0.7319841980934143, -1.3187650442123413, 0.787314236164093, -0.15460649132728577, 0.0011848853901028633, 0.7196998596191406, -0.7227076292037964, 1.1054364442825317, 0.5349274277687073, 1.0444693565368652, -0.0235745832324028, 0.32693272829055786, 0.2541464567184448, -0.3864043951034546, -1.1257721185684204, -0.31313633918762207, -1.112126350402832, -2.6029064655303955, 0.29059717059135437, -0.25644463300704956, -1.510977864265442, 0.05810048431158066, -1.1168855428695679, 0.9103170037269592, -0.550169825553894, -1.1013438701629639, -1.3721835613250732, 0.31358134746551514, -0.21042555570602417, 0.9128382802009583, -1.6016051769256592, -0.24974653124809265, 1.2710429430007935, 0.8817070722579956, -0.5356999039649963, 0.9265440106391907, 0.25685158371925354, 1.0181306600570679, 0.7386781573295593, -0.39894899725914, 0.5773172974586487, -0.04113663360476494, -1.320256233215332, 0.3259187936782837, 1.2915321588516235, 0.22969190776348114, 1.274787187576294, -0.4690888524055481, 0.1916220486164093, 0.39549392461776733, -0.684442937374115, -0.53776615858078, -0.30479520559310913, 0.7240350246429443, 0.022954586893320084, -1.1509089469909668, -0.19020184874534607, -0.2366836667060852, -0.2776508033275604, 0.22132988274097443, -1.464163064956665, -0.40606677532196045, -0.4170023202896118, -0.424586683511734, -1.4153286218643188, 0.11716590076684952, 1.2826205492019653, -0.8070477843284607, -0.3088156282901764, 0.346890926361084, 0.355557918548584, 0.568112850189209, 0.5728067755699158, -0.8535085916519165, -0.313128799200058, -0.39243534207344055, -0.2914375066757202, 0.20800712704658508, 1.1091556549072266, -0.022915903478860855, -0.9876508712768555, 0.6514925360679626, -0.3450114130973816, 0.18443363904953003, 2.0615482330322266, 0.02652362734079361, -0.7724434733390808, 0.3442292809486389, -0.6446077227592468, 1.6436845064163208, 1.7211625576019287, 1.292325496673584, -0.04524855315685272, -0.7546205520629883, 0.600374698638916, -0.2839244306087494, -0.34811609983444214, 0.8983412981033325, 0.3933351933956146, -0.29393649101257324, -1.4460186958312988, 0.5471788048744202, 1.2503893375396729, -0.6434788703918457, -0.7863115668296814, 0.01161509845405817, -0.9685826301574707, 1.3474531173706055, 0.58372962474823, 0.2706150710582733, 0.273845374584198, 1.5020023584365845, 0.7590696215629578, -0.5424851179122925, 0.4802945554256439, 0.5563621520996094, -0.24493271112442017, -2.1407110691070557, -0.8858527541160583, 0.2059946209192276, -0.35004526376724243, -1.5964337587356567, 1.4175999164581299, -1.1410425901412964, -1.029231309890747, 0.5842441916465759, 0.1385059356689453, 1.2833913564682007, 0.3592124879360199, 1.715608835220337, 2.077672004699707, 0.9016369581222534, 0.31985700130462646, 1.1123870611190796, -0.10046526044607162, -0.43383845686912537, 1.8672820329666138, -0.38612547516822815, 0.5971698760986328, 0.919601321220398, -0.4034416377544403, -1.031274676322937, -0.8907597661018372, -1.0222328901290894, -0.6407865881919861, 1.2082382440567017, 0.09594342112541199, -1.0768308639526367, 0.1731143742799759, 1.5369219779968262, 0.19865508377552032, -0.27817240357398987, 0.7148309946060181, 0.4331105947494507, -0.6914297938346863, -0.061470285058021545, -0.8540843725204468, 0.526462197303772, -0.08066104352474213, -0.24799902737140656, 0.26145413517951965, 0.5994328856468201, 1.3198156356811523, -0.06982666999101639, 0.12212740629911423, 1.107157588005066, -1.3585878610610962, 1.5130720138549805, -0.5821283459663391, 0.32311326265335083, -2.447573184967041, 1.478676676750183, -0.7476843595504761, 1.9594144821166992, -2.5147571563720703, 0.458039253950119, -0.4542093575000763, -0.4882422983646393, 0.23847658932209015, -0.5153620839118958, 0.11795192211866379, -0.14174453914165497, -0.8989810943603516, -0.07161400467157364, -0.7916466593742371, 0.6227806210517883, 1.1534370183944702, 1.4944005012512207, -1.085667610168457, -0.27520954608917236, -1.6841490268707275, -0.13050886988639832, -0.8952755331993103, 0.39193370938301086, -1.988182783126831, -0.24706171452999115, -2.071216106414795, -2.36833119392395, -1.357397437095642, -0.87067711353302, 1.0724836587905884, 0.24337993562221527, -0.902779757976532, 1.1979866027832031, -0.37602636218070984, -1.8266487121582031, 1.1818112134933472, -2.241697072982788 ]
https://github.com/huggingface/datasets/issues/5923
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility
> I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem. > > Do we need to update dependencies? Solved it for me also
### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0
112
40
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility ### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0 > I got the same error, pyarrow 12.0.0 released May/2023 (https://pypi.org/project/pyarrow/) is not compatible, running `pip install pyarrow==11.0.0` to force install the previous version solved the problem. > > Do we need to update dependencies? Solved it for me also
[ -1.1750595569610596, -0.872355043888092, -0.6893664002418518, 1.387781023979187, -0.05072424188256264, -1.2870230674743652, 0.0344497412443161, -1.0810635089874268, 1.4963840246200562, -0.7009853720664978, 0.2459050863981247, -1.6988246440887451, -0.17471174895763397, -0.39148375391960144, -0.624787449836731, -0.9523163437843323, -0.31673672795295715, -1.0204801559448242, 1.1082258224487305, 2.5502476692199707, 1.3889238834381104, -1.3212910890579224, 2.865058183670044, 0.6503803133964539, -0.2960011959075928, -1.0127919912338257, 0.5857762098312378, -0.015445595607161522, -1.2200380563735962, -0.5422953367233276, -0.9421238899230957, -0.027667637914419174, -0.5372564196586609, -0.3619457483291626, 0.1447877138853073, 0.5073856711387634, -0.25112754106521606, -0.2189115285873413, -0.7204452753067017, -0.7201055288314819, 0.4885539412498474, -0.36743488907814026, 0.9766443371772766, -0.3501471281051636, 1.6458054780960083, -0.5848569273948669, 0.4477384686470032, 0.7677279114723206, 1.2413440942764282, 0.10416748374700546, 0.09003046154975891, 0.23134081065654755, 0.2728288769721985, -0.05936335027217865, 0.6838019490242004, 1.17380690574646, 0.5983589887619019, 0.592458188533783, 0.6357535719871521, -2.180600166320801, 1.319359302520752, -0.8115485310554504, 0.1676984578371048, 1.3202015161514282, -0.797451376914978, 0.3412318229675293, -1.783279299736023, -0.09002761542797089, 0.5931578874588013, -2.369415521621704, 0.2301120012998581, -1.2479976415634155, -0.5402237176895142, 0.8650517463684082, 0.3148905634880066, -1.262274146080017, 0.16053403913974762, -0.5300297141075134, 1.1745017766952515, 0.5671987533569336, 1.1653072834014893, -1.6533598899841309, -0.03844662755727768, -0.07451348006725311, 0.07058517634868622, -1.3087605237960815, -1.7036614418029785, 0.5133981108665466, 0.5511937737464905, 0.7548724412918091, -0.009126023389399052, 0.9807395339012146, -1.0776124000549316, 0.804884672164917, -0.8978801369667053, -1.563247799873352, -1.3623101711273193, -2.434401273727417, -2.3020005226135254, 0.8286305069923401, -0.6267974376678467, -0.5439102649688721, 2.0369837284088135, -1.001809000968933, -1.78556227684021, 1.0185762643814087, 0.36923691630363464, 0.14912529289722443, 2.4299304485321045, 0.266590416431427, -0.7981706261634827, 0.5071750283241272, -0.6248602867126465, 0.884880542755127, -0.38206449151039124, 1.2627617120742798, 0.47867512702941895, -0.9660075306892395, 1.6611889600753784, -0.4755641520023346, 0.6529018878936768, -0.6302794218063354, -0.44428086280822754, -0.8238851428031921, 0.21528643369674683, 1.7881159782409668, -0.40472614765167236, 1.4856375455856323, -0.2838832139968872, -1.5602318048477173, -1.5107381343841553, 0.7411220669746399, 0.47281351685523987, -0.9354370832443237, 0.032792434096336365, -0.5018276572227478, 0.1914076805114746, 0.010214352048933506, 1.0956060886383057, 1.1986933946609497, 0.7031829953193665, -0.27640262246131897, -0.8697603344917297, 0.3292030990123749, -0.15312325954437256, -0.5657059550285339, -1.8452813625335693, -0.2935332655906677, 0.25773340463638306, 0.6425368189811707, -1.2464022636413574, 1.8602750301361084, 0.8772105574607849, 2.0605781078338623, 0.9275188446044922, -0.4342765808105469, 1.4265034198760986, -0.007365197874605656, 1.8316878080368042, -0.4775323271751404, 0.5467652678489685, -0.32537248730659485, -1.1295372247695923, 0.8936623930931091, -0.40654727816581726, -1.885276198387146, -0.8248898983001709, -0.7019342184066772, -0.16088788211345673, -0.7414146065711975, 0.8817585110664368, -0.3172159194946289, -1.3997986316680908, 0.05380202829837799, -0.7155614495277405, 0.23751623928546906, -1.3644402027130127, 0.18657943606376648, 0.7235620021820068, -0.684629499912262, -0.0956794023513794, -0.3710242211818695, -1.3173291683197021, -0.5374034643173218, 0.26487836241722107, 2.0257315635681152, -0.4860055446624756, 0.9360833764076233, 0.9601439237594604, -0.8172714710235596, 0.17029264569282532, 0.2627914249897003, -0.36434823274612427, 0.7476751804351807, -1.137665867805481, -0.3975706696510315, 1.1002870798110962, -0.2665652632713318, -0.7837087512016296, 1.4737935066223145, 0.883584201335907, -1.1649166345596313, -0.3519567549228668, -0.2866075038909912, -0.8689969182014465, 0.0018865149468183517, -1.4665145874023438, -0.1767105758190155, 0.36809486150741577, -1.4648253917694092, -0.2821243107318878, -0.19211672246456146, 1.3677730560302734, -0.27610549330711365, 1.5096189975738525, -0.34566980600357056, -0.11258845776319504, -0.2852354943752289, -0.5506337285041809, 0.22893956303596497, -0.19413936138153076, -0.6012383103370667, 0.1929047703742981, -0.7853508591651917, 0.2133067548274994, 1.5054562091827393, 0.4094403386116028, 0.034521497786045074, 0.4495481550693512, 1.0428012609481812, 0.4293633699417114, -0.0656907930970192, -0.8010658621788025, -1.4483245611190796, 1.976365566253662, -1.4465253353118896, 1.8555413484573364, 0.8283754587173462, -0.09049838781356812, -1.8691377639770508, -1.8606023788452148, 1.2018147706985474, 1.1291627883911133, 2.348252296447754, 0.5082865953445435, 0.5247606635093689, -0.6829772591590881, -0.8381012082099915, 0.26235297322273254, -0.9547684788703918, -0.6542972922325134, 0.21043263375759125, 2.292192220687866, 1.79254150390625, -0.6069274544715881, -0.20424149930477142, -0.7960952520370483, 1.2437858581542969, -0.26373592019081116, 0.2609119713306427, 2.0624544620513916, -0.2987498939037323, -0.914650022983551, 1.3131695985794067, -2.4343342781066895, 0.32376334071159363, 2.076084852218628, 0.2502734065055847, 0.18252089619636536, -1.4365206956863403, -0.6898121237754822, -0.3319007456302643, -0.45286139845848083, -1.3116768598556519, 0.6102344989776611, -0.25252217054367065, -0.9168146252632141, -1.4643317461013794, 0.052232302725315094, -1.1696370840072632, -1.8029705286026, 0.37162068486213684, 1.9642869234085083, 2.12312388420105, -0.853437066078186, 1.3174641132354736, -0.2682470977306366, -0.07679073512554169, 1.3306000232696533, 1.3790863752365112, 3.0434203147888184, 1.8583388328552246, -1.254201889038086, 0.7690378427505493, -0.269942969083786, -0.4986380934715271, 1.1846462488174438, -1.1091653108596802, 0.9639306664466858, -0.12565143406391144, -1.2862064838409424, -1.1998530626296997, 1.0467619895935059, 0.5039051175117493, 0.020457662642002106, -0.4256038963794708, 1.3639154434204102, 0.18172435462474823, 1.4288251399993896, 0.5899699330329895, -0.35243454575538635, 0.5262327194213867, -0.30919957160949707, -0.5519760847091675, 1.680882453918457, 0.13587528467178345, -1.5419450998306274, -2.3145077228546143, -0.29153597354888916, -0.943009614944458, -0.013730967417359352, -0.6040357947349548, -1.0041807889938354, 1.577446460723877, 0.46126097440719604, -1.1257331371307373, -0.3058643639087677, -0.2854665219783783, -0.4474412202835083, 2.654167413711548, -1.2502591609954834, -0.08571840077638626, -0.9060359001159668, -0.3969232738018036, 1.6193519830703735, -1.2771997451782227, -0.2546002268791199, -1.0096927881240845, -0.6564884781837463, -1.3214157819747925, -0.45028945803642273, 0.012491383589804173, -1.0136982202529907, 0.6625512838363647, 0.22377465665340424, -1.0948079824447632, -0.28267866373062134, -0.9101532101631165, 1.0748692750930786, -0.050997938960790634, 0.28200680017471313, 1.8737537860870361, 0.33575719594955444, -0.4782799482345581, 0.7215929627418518, 1.2249977588653564, 0.5305382609367371, -0.6540080308914185, -0.030324116349220276, -0.758411169052124, 0.42496323585510254, -1.4203710556030273, 0.07236770540475845, -3.0275115966796875, 0.788528561592102, -0.2614382207393646, -0.2081330269575119, -0.19681522250175476, -1.2633126974105835, 1.098667860031128, 2.6260335445404053, -1.1613798141479492, 0.4545367956161499, 0.49701303243637085, 1.1645745038986206, -1.5782687664031982, 0.3425605893135071, -0.4719339907169342, 2.0447916984558105, 0.1288508027791977, 1.1684932708740234, -0.520348310470581, -2.217074155807495, 0.6713230013847351, -1.1564712524414062, -0.9917401075363159, 0.8605371117591858, -0.8868844509124756, 0.3218176066875458, -1.4151132106781006, -0.04366910085082054, -0.9328762292861938, -1.2251883745193481, 0.7403448820114136, 0.03954731673002243, 0.34061577916145325, -0.534202516078949, 0.38177719712257385, -2.112764358520508, -1.383205771446228, -0.28997084498405457, -0.9325435757637024, 0.6082605123519897, -0.39408016204833984, 0.5542063117027283, -0.02017294056713581, 0.19899295270442963, 0.34565022587776184, 1.4992488622665405, 3.4082047939300537, 0.15005989372730255, 0.2277795374393463, -0.0894959345459938, -1.1300114393234253, 1.4266924858093262, 0.8700501322746277, -0.17812931537628174, -0.5399506688117981, -0.9834437966346741, 1.3862895965576172, 1.9928640127182007, 1.1689419746398926, 0.20890259742736816, -0.9086987376213074, -0.8259507417678833, -0.004358928184956312, 0.13613641262054443, 0.4977065324783325, 1.021388292312622, -0.09253449738025665, 0.020298145711421967, 1.445764422416687, 1.1780815124511719, -0.24402619898319244, 0.41248172521591187, -1.0286256074905396, -0.37042075395584106, 0.3855906128883362, 0.15589557588100433, 0.07421298325061798, 0.48081472516059875, -1.0113595724105835, -0.32701078057289124, -0.20233014225959778, -0.8335141539573669, -0.8307355642318726, -0.35313206911087036, -0.3841683566570282, 1.6746679544448853, 0.08802872151136398, -0.5011151432991028, 0.1966741532087326, -0.6290798187255859, -0.06373517960309982, -1.2007180452346802, 0.10867433995008469, -0.09615752846002579, -0.10093043744564056, -0.18137136101722717, 1.6086639165878296, -0.9546861052513123, -2.11260986328125, 0.1667999029159546, 0.3977755308151245, -0.3243917226791382, 0.18789348006248474, 1.7439159154891968, 0.47766122221946716, 1.3686708211898804, 1.289391040802002, 0.9794402718544006, -0.5748443603515625, -1.2122337818145752, 0.816046953201294, 0.9575970768928528, -1.2384103536605835, 1.0391865968704224, -0.21240703761577606, -0.5981063842773438, 0.6606868505477905, 1.3850722312927246, 0.42033448815345764, -1.9725229740142822, 0.9853309988975525, -0.9164091944694519, 0.7300408482551575, 0.6817903518676758, 0.8847261071205139, 0.24672625958919525, 0.8826847672462463, -1.2819825410842896, -1.2318660020828247, -0.6920613050460815, -0.6250723004341125, 1.8119335174560547, -0.29751744866371155, 0.5489084124565125, -0.1777523159980774, -1.2014358043670654, -0.1557403951883316, 0.785269558429718, 0.3503505289554596, -0.366720587015152, 0.9489570260047913, -0.6536756753921509, -0.9841727018356323, -1.263553500175476, -0.38657012581825256, -1.042438268661499, -0.8334935307502747, 0.9918880462646484, 0.7772841453552246, 0.44985997676849365, 1.8605623245239258, 0.565755307674408, 0.38076284527778625, -2.563293695449829, 0.8701435327529907, 0.30132603645324707, -0.018275197595357895, 0.8565800189971924, 0.28950780630111694, 1.1414563655853271, -0.06345632672309875, 0.548891007900238, -2.2497379779815674, 2.190305471420288, -0.2570265233516693, 0.5736520886421204, 0.04028569906949997, -0.1742568165063858, 1.1104941368103027, 0.5955111384391785, 0.5824854969978333, -1.1375948190689087, 0.6962860226631165, -0.6074776649475098, 1.074785828590393, 0.9162005186080933, -0.8777722716331482, 0.14503349363803864, 1.3901619911193848, 0.4531029760837555, -0.4045161008834839, -1.0340676307678223, -0.8084247708320618, 1.0525258779525757, 1.7132664918899536, -0.08970686048269272, -0.06575773656368256, 0.8379601836204529, 0.6830393075942993, -1.2147167921066284, 0.014575286768376827, -0.7018356919288635, -0.7027712464332581, 1.7754933834075928, 1.9855526685714722, -0.08683722466230392, -0.23946650326251984, -0.7319841980934143, -1.3187650442123413, 0.787314236164093, -0.15460649132728577, 0.0011848853901028633, 0.7196998596191406, -0.7227076292037964, 1.1054364442825317, 0.5349274277687073, 1.0444693565368652, -0.0235745832324028, 0.32693272829055786, 0.2541464567184448, -0.3864043951034546, -1.1257721185684204, -0.31313633918762207, -1.112126350402832, -2.6029064655303955, 0.29059717059135437, -0.25644463300704956, -1.510977864265442, 0.05810048431158066, -1.1168855428695679, 0.9103170037269592, -0.550169825553894, -1.1013438701629639, -1.3721835613250732, 0.31358134746551514, -0.21042555570602417, 0.9128382802009583, -1.6016051769256592, -0.24974653124809265, 1.2710429430007935, 0.8817070722579956, -0.5356999039649963, 0.9265440106391907, 0.25685158371925354, 1.0181306600570679, 0.7386781573295593, -0.39894899725914, 0.5773172974586487, -0.04113663360476494, -1.320256233215332, 0.3259187936782837, 1.2915321588516235, 0.22969190776348114, 1.274787187576294, -0.4690888524055481, 0.1916220486164093, 0.39549392461776733, -0.684442937374115, -0.53776615858078, -0.30479520559310913, 0.7240350246429443, 0.022954586893320084, -1.1509089469909668, -0.19020184874534607, -0.2366836667060852, -0.2776508033275604, 0.22132988274097443, -1.464163064956665, -0.40606677532196045, -0.4170023202896118, -0.424586683511734, -1.4153286218643188, 0.11716590076684952, 1.2826205492019653, -0.8070477843284607, -0.3088156282901764, 0.346890926361084, 0.355557918548584, 0.568112850189209, 0.5728067755699158, -0.8535085916519165, -0.313128799200058, -0.39243534207344055, -0.2914375066757202, 0.20800712704658508, 1.1091556549072266, -0.022915903478860855, -0.9876508712768555, 0.6514925360679626, -0.3450114130973816, 0.18443363904953003, 2.0615482330322266, 0.02652362734079361, -0.7724434733390808, 0.3442292809486389, -0.6446077227592468, 1.6436845064163208, 1.7211625576019287, 1.292325496673584, -0.04524855315685272, -0.7546205520629883, 0.600374698638916, -0.2839244306087494, -0.34811609983444214, 0.8983412981033325, 0.3933351933956146, -0.29393649101257324, -1.4460186958312988, 0.5471788048744202, 1.2503893375396729, -0.6434788703918457, -0.7863115668296814, 0.01161509845405817, -0.9685826301574707, 1.3474531173706055, 0.58372962474823, 0.2706150710582733, 0.273845374584198, 1.5020023584365845, 0.7590696215629578, -0.5424851179122925, 0.4802945554256439, 0.5563621520996094, -0.24493271112442017, -2.1407110691070557, -0.8858527541160583, 0.2059946209192276, -0.35004526376724243, -1.5964337587356567, 1.4175999164581299, -1.1410425901412964, -1.029231309890747, 0.5842441916465759, 0.1385059356689453, 1.2833913564682007, 0.3592124879360199, 1.715608835220337, 2.077672004699707, 0.9016369581222534, 0.31985700130462646, 1.1123870611190796, -0.10046526044607162, -0.43383845686912537, 1.8672820329666138, -0.38612547516822815, 0.5971698760986328, 0.919601321220398, -0.4034416377544403, -1.031274676322937, -0.8907597661018372, -1.0222328901290894, -0.6407865881919861, 1.2082382440567017, 0.09594342112541199, -1.0768308639526367, 0.1731143742799759, 1.5369219779968262, 0.19865508377552032, -0.27817240357398987, 0.7148309946060181, 0.4331105947494507, -0.6914297938346863, -0.061470285058021545, -0.8540843725204468, 0.526462197303772, -0.08066104352474213, -0.24799902737140656, 0.26145413517951965, 0.5994328856468201, 1.3198156356811523, -0.06982666999101639, 0.12212740629911423, 1.107157588005066, -1.3585878610610962, 1.5130720138549805, -0.5821283459663391, 0.32311326265335083, -2.447573184967041, 1.478676676750183, -0.7476843595504761, 1.9594144821166992, -2.5147571563720703, 0.458039253950119, -0.4542093575000763, -0.4882422983646393, 0.23847658932209015, -0.5153620839118958, 0.11795192211866379, -0.14174453914165497, -0.8989810943603516, -0.07161400467157364, -0.7916466593742371, 0.6227806210517883, 1.1534370183944702, 1.4944005012512207, -1.085667610168457, -0.27520954608917236, -1.6841490268707275, -0.13050886988639832, -0.8952755331993103, 0.39193370938301086, -1.988182783126831, -0.24706171452999115, -2.071216106414795, -2.36833119392395, -1.357397437095642, -0.87067711353302, 1.0724836587905884, 0.24337993562221527, -0.902779757976532, 1.1979866027832031, -0.37602636218070984, -1.8266487121582031, 1.1818112134933472, -2.241697072982788 ]
https://github.com/huggingface/datasets/issues/5923
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility
> 基于 [rapidsai/cudf#10187](https://github.com/rapidsai/cudf/issues/10187),这可能意味着您的安装与 不兼容。`pyarrow``datasets` > > 您能否在终端中执行以下命令并将输出粘贴到此处? > > ``` > conda list | grep arrow > ``` > > ``` > python -c "import pyarrow; print(pyarrow.__file__)" > ``` arrow-cpp 11.0.0 py310h7516544_0 pyarrow 12.0.1 pypi_0 pypi /root/miniconda3/lib/python3.10/site-packages/pyarrow/__init__.py
### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0
112
37
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility ### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0 > 基于 [rapidsai/cudf#10187](https://github.com/rapidsai/cudf/issues/10187),这可能意味着您的安装与 不兼容。`pyarrow``datasets` > > 您能否在终端中执行以下命令并将输出粘贴到此处? > > ``` > conda list | grep arrow > ``` > > ``` > python -c "import pyarrow; print(pyarrow.__file__)" > ``` arrow-cpp 11.0.0 py310h7516544_0 pyarrow 12.0.1 pypi_0 pypi /root/miniconda3/lib/python3.10/site-packages/pyarrow/__init__.py
[ -1.1750595569610596, -0.872355043888092, -0.6893664002418518, 1.387781023979187, -0.05072424188256264, -1.2870230674743652, 0.0344497412443161, -1.0810635089874268, 1.4963840246200562, -0.7009853720664978, 0.2459050863981247, -1.6988246440887451, -0.17471174895763397, -0.39148375391960144, -0.624787449836731, -0.9523163437843323, -0.31673672795295715, -1.0204801559448242, 1.1082258224487305, 2.5502476692199707, 1.3889238834381104, -1.3212910890579224, 2.865058183670044, 0.6503803133964539, -0.2960011959075928, -1.0127919912338257, 0.5857762098312378, -0.015445595607161522, -1.2200380563735962, -0.5422953367233276, -0.9421238899230957, -0.027667637914419174, -0.5372564196586609, -0.3619457483291626, 0.1447877138853073, 0.5073856711387634, -0.25112754106521606, -0.2189115285873413, -0.7204452753067017, -0.7201055288314819, 0.4885539412498474, -0.36743488907814026, 0.9766443371772766, -0.3501471281051636, 1.6458054780960083, -0.5848569273948669, 0.4477384686470032, 0.7677279114723206, 1.2413440942764282, 0.10416748374700546, 0.09003046154975891, 0.23134081065654755, 0.2728288769721985, -0.05936335027217865, 0.6838019490242004, 1.17380690574646, 0.5983589887619019, 0.592458188533783, 0.6357535719871521, -2.180600166320801, 1.319359302520752, -0.8115485310554504, 0.1676984578371048, 1.3202015161514282, -0.797451376914978, 0.3412318229675293, -1.783279299736023, -0.09002761542797089, 0.5931578874588013, -2.369415521621704, 0.2301120012998581, -1.2479976415634155, -0.5402237176895142, 0.8650517463684082, 0.3148905634880066, -1.262274146080017, 0.16053403913974762, -0.5300297141075134, 1.1745017766952515, 0.5671987533569336, 1.1653072834014893, -1.6533598899841309, -0.03844662755727768, -0.07451348006725311, 0.07058517634868622, -1.3087605237960815, -1.7036614418029785, 0.5133981108665466, 0.5511937737464905, 0.7548724412918091, -0.009126023389399052, 0.9807395339012146, -1.0776124000549316, 0.804884672164917, -0.8978801369667053, -1.563247799873352, -1.3623101711273193, -2.434401273727417, -2.3020005226135254, 0.8286305069923401, -0.6267974376678467, -0.5439102649688721, 2.0369837284088135, -1.001809000968933, -1.78556227684021, 1.0185762643814087, 0.36923691630363464, 0.14912529289722443, 2.4299304485321045, 0.266590416431427, -0.7981706261634827, 0.5071750283241272, -0.6248602867126465, 0.884880542755127, -0.38206449151039124, 1.2627617120742798, 0.47867512702941895, -0.9660075306892395, 1.6611889600753784, -0.4755641520023346, 0.6529018878936768, -0.6302794218063354, -0.44428086280822754, -0.8238851428031921, 0.21528643369674683, 1.7881159782409668, -0.40472614765167236, 1.4856375455856323, -0.2838832139968872, -1.5602318048477173, -1.5107381343841553, 0.7411220669746399, 0.47281351685523987, -0.9354370832443237, 0.032792434096336365, -0.5018276572227478, 0.1914076805114746, 0.010214352048933506, 1.0956060886383057, 1.1986933946609497, 0.7031829953193665, -0.27640262246131897, -0.8697603344917297, 0.3292030990123749, -0.15312325954437256, -0.5657059550285339, -1.8452813625335693, -0.2935332655906677, 0.25773340463638306, 0.6425368189811707, -1.2464022636413574, 1.8602750301361084, 0.8772105574607849, 2.0605781078338623, 0.9275188446044922, -0.4342765808105469, 1.4265034198760986, -0.007365197874605656, 1.8316878080368042, -0.4775323271751404, 0.5467652678489685, -0.32537248730659485, -1.1295372247695923, 0.8936623930931091, -0.40654727816581726, -1.885276198387146, -0.8248898983001709, -0.7019342184066772, -0.16088788211345673, -0.7414146065711975, 0.8817585110664368, -0.3172159194946289, -1.3997986316680908, 0.05380202829837799, -0.7155614495277405, 0.23751623928546906, -1.3644402027130127, 0.18657943606376648, 0.7235620021820068, -0.684629499912262, -0.0956794023513794, -0.3710242211818695, -1.3173291683197021, -0.5374034643173218, 0.26487836241722107, 2.0257315635681152, -0.4860055446624756, 0.9360833764076233, 0.9601439237594604, -0.8172714710235596, 0.17029264569282532, 0.2627914249897003, -0.36434823274612427, 0.7476751804351807, -1.137665867805481, -0.3975706696510315, 1.1002870798110962, -0.2665652632713318, -0.7837087512016296, 1.4737935066223145, 0.883584201335907, -1.1649166345596313, -0.3519567549228668, -0.2866075038909912, -0.8689969182014465, 0.0018865149468183517, -1.4665145874023438, -0.1767105758190155, 0.36809486150741577, -1.4648253917694092, -0.2821243107318878, -0.19211672246456146, 1.3677730560302734, -0.27610549330711365, 1.5096189975738525, -0.34566980600357056, -0.11258845776319504, -0.2852354943752289, -0.5506337285041809, 0.22893956303596497, -0.19413936138153076, -0.6012383103370667, 0.1929047703742981, -0.7853508591651917, 0.2133067548274994, 1.5054562091827393, 0.4094403386116028, 0.034521497786045074, 0.4495481550693512, 1.0428012609481812, 0.4293633699417114, -0.0656907930970192, -0.8010658621788025, -1.4483245611190796, 1.976365566253662, -1.4465253353118896, 1.8555413484573364, 0.8283754587173462, -0.09049838781356812, -1.8691377639770508, -1.8606023788452148, 1.2018147706985474, 1.1291627883911133, 2.348252296447754, 0.5082865953445435, 0.5247606635093689, -0.6829772591590881, -0.8381012082099915, 0.26235297322273254, -0.9547684788703918, -0.6542972922325134, 0.21043263375759125, 2.292192220687866, 1.79254150390625, -0.6069274544715881, -0.20424149930477142, -0.7960952520370483, 1.2437858581542969, -0.26373592019081116, 0.2609119713306427, 2.0624544620513916, -0.2987498939037323, -0.914650022983551, 1.3131695985794067, -2.4343342781066895, 0.32376334071159363, 2.076084852218628, 0.2502734065055847, 0.18252089619636536, -1.4365206956863403, -0.6898121237754822, -0.3319007456302643, -0.45286139845848083, -1.3116768598556519, 0.6102344989776611, -0.25252217054367065, -0.9168146252632141, -1.4643317461013794, 0.052232302725315094, -1.1696370840072632, -1.8029705286026, 0.37162068486213684, 1.9642869234085083, 2.12312388420105, -0.853437066078186, 1.3174641132354736, -0.2682470977306366, -0.07679073512554169, 1.3306000232696533, 1.3790863752365112, 3.0434203147888184, 1.8583388328552246, -1.254201889038086, 0.7690378427505493, -0.269942969083786, -0.4986380934715271, 1.1846462488174438, -1.1091653108596802, 0.9639306664466858, -0.12565143406391144, -1.2862064838409424, -1.1998530626296997, 1.0467619895935059, 0.5039051175117493, 0.020457662642002106, -0.4256038963794708, 1.3639154434204102, 0.18172435462474823, 1.4288251399993896, 0.5899699330329895, -0.35243454575538635, 0.5262327194213867, -0.30919957160949707, -0.5519760847091675, 1.680882453918457, 0.13587528467178345, -1.5419450998306274, -2.3145077228546143, -0.29153597354888916, -0.943009614944458, -0.013730967417359352, -0.6040357947349548, -1.0041807889938354, 1.577446460723877, 0.46126097440719604, -1.1257331371307373, -0.3058643639087677, -0.2854665219783783, -0.4474412202835083, 2.654167413711548, -1.2502591609954834, -0.08571840077638626, -0.9060359001159668, -0.3969232738018036, 1.6193519830703735, -1.2771997451782227, -0.2546002268791199, -1.0096927881240845, -0.6564884781837463, -1.3214157819747925, -0.45028945803642273, 0.012491383589804173, -1.0136982202529907, 0.6625512838363647, 0.22377465665340424, -1.0948079824447632, -0.28267866373062134, -0.9101532101631165, 1.0748692750930786, -0.050997938960790634, 0.28200680017471313, 1.8737537860870361, 0.33575719594955444, -0.4782799482345581, 0.7215929627418518, 1.2249977588653564, 0.5305382609367371, -0.6540080308914185, -0.030324116349220276, -0.758411169052124, 0.42496323585510254, -1.4203710556030273, 0.07236770540475845, -3.0275115966796875, 0.788528561592102, -0.2614382207393646, -0.2081330269575119, -0.19681522250175476, -1.2633126974105835, 1.098667860031128, 2.6260335445404053, -1.1613798141479492, 0.4545367956161499, 0.49701303243637085, 1.1645745038986206, -1.5782687664031982, 0.3425605893135071, -0.4719339907169342, 2.0447916984558105, 0.1288508027791977, 1.1684932708740234, -0.520348310470581, -2.217074155807495, 0.6713230013847351, -1.1564712524414062, -0.9917401075363159, 0.8605371117591858, -0.8868844509124756, 0.3218176066875458, -1.4151132106781006, -0.04366910085082054, -0.9328762292861938, -1.2251883745193481, 0.7403448820114136, 0.03954731673002243, 0.34061577916145325, -0.534202516078949, 0.38177719712257385, -2.112764358520508, -1.383205771446228, -0.28997084498405457, -0.9325435757637024, 0.6082605123519897, -0.39408016204833984, 0.5542063117027283, -0.02017294056713581, 0.19899295270442963, 0.34565022587776184, 1.4992488622665405, 3.4082047939300537, 0.15005989372730255, 0.2277795374393463, -0.0894959345459938, -1.1300114393234253, 1.4266924858093262, 0.8700501322746277, -0.17812931537628174, -0.5399506688117981, -0.9834437966346741, 1.3862895965576172, 1.9928640127182007, 1.1689419746398926, 0.20890259742736816, -0.9086987376213074, -0.8259507417678833, -0.004358928184956312, 0.13613641262054443, 0.4977065324783325, 1.021388292312622, -0.09253449738025665, 0.020298145711421967, 1.445764422416687, 1.1780815124511719, -0.24402619898319244, 0.41248172521591187, -1.0286256074905396, -0.37042075395584106, 0.3855906128883362, 0.15589557588100433, 0.07421298325061798, 0.48081472516059875, -1.0113595724105835, -0.32701078057289124, -0.20233014225959778, -0.8335141539573669, -0.8307355642318726, -0.35313206911087036, -0.3841683566570282, 1.6746679544448853, 0.08802872151136398, -0.5011151432991028, 0.1966741532087326, -0.6290798187255859, -0.06373517960309982, -1.2007180452346802, 0.10867433995008469, -0.09615752846002579, -0.10093043744564056, -0.18137136101722717, 1.6086639165878296, -0.9546861052513123, -2.11260986328125, 0.1667999029159546, 0.3977755308151245, -0.3243917226791382, 0.18789348006248474, 1.7439159154891968, 0.47766122221946716, 1.3686708211898804, 1.289391040802002, 0.9794402718544006, -0.5748443603515625, -1.2122337818145752, 0.816046953201294, 0.9575970768928528, -1.2384103536605835, 1.0391865968704224, -0.21240703761577606, -0.5981063842773438, 0.6606868505477905, 1.3850722312927246, 0.42033448815345764, -1.9725229740142822, 0.9853309988975525, -0.9164091944694519, 0.7300408482551575, 0.6817903518676758, 0.8847261071205139, 0.24672625958919525, 0.8826847672462463, -1.2819825410842896, -1.2318660020828247, -0.6920613050460815, -0.6250723004341125, 1.8119335174560547, -0.29751744866371155, 0.5489084124565125, -0.1777523159980774, -1.2014358043670654, -0.1557403951883316, 0.785269558429718, 0.3503505289554596, -0.366720587015152, 0.9489570260047913, -0.6536756753921509, -0.9841727018356323, -1.263553500175476, -0.38657012581825256, -1.042438268661499, -0.8334935307502747, 0.9918880462646484, 0.7772841453552246, 0.44985997676849365, 1.8605623245239258, 0.565755307674408, 0.38076284527778625, -2.563293695449829, 0.8701435327529907, 0.30132603645324707, -0.018275197595357895, 0.8565800189971924, 0.28950780630111694, 1.1414563655853271, -0.06345632672309875, 0.548891007900238, -2.2497379779815674, 2.190305471420288, -0.2570265233516693, 0.5736520886421204, 0.04028569906949997, -0.1742568165063858, 1.1104941368103027, 0.5955111384391785, 0.5824854969978333, -1.1375948190689087, 0.6962860226631165, -0.6074776649475098, 1.074785828590393, 0.9162005186080933, -0.8777722716331482, 0.14503349363803864, 1.3901619911193848, 0.4531029760837555, -0.4045161008834839, -1.0340676307678223, -0.8084247708320618, 1.0525258779525757, 1.7132664918899536, -0.08970686048269272, -0.06575773656368256, 0.8379601836204529, 0.6830393075942993, -1.2147167921066284, 0.014575286768376827, -0.7018356919288635, -0.7027712464332581, 1.7754933834075928, 1.9855526685714722, -0.08683722466230392, -0.23946650326251984, -0.7319841980934143, -1.3187650442123413, 0.787314236164093, -0.15460649132728577, 0.0011848853901028633, 0.7196998596191406, -0.7227076292037964, 1.1054364442825317, 0.5349274277687073, 1.0444693565368652, -0.0235745832324028, 0.32693272829055786, 0.2541464567184448, -0.3864043951034546, -1.1257721185684204, -0.31313633918762207, -1.112126350402832, -2.6029064655303955, 0.29059717059135437, -0.25644463300704956, -1.510977864265442, 0.05810048431158066, -1.1168855428695679, 0.9103170037269592, -0.550169825553894, -1.1013438701629639, -1.3721835613250732, 0.31358134746551514, -0.21042555570602417, 0.9128382802009583, -1.6016051769256592, -0.24974653124809265, 1.2710429430007935, 0.8817070722579956, -0.5356999039649963, 0.9265440106391907, 0.25685158371925354, 1.0181306600570679, 0.7386781573295593, -0.39894899725914, 0.5773172974586487, -0.04113663360476494, -1.320256233215332, 0.3259187936782837, 1.2915321588516235, 0.22969190776348114, 1.274787187576294, -0.4690888524055481, 0.1916220486164093, 0.39549392461776733, -0.684442937374115, -0.53776615858078, -0.30479520559310913, 0.7240350246429443, 0.022954586893320084, -1.1509089469909668, -0.19020184874534607, -0.2366836667060852, -0.2776508033275604, 0.22132988274097443, -1.464163064956665, -0.40606677532196045, -0.4170023202896118, -0.424586683511734, -1.4153286218643188, 0.11716590076684952, 1.2826205492019653, -0.8070477843284607, -0.3088156282901764, 0.346890926361084, 0.355557918548584, 0.568112850189209, 0.5728067755699158, -0.8535085916519165, -0.313128799200058, -0.39243534207344055, -0.2914375066757202, 0.20800712704658508, 1.1091556549072266, -0.022915903478860855, -0.9876508712768555, 0.6514925360679626, -0.3450114130973816, 0.18443363904953003, 2.0615482330322266, 0.02652362734079361, -0.7724434733390808, 0.3442292809486389, -0.6446077227592468, 1.6436845064163208, 1.7211625576019287, 1.292325496673584, -0.04524855315685272, -0.7546205520629883, 0.600374698638916, -0.2839244306087494, -0.34811609983444214, 0.8983412981033325, 0.3933351933956146, -0.29393649101257324, -1.4460186958312988, 0.5471788048744202, 1.2503893375396729, -0.6434788703918457, -0.7863115668296814, 0.01161509845405817, -0.9685826301574707, 1.3474531173706055, 0.58372962474823, 0.2706150710582733, 0.273845374584198, 1.5020023584365845, 0.7590696215629578, -0.5424851179122925, 0.4802945554256439, 0.5563621520996094, -0.24493271112442017, -2.1407110691070557, -0.8858527541160583, 0.2059946209192276, -0.35004526376724243, -1.5964337587356567, 1.4175999164581299, -1.1410425901412964, -1.029231309890747, 0.5842441916465759, 0.1385059356689453, 1.2833913564682007, 0.3592124879360199, 1.715608835220337, 2.077672004699707, 0.9016369581222534, 0.31985700130462646, 1.1123870611190796, -0.10046526044607162, -0.43383845686912537, 1.8672820329666138, -0.38612547516822815, 0.5971698760986328, 0.919601321220398, -0.4034416377544403, -1.031274676322937, -0.8907597661018372, -1.0222328901290894, -0.6407865881919861, 1.2082382440567017, 0.09594342112541199, -1.0768308639526367, 0.1731143742799759, 1.5369219779968262, 0.19865508377552032, -0.27817240357398987, 0.7148309946060181, 0.4331105947494507, -0.6914297938346863, -0.061470285058021545, -0.8540843725204468, 0.526462197303772, -0.08066104352474213, -0.24799902737140656, 0.26145413517951965, 0.5994328856468201, 1.3198156356811523, -0.06982666999101639, 0.12212740629911423, 1.107157588005066, -1.3585878610610962, 1.5130720138549805, -0.5821283459663391, 0.32311326265335083, -2.447573184967041, 1.478676676750183, -0.7476843595504761, 1.9594144821166992, -2.5147571563720703, 0.458039253950119, -0.4542093575000763, -0.4882422983646393, 0.23847658932209015, -0.5153620839118958, 0.11795192211866379, -0.14174453914165497, -0.8989810943603516, -0.07161400467157364, -0.7916466593742371, 0.6227806210517883, 1.1534370183944702, 1.4944005012512207, -1.085667610168457, -0.27520954608917236, -1.6841490268707275, -0.13050886988639832, -0.8952755331993103, 0.39193370938301086, -1.988182783126831, -0.24706171452999115, -2.071216106414795, -2.36833119392395, -1.357397437095642, -0.87067711353302, 1.0724836587905884, 0.24337993562221527, -0.902779757976532, 1.1979866027832031, -0.37602636218070984, -1.8266487121582031, 1.1818112134933472, -2.241697072982788 ]
https://github.com/huggingface/datasets/issues/5923
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility
Got the same problem with arrow-cpp 11.0.0 py310h1fc3239_0 pyarrow 12.0.1 pypi_0 pypi miniforge3/envs/mlp/lib/python3.10/site-packages/pyarrow/__init__.py Reverting back to pyarrow 11 solved the problem.
### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0
112
21
Cannot import datasets - ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility ### Describe the bug When trying to import datasets, I get a pyarrow ValueError: Traceback (most recent call last): File "/Users/edward/test/test.py", line 1, in <module> import datasets File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/__init__.py", line 43, in <module> from .arrow_dataset import Dataset File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 65, in <module> from .arrow_reader import ArrowReader File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/datasets/arrow_reader.py", line 28, in <module> import pyarrow.parquet as pq File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/__init__.py", line 20, in <module> from .core import * File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 45, in <module> from pyarrow.fs import (LocalFileSystem, FileSystem, FileType, File "/Users/edward/opt/anaconda3/envs/cs235/lib/python3.9/site-packages/pyarrow/fs.py", line 49, in <module> from pyarrow._gcsfs import GcsFileSystem # noqa File "pyarrow/_gcsfs.pyx", line 1, in init pyarrow._gcsfs ValueError: pyarrow.lib.IpcWriteOptions size changed, may indicate binary incompatibility. Expected 88 from C header, got 72 from PyObject ### Steps to reproduce the bug `import datasets` ### Expected behavior Successful import ### Environment info Conda environment, MacOS python 3.9.12 datasets 2.12.0 Got the same problem with arrow-cpp 11.0.0 py310h1fc3239_0 pyarrow 12.0.1 pypi_0 pypi miniforge3/envs/mlp/lib/python3.10/site-packages/pyarrow/__init__.py Reverting back to pyarrow 11 solved the problem.
[ -1.1750595569610596, -0.872355043888092, -0.6893664002418518, 1.387781023979187, -0.05072424188256264, -1.2870230674743652, 0.0344497412443161, -1.0810635089874268, 1.4963840246200562, -0.7009853720664978, 0.2459050863981247, -1.6988246440887451, -0.17471174895763397, -0.39148375391960144, -0.624787449836731, -0.9523163437843323, -0.31673672795295715, -1.0204801559448242, 1.1082258224487305, 2.5502476692199707, 1.3889238834381104, -1.3212910890579224, 2.865058183670044, 0.6503803133964539, -0.2960011959075928, -1.0127919912338257, 0.5857762098312378, -0.015445595607161522, -1.2200380563735962, -0.5422953367233276, -0.9421238899230957, -0.027667637914419174, -0.5372564196586609, -0.3619457483291626, 0.1447877138853073, 0.5073856711387634, -0.25112754106521606, -0.2189115285873413, -0.7204452753067017, -0.7201055288314819, 0.4885539412498474, -0.36743488907814026, 0.9766443371772766, -0.3501471281051636, 1.6458054780960083, -0.5848569273948669, 0.4477384686470032, 0.7677279114723206, 1.2413440942764282, 0.10416748374700546, 0.09003046154975891, 0.23134081065654755, 0.2728288769721985, -0.05936335027217865, 0.6838019490242004, 1.17380690574646, 0.5983589887619019, 0.592458188533783, 0.6357535719871521, -2.180600166320801, 1.319359302520752, -0.8115485310554504, 0.1676984578371048, 1.3202015161514282, -0.797451376914978, 0.3412318229675293, -1.783279299736023, -0.09002761542797089, 0.5931578874588013, -2.369415521621704, 0.2301120012998581, -1.2479976415634155, -0.5402237176895142, 0.8650517463684082, 0.3148905634880066, -1.262274146080017, 0.16053403913974762, -0.5300297141075134, 1.1745017766952515, 0.5671987533569336, 1.1653072834014893, -1.6533598899841309, -0.03844662755727768, -0.07451348006725311, 0.07058517634868622, -1.3087605237960815, -1.7036614418029785, 0.5133981108665466, 0.5511937737464905, 0.7548724412918091, -0.009126023389399052, 0.9807395339012146, -1.0776124000549316, 0.804884672164917, -0.8978801369667053, -1.563247799873352, -1.3623101711273193, -2.434401273727417, -2.3020005226135254, 0.8286305069923401, -0.6267974376678467, -0.5439102649688721, 2.0369837284088135, -1.001809000968933, -1.78556227684021, 1.0185762643814087, 0.36923691630363464, 0.14912529289722443, 2.4299304485321045, 0.266590416431427, -0.7981706261634827, 0.5071750283241272, -0.6248602867126465, 0.884880542755127, -0.38206449151039124, 1.2627617120742798, 0.47867512702941895, -0.9660075306892395, 1.6611889600753784, -0.4755641520023346, 0.6529018878936768, -0.6302794218063354, -0.44428086280822754, -0.8238851428031921, 0.21528643369674683, 1.7881159782409668, -0.40472614765167236, 1.4856375455856323, -0.2838832139968872, -1.5602318048477173, -1.5107381343841553, 0.7411220669746399, 0.47281351685523987, -0.9354370832443237, 0.032792434096336365, -0.5018276572227478, 0.1914076805114746, 0.010214352048933506, 1.0956060886383057, 1.1986933946609497, 0.7031829953193665, -0.27640262246131897, -0.8697603344917297, 0.3292030990123749, -0.15312325954437256, -0.5657059550285339, -1.8452813625335693, -0.2935332655906677, 0.25773340463638306, 0.6425368189811707, -1.2464022636413574, 1.8602750301361084, 0.8772105574607849, 2.0605781078338623, 0.9275188446044922, -0.4342765808105469, 1.4265034198760986, -0.007365197874605656, 1.8316878080368042, -0.4775323271751404, 0.5467652678489685, -0.32537248730659485, -1.1295372247695923, 0.8936623930931091, -0.40654727816581726, -1.885276198387146, -0.8248898983001709, -0.7019342184066772, -0.16088788211345673, -0.7414146065711975, 0.8817585110664368, -0.3172159194946289, -1.3997986316680908, 0.05380202829837799, -0.7155614495277405, 0.23751623928546906, -1.3644402027130127, 0.18657943606376648, 0.7235620021820068, -0.684629499912262, -0.0956794023513794, -0.3710242211818695, -1.3173291683197021, -0.5374034643173218, 0.26487836241722107, 2.0257315635681152, -0.4860055446624756, 0.9360833764076233, 0.9601439237594604, -0.8172714710235596, 0.17029264569282532, 0.2627914249897003, -0.36434823274612427, 0.7476751804351807, -1.137665867805481, -0.3975706696510315, 1.1002870798110962, -0.2665652632713318, -0.7837087512016296, 1.4737935066223145, 0.883584201335907, -1.1649166345596313, -0.3519567549228668, -0.2866075038909912, -0.8689969182014465, 0.0018865149468183517, -1.4665145874023438, -0.1767105758190155, 0.36809486150741577, -1.4648253917694092, -0.2821243107318878, -0.19211672246456146, 1.3677730560302734, -0.27610549330711365, 1.5096189975738525, -0.34566980600357056, -0.11258845776319504, -0.2852354943752289, -0.5506337285041809, 0.22893956303596497, -0.19413936138153076, -0.6012383103370667, 0.1929047703742981, -0.7853508591651917, 0.2133067548274994, 1.5054562091827393, 0.4094403386116028, 0.034521497786045074, 0.4495481550693512, 1.0428012609481812, 0.4293633699417114, -0.0656907930970192, -0.8010658621788025, -1.4483245611190796, 1.976365566253662, -1.4465253353118896, 1.8555413484573364, 0.8283754587173462, -0.09049838781356812, -1.8691377639770508, -1.8606023788452148, 1.2018147706985474, 1.1291627883911133, 2.348252296447754, 0.5082865953445435, 0.5247606635093689, -0.6829772591590881, -0.8381012082099915, 0.26235297322273254, -0.9547684788703918, -0.6542972922325134, 0.21043263375759125, 2.292192220687866, 1.79254150390625, -0.6069274544715881, -0.20424149930477142, -0.7960952520370483, 1.2437858581542969, -0.26373592019081116, 0.2609119713306427, 2.0624544620513916, -0.2987498939037323, -0.914650022983551, 1.3131695985794067, -2.4343342781066895, 0.32376334071159363, 2.076084852218628, 0.2502734065055847, 0.18252089619636536, -1.4365206956863403, -0.6898121237754822, -0.3319007456302643, -0.45286139845848083, -1.3116768598556519, 0.6102344989776611, -0.25252217054367065, -0.9168146252632141, -1.4643317461013794, 0.052232302725315094, -1.1696370840072632, -1.8029705286026, 0.37162068486213684, 1.9642869234085083, 2.12312388420105, -0.853437066078186, 1.3174641132354736, -0.2682470977306366, -0.07679073512554169, 1.3306000232696533, 1.3790863752365112, 3.0434203147888184, 1.8583388328552246, -1.254201889038086, 0.7690378427505493, -0.269942969083786, -0.4986380934715271, 1.1846462488174438, -1.1091653108596802, 0.9639306664466858, -0.12565143406391144, -1.2862064838409424, -1.1998530626296997, 1.0467619895935059, 0.5039051175117493, 0.020457662642002106, -0.4256038963794708, 1.3639154434204102, 0.18172435462474823, 1.4288251399993896, 0.5899699330329895, -0.35243454575538635, 0.5262327194213867, -0.30919957160949707, -0.5519760847091675, 1.680882453918457, 0.13587528467178345, -1.5419450998306274, -2.3145077228546143, -0.29153597354888916, -0.943009614944458, -0.013730967417359352, -0.6040357947349548, -1.0041807889938354, 1.577446460723877, 0.46126097440719604, -1.1257331371307373, -0.3058643639087677, -0.2854665219783783, -0.4474412202835083, 2.654167413711548, -1.2502591609954834, -0.08571840077638626, -0.9060359001159668, -0.3969232738018036, 1.6193519830703735, -1.2771997451782227, -0.2546002268791199, -1.0096927881240845, -0.6564884781837463, -1.3214157819747925, -0.45028945803642273, 0.012491383589804173, -1.0136982202529907, 0.6625512838363647, 0.22377465665340424, -1.0948079824447632, -0.28267866373062134, -0.9101532101631165, 1.0748692750930786, -0.050997938960790634, 0.28200680017471313, 1.8737537860870361, 0.33575719594955444, -0.4782799482345581, 0.7215929627418518, 1.2249977588653564, 0.5305382609367371, -0.6540080308914185, -0.030324116349220276, -0.758411169052124, 0.42496323585510254, -1.4203710556030273, 0.07236770540475845, -3.0275115966796875, 0.788528561592102, -0.2614382207393646, -0.2081330269575119, -0.19681522250175476, -1.2633126974105835, 1.098667860031128, 2.6260335445404053, -1.1613798141479492, 0.4545367956161499, 0.49701303243637085, 1.1645745038986206, -1.5782687664031982, 0.3425605893135071, -0.4719339907169342, 2.0447916984558105, 0.1288508027791977, 1.1684932708740234, -0.520348310470581, -2.217074155807495, 0.6713230013847351, -1.1564712524414062, -0.9917401075363159, 0.8605371117591858, -0.8868844509124756, 0.3218176066875458, -1.4151132106781006, -0.04366910085082054, -0.9328762292861938, -1.2251883745193481, 0.7403448820114136, 0.03954731673002243, 0.34061577916145325, -0.534202516078949, 0.38177719712257385, -2.112764358520508, -1.383205771446228, -0.28997084498405457, -0.9325435757637024, 0.6082605123519897, -0.39408016204833984, 0.5542063117027283, -0.02017294056713581, 0.19899295270442963, 0.34565022587776184, 1.4992488622665405, 3.4082047939300537, 0.15005989372730255, 0.2277795374393463, -0.0894959345459938, -1.1300114393234253, 1.4266924858093262, 0.8700501322746277, -0.17812931537628174, -0.5399506688117981, -0.9834437966346741, 1.3862895965576172, 1.9928640127182007, 1.1689419746398926, 0.20890259742736816, -0.9086987376213074, -0.8259507417678833, -0.004358928184956312, 0.13613641262054443, 0.4977065324783325, 1.021388292312622, -0.09253449738025665, 0.020298145711421967, 1.445764422416687, 1.1780815124511719, -0.24402619898319244, 0.41248172521591187, -1.0286256074905396, -0.37042075395584106, 0.3855906128883362, 0.15589557588100433, 0.07421298325061798, 0.48081472516059875, -1.0113595724105835, -0.32701078057289124, -0.20233014225959778, -0.8335141539573669, -0.8307355642318726, -0.35313206911087036, -0.3841683566570282, 1.6746679544448853, 0.08802872151136398, -0.5011151432991028, 0.1966741532087326, -0.6290798187255859, -0.06373517960309982, -1.2007180452346802, 0.10867433995008469, -0.09615752846002579, -0.10093043744564056, -0.18137136101722717, 1.6086639165878296, -0.9546861052513123, -2.11260986328125, 0.1667999029159546, 0.3977755308151245, -0.3243917226791382, 0.18789348006248474, 1.7439159154891968, 0.47766122221946716, 1.3686708211898804, 1.289391040802002, 0.9794402718544006, -0.5748443603515625, -1.2122337818145752, 0.816046953201294, 0.9575970768928528, -1.2384103536605835, 1.0391865968704224, -0.21240703761577606, -0.5981063842773438, 0.6606868505477905, 1.3850722312927246, 0.42033448815345764, -1.9725229740142822, 0.9853309988975525, -0.9164091944694519, 0.7300408482551575, 0.6817903518676758, 0.8847261071205139, 0.24672625958919525, 0.8826847672462463, -1.2819825410842896, -1.2318660020828247, -0.6920613050460815, -0.6250723004341125, 1.8119335174560547, -0.29751744866371155, 0.5489084124565125, -0.1777523159980774, -1.2014358043670654, -0.1557403951883316, 0.785269558429718, 0.3503505289554596, -0.366720587015152, 0.9489570260047913, -0.6536756753921509, -0.9841727018356323, -1.263553500175476, -0.38657012581825256, -1.042438268661499, -0.8334935307502747, 0.9918880462646484, 0.7772841453552246, 0.44985997676849365, 1.8605623245239258, 0.565755307674408, 0.38076284527778625, -2.563293695449829, 0.8701435327529907, 0.30132603645324707, -0.018275197595357895, 0.8565800189971924, 0.28950780630111694, 1.1414563655853271, -0.06345632672309875, 0.548891007900238, -2.2497379779815674, 2.190305471420288, -0.2570265233516693, 0.5736520886421204, 0.04028569906949997, -0.1742568165063858, 1.1104941368103027, 0.5955111384391785, 0.5824854969978333, -1.1375948190689087, 0.6962860226631165, -0.6074776649475098, 1.074785828590393, 0.9162005186080933, -0.8777722716331482, 0.14503349363803864, 1.3901619911193848, 0.4531029760837555, -0.4045161008834839, -1.0340676307678223, -0.8084247708320618, 1.0525258779525757, 1.7132664918899536, -0.08970686048269272, -0.06575773656368256, 0.8379601836204529, 0.6830393075942993, -1.2147167921066284, 0.014575286768376827, -0.7018356919288635, -0.7027712464332581, 1.7754933834075928, 1.9855526685714722, -0.08683722466230392, -0.23946650326251984, -0.7319841980934143, -1.3187650442123413, 0.787314236164093, -0.15460649132728577, 0.0011848853901028633, 0.7196998596191406, -0.7227076292037964, 1.1054364442825317, 0.5349274277687073, 1.0444693565368652, -0.0235745832324028, 0.32693272829055786, 0.2541464567184448, -0.3864043951034546, -1.1257721185684204, -0.31313633918762207, -1.112126350402832, -2.6029064655303955, 0.29059717059135437, -0.25644463300704956, -1.510977864265442, 0.05810048431158066, -1.1168855428695679, 0.9103170037269592, -0.550169825553894, -1.1013438701629639, -1.3721835613250732, 0.31358134746551514, -0.21042555570602417, 0.9128382802009583, -1.6016051769256592, -0.24974653124809265, 1.2710429430007935, 0.8817070722579956, -0.5356999039649963, 0.9265440106391907, 0.25685158371925354, 1.0181306600570679, 0.7386781573295593, -0.39894899725914, 0.5773172974586487, -0.04113663360476494, -1.320256233215332, 0.3259187936782837, 1.2915321588516235, 0.22969190776348114, 1.274787187576294, -0.4690888524055481, 0.1916220486164093, 0.39549392461776733, -0.684442937374115, -0.53776615858078, -0.30479520559310913, 0.7240350246429443, 0.022954586893320084, -1.1509089469909668, -0.19020184874534607, -0.2366836667060852, -0.2776508033275604, 0.22132988274097443, -1.464163064956665, -0.40606677532196045, -0.4170023202896118, -0.424586683511734, -1.4153286218643188, 0.11716590076684952, 1.2826205492019653, -0.8070477843284607, -0.3088156282901764, 0.346890926361084, 0.355557918548584, 0.568112850189209, 0.5728067755699158, -0.8535085916519165, -0.313128799200058, -0.39243534207344055, -0.2914375066757202, 0.20800712704658508, 1.1091556549072266, -0.022915903478860855, -0.9876508712768555, 0.6514925360679626, -0.3450114130973816, 0.18443363904953003, 2.0615482330322266, 0.02652362734079361, -0.7724434733390808, 0.3442292809486389, -0.6446077227592468, 1.6436845064163208, 1.7211625576019287, 1.292325496673584, -0.04524855315685272, -0.7546205520629883, 0.600374698638916, -0.2839244306087494, -0.34811609983444214, 0.8983412981033325, 0.3933351933956146, -0.29393649101257324, -1.4460186958312988, 0.5471788048744202, 1.2503893375396729, -0.6434788703918457, -0.7863115668296814, 0.01161509845405817, -0.9685826301574707, 1.3474531173706055, 0.58372962474823, 0.2706150710582733, 0.273845374584198, 1.5020023584365845, 0.7590696215629578, -0.5424851179122925, 0.4802945554256439, 0.5563621520996094, -0.24493271112442017, -2.1407110691070557, -0.8858527541160583, 0.2059946209192276, -0.35004526376724243, -1.5964337587356567, 1.4175999164581299, -1.1410425901412964, -1.029231309890747, 0.5842441916465759, 0.1385059356689453, 1.2833913564682007, 0.3592124879360199, 1.715608835220337, 2.077672004699707, 0.9016369581222534, 0.31985700130462646, 1.1123870611190796, -0.10046526044607162, -0.43383845686912537, 1.8672820329666138, -0.38612547516822815, 0.5971698760986328, 0.919601321220398, -0.4034416377544403, -1.031274676322937, -0.8907597661018372, -1.0222328901290894, -0.6407865881919861, 1.2082382440567017, 0.09594342112541199, -1.0768308639526367, 0.1731143742799759, 1.5369219779968262, 0.19865508377552032, -0.27817240357398987, 0.7148309946060181, 0.4331105947494507, -0.6914297938346863, -0.061470285058021545, -0.8540843725204468, 0.526462197303772, -0.08066104352474213, -0.24799902737140656, 0.26145413517951965, 0.5994328856468201, 1.3198156356811523, -0.06982666999101639, 0.12212740629911423, 1.107157588005066, -1.3585878610610962, 1.5130720138549805, -0.5821283459663391, 0.32311326265335083, -2.447573184967041, 1.478676676750183, -0.7476843595504761, 1.9594144821166992, -2.5147571563720703, 0.458039253950119, -0.4542093575000763, -0.4882422983646393, 0.23847658932209015, -0.5153620839118958, 0.11795192211866379, -0.14174453914165497, -0.8989810943603516, -0.07161400467157364, -0.7916466593742371, 0.6227806210517883, 1.1534370183944702, 1.4944005012512207, -1.085667610168457, -0.27520954608917236, -1.6841490268707275, -0.13050886988639832, -0.8952755331993103, 0.39193370938301086, -1.988182783126831, -0.24706171452999115, -2.071216106414795, -2.36833119392395, -1.357397437095642, -0.87067711353302, 1.0724836587905884, 0.24337993562221527, -0.902779757976532, 1.1979866027832031, -0.37602636218070984, -1.8266487121582031, 1.1818112134933472, -2.241697072982788 ]
https://github.com/huggingface/datasets/issues/5922
Length of table does not accurately reflect the split
As already replied by @lhoestq (private channel): > `.train_test_split` (as well as `.shard`, `.select`) doesn't create a new arrow table to save time and disk space. Instead, it uses an indices mapping on top of the table that locate which examples are part of train or test.
### Describe the bug I load a Huggingface Dataset and do `train_test_split`. I'm expecting the underlying table for the dataset to also be split, but it's not. ### Steps to reproduce the bug ![image](https://github.com/huggingface/datasets/assets/8068268/83e5768f-8b4c-422a-945c-832a7585afff) ### Expected behavior The expected behavior is when `len(hf_dataset["train"].data)` should match the length of the train split, and not be the entire unsplit dataset. ### Environment info datasets 2.10.1 python 3.10.11
113
47
Length of table does not accurately reflect the split ### Describe the bug I load a Huggingface Dataset and do `train_test_split`. I'm expecting the underlying table for the dataset to also be split, but it's not. ### Steps to reproduce the bug ![image](https://github.com/huggingface/datasets/assets/8068268/83e5768f-8b4c-422a-945c-832a7585afff) ### Expected behavior The expected behavior is when `len(hf_dataset["train"].data)` should match the length of the train split, and not be the entire unsplit dataset. ### Environment info datasets 2.10.1 python 3.10.11 As already replied by @lhoestq (private channel): > `.train_test_split` (as well as `.shard`, `.select`) doesn't create a new arrow table to save time and disk space. Instead, it uses an indices mapping on top of the table that locate which examples are part of train or test.
[ -1.217895269393921, -0.9282204508781433, -0.7500908970832825, 1.4844533205032349, -0.16704216599464417, -1.2817059755325317, 0.08144750446081161, -1.0666282176971436, 1.6349577903747559, -0.7258170247077942, 0.29937809705734253, -1.6628750562667847, 0.025109492242336273, -0.6315590739250183, -0.7615535259246826, -0.9104450345039368, -0.4293396770954132, -0.6900394558906555, 1.0317647457122803, 2.5568058490753174, 1.1700917482376099, -1.3466582298278809, 2.6729118824005127, 0.6422232389450073, -0.1827041357755661, -0.9945851564407349, 0.5450853705406189, -0.007296431344002485, -1.2644070386886597, -0.4731024205684662, -0.9336214065551758, -0.0729416236281395, -0.5577506422996521, -0.5582135915756226, 0.0742519274353981, 0.39108702540397644, -0.27931684255599976, -0.33522486686706543, -0.505156397819519, -0.8521845936775208, 0.45231616497039795, -0.3930366635322571, 0.9552698135375977, -0.3920247554779053, 1.7970631122589111, -0.5676667094230652, 0.4225565493106842, 0.6511600017547607, 1.3662569522857666, 0.1184135302901268, -0.07493984699249268, 0.3899432122707367, 0.44447654485702515, 0.05997301638126373, 0.4697427749633789, 1.1470506191253662, 0.6268427968025208, 0.4978053569793701, 0.7537438273429871, -2.2246298789978027, 1.3413749933242798, -0.9851803779602051, 0.17879049479961395, 1.3338807821273804, -1.0383721590042114, 0.46061864495277405, -1.7097924947738647, -0.05294645205140114, 0.5416301488876343, -2.2765848636627197, 0.1736181676387787, -1.3452439308166504, -0.47551655769348145, 0.9922610521316528, 0.34450116753578186, -1.2365219593048096, 0.15986114740371704, -0.494051456451416, 1.0789599418640137, 0.5342796444892883, 1.1000577211380005, -1.7818427085876465, -0.10021568089723587, -0.2661631405353546, 0.04918231442570686, -1.3883979320526123, -1.4976505041122437, 0.524122416973114, 0.7574520111083984, 0.553392231464386, -0.031553395092487335, 0.9445688128471375, -0.9413514733314514, 0.772724449634552, -0.9757885336875916, -1.67177414894104, -1.3362067937850952, -2.2496185302734375, -2.295983076095581, 0.7885503172874451, -0.4961525797843933, -0.5062505602836609, 2.0589165687561035, -1.0783216953277588, -1.8496936559677124, 1.1786028146743774, 0.2139149159193039, -0.08239669352769852, 2.362377405166626, 0.2521350681781769, -0.6705864071846008, 0.4253082275390625, -0.6967251300811768, 0.7412900924682617, -0.4755549728870392, 1.3345946073532104, 0.4357887804508209, -1.0343459844589233, 1.6132203340530396, -0.4299149215221405, 0.5468916893005371, -0.6687684059143066, -0.46618393063545227, -0.7361249923706055, 0.3719145953655243, 1.961311936378479, -0.37850692868232727, 1.5727858543395996, -0.34822267293930054, -1.5623422861099243, -1.670589566230774, 0.8426429033279419, 0.4075949490070343, -0.784584105014801, 0.0993671640753746, -0.2807053327560425, 0.1118943840265274, -0.024089423939585686, 1.0962719917297363, 1.2793899774551392, 0.6856623888015747, -0.21947041153907776, -0.8683947920799255, 0.3163388669490814, -0.07865951210260391, -0.6506151556968689, -1.7756259441375732, -0.4436578154563904, 0.15634246170520782, 0.6494365334510803, -1.2156916856765747, 1.7273184061050415, 0.8351771831512451, 1.8530194759368896, 1.0655628442764282, -0.2792741358280182, 1.4845696687698364, 0.10686555504798889, 1.9375802278518677, -0.5262988209724426, 0.6601117849349976, -0.3676993250846863, -1.1410064697265625, 0.7872396111488342, -0.3732824921607971, -1.9519728422164917, -0.7184292078018188, -0.9152599573135376, -0.20463094115257263, -0.7387092709541321, 0.9743362069129944, -0.33870336413383484, -1.3128036260604858, 0.31977078318595886, -0.7529288530349731, 0.16852442920207977, -1.1938526630401611, 0.28875553607940674, 0.8108771443367004, -0.5962318181991577, 0.12730911374092102, -0.2807188034057617, -1.3409960269927979, -0.4701208174228668, 0.33086925745010376, 1.9664448499679565, -0.8362621665000916, 1.0017995834350586, 0.925258457660675, -0.7240118980407715, -0.07565760612487793, 0.3517036437988281, -0.31379854679107666, 0.7846525311470032, -1.0833851099014282, -0.3565143048763275, 1.178621530532837, -0.2698294222354889, -0.6186252236366272, 1.4280133247375488, 0.7887835502624512, -1.0196785926818848, -0.18792390823364258, -0.17948845028877258, -0.8138999342918396, 0.06603359431028366, -1.681337833404541, -0.17012947797775269, 0.3665296733379364, -1.5041447877883911, -0.5396143198013306, -0.18838900327682495, 1.3606884479522705, -0.08886342495679855, 1.4172732830047607, -0.3411242663860321, -0.2743487060070038, -0.3614344596862793, -0.5107479691505432, 0.16998633742332458, -0.25851869583129883, -0.6313535571098328, 0.16407224535942078, -0.7538082003593445, 0.3656294643878937, 1.4330871105194092, 0.38742342591285706, 0.11809306591749191, 0.6345205307006836, 1.1045092344284058, 0.3486017882823944, -0.103209488093853, -0.9589220285415649, -1.5628657341003418, 2.1155459880828857, -1.406596064567566, 2.0205421447753906, 0.7097088694572449, -0.08517161011695862, -1.7047785520553589, -1.9110568761825562, 1.3297125101089478, 1.1510258913040161, 2.2861404418945312, 0.6480709910392761, 0.38381582498550415, -0.8590754270553589, -0.5718035697937012, 0.26772916316986084, -1.0675199031829834, -0.8079382181167603, 0.10052288323640823, 2.396103620529175, 1.777895212173462, -0.4369332492351532, -0.22036312520503998, -1.0873878002166748, 1.3776934146881104, -0.18457576632499695, 0.22972536087036133, 1.939135193824768, -0.25012728571891785, -1.0638409852981567, 1.2236976623535156, -2.268815040588379, 0.1131022498011589, 1.9822880029678345, 0.20812726020812988, 0.007248525507748127, -1.4017019271850586, -0.7499421834945679, -0.23921440541744232, -0.35120823979377747, -1.2095028162002563, 0.4728827178478241, -0.3413544297218323, -0.7845733165740967, -1.4348207712173462, 0.1666262000799179, -1.0663220882415771, -1.6675933599472046, 0.24137498438358307, 1.913759469985962, 1.9825167655944824, -0.7063990235328674, 1.5732148885726929, -0.19175532460212708, 0.19427241384983063, 1.3202604055404663, 1.2390307188034058, 3.193305253982544, 1.9781640768051147, -1.1919058561325073, 0.7110484838485718, -0.1461862027645111, -0.3450356721878052, 1.2505637407302856, -1.1463885307312012, 1.2957816123962402, -0.16580362617969513, -1.3266195058822632, -1.2840086221694946, 0.8931668996810913, 0.4758259952068329, 0.050124641507864, -0.4472695291042328, 1.3431564569473267, -0.026561856269836426, 1.315621018409729, 0.572883665561676, -0.35863205790519714, 0.7069122791290283, -0.4082646369934082, -0.506007969379425, 1.539994716644287, 0.2665835916996002, -1.4980884790420532, -2.299253225326538, -0.26619407534599304, -0.7943491339683533, -0.044485706835985184, -0.5932070016860962, -1.0218100547790527, 1.6095563173294067, 0.4439317286014557, -1.2543543577194214, -0.2780803143978119, -0.35813409090042114, -0.6364999413490295, 2.7623515129089355, -1.4649543762207031, -0.2560604214668274, -1.0106852054595947, -0.5371459722518921, 1.6150473356246948, -1.2606358528137207, -0.18805041909217834, -0.9958071112632751, -0.554413914680481, -1.3220670223236084, -0.5434591174125671, -0.10021264106035233, -0.919501781463623, 0.7626140713691711, 0.12117611616849899, -1.1645863056182861, -0.24696597456932068, -0.9397855401039124, 0.8169243335723877, -0.13742004334926605, 0.292383074760437, 1.9820618629455566, 0.44901058077812195, -0.4260518252849579, 0.7311630249023438, 1.125474214553833, 0.6923342943191528, -0.6353411674499512, 0.20843815803527832, -0.685946524143219, 0.29283884167671204, -1.3404574394226074, 0.26265883445739746, -2.81302547454834, 0.5889633297920227, -0.09325618296861649, -0.08896753937005997, -0.01084147859364748, -1.2552708387374878, 1.1090842485427856, 2.6043758392333984, -1.2532881498336792, 0.48383960127830505, 0.2728744447231293, 1.239453911781311, -1.6739217042922974, 0.327181339263916, -0.3656483590602875, 2.157376289367676, 0.2365696132183075, 1.1668719053268433, -0.4282107651233673, -2.215625047683716, 0.6499451994895935, -1.2583367824554443, -1.246923565864563, 0.7290401458740234, -0.8052020072937012, 0.03287215530872345, -1.381402611732483, -0.15222594141960144, -0.8630121350288391, -1.2369623184204102, 0.7453444600105286, 0.12078786641359329, 0.5171711444854736, -0.5361024141311646, 0.34941619634628296, -2.1019492149353027, -1.3620778322219849, -0.22748452425003052, -0.9221180081367493, 0.42424383759498596, -0.28537628054618835, 0.7139182686805725, -0.2584441006183624, 0.0022667814046144485, 0.32149845361709595, 1.4519771337509155, 3.434253215789795, 0.22663600742816925, 0.3416449725627899, -0.20208467543125153, -0.9153083562850952, 1.4221669435501099, 0.9485800862312317, -0.21673618257045746, -0.4909403920173645, -0.9754942655563354, 1.2652509212493896, 2.0300357341766357, 1.0103399753570557, 0.05683650076389313, -0.7788625359535217, -0.7206578850746155, 0.017889447510242462, 0.10837096720933914, 0.5526406168937683, 0.8843324780464172, 0.09218458831310272, 0.041911203414201736, 1.3642659187316895, 1.2180341482162476, -0.39018380641937256, 0.4352726638317108, -0.7825774550437927, -0.42866259813308716, 0.4722423553466797, 0.3504415452480316, 0.023388195782899857, 0.3256802260875702, -0.9607899188995361, -0.17061980068683624, -0.40310245752334595, -1.0029021501541138, -0.7728740572929382, -0.3786473274230957, -0.3494197726249695, 1.6779464483261108, 0.07603038102388382, -0.4923016130924225, -0.10715843737125397, -0.7928538918495178, -0.11951697617769241, -0.9939825534820557, 0.24918313324451447, -0.14175865054130554, -0.10936939716339111, -0.03810862451791763, 1.6764428615570068, -1.0058799982070923, -2.1675925254821777, 0.3110154867172241, 0.18325024843215942, -0.4273408055305481, 0.2113029807806015, 1.6248278617858887, 0.5514992475509644, 1.4339237213134766, 1.3703699111938477, 0.9735705852508545, -0.6867066025733948, -1.2904819250106812, 0.6576038002967834, 0.9060022234916687, -1.4766186475753784, 0.7846748232841492, 0.05361422151327133, -0.5101418495178223, 0.7219849824905396, 1.1937910318374634, 0.4692111909389496, -1.9673384428024292, 0.7061131000518799, -0.8662522435188293, 0.7371441721916199, 0.7074573040008545, 0.7486997246742249, 0.27523279190063477, 0.7926067113876343, -1.2224231958389282, -1.2065573930740356, -0.7430252432823181, -0.621227502822876, 1.8714113235473633, -0.19355598092079163, 0.5121176838874817, -0.1667999029159546, -1.3296055793762207, -0.1412276327610016, 0.7065083980560303, 0.35730651021003723, -0.40978145599365234, 0.7824001312255859, -0.6903829574584961, -1.0977634191513062, -1.4227184057235718, -0.5080807209014893, -0.932257354259491, -0.9722434878349304, 1.025644063949585, 0.75126713514328, 0.27842262387275696, 1.8397810459136963, 0.531154215335846, 0.19394567608833313, -2.5660929679870605, 0.8947086334228516, 0.24813513457775116, -0.01872183382511139, 0.8916479349136353, 0.26484057307243347, 1.0042884349822998, -0.09571970999240875, 0.526275634765625, -2.3397607803344727, 2.24540376663208, -0.27735045552253723, 0.6198692321777344, -0.013413317501544952, -0.09913623332977295, 1.0194852352142334, 0.5182517766952515, 0.567512035369873, -1.1422983407974243, 0.7166829705238342, -0.6774742603302002, 1.2529569864273071, 0.9019296169281006, -0.8897870779037476, 0.03889830410480499, 1.41257643699646, 0.48584872484207153, -0.5790961980819702, -0.9544301629066467, -0.9818034768104553, 0.9755682349205017, 1.7883479595184326, -0.10800398141145706, -0.05668454244732857, 0.8737574815750122, 0.5819699764251709, -1.3381719589233398, 0.12056321650743484, -0.6939007639884949, -0.7017357349395752, 1.6259586811065674, 1.936881184577942, -0.06989883631467819, -0.22704222798347473, -0.7259945869445801, -1.1900254487991333, 0.7535414695739746, 0.13138830661773682, 0.08662747591733932, 0.7488813400268555, -0.6078495979309082, 1.1590055227279663, 0.8405146598815918, 0.9715683460235596, 0.19307728111743927, 0.35420191287994385, 0.3363878130912781, -0.33990585803985596, -1.196215271949768, -0.26639169454574585, -1.1166813373565674, -2.485994815826416, 0.4222618341445923, -0.2886885106563568, -1.4207639694213867, 0.019235510379076004, -1.0519886016845703, 0.9080734848976135, -0.5553820133209229, -1.08883798122406, -1.5710142850875854, 0.2351856678724289, -0.11116528511047363, 0.8760619163513184, -1.6172959804534912, -0.0776510015130043, 1.278955340385437, 0.9279558658599854, -0.690105676651001, 1.0504562854766846, 0.24470748007297516, 1.0878647565841675, 0.8815491795539856, -0.41565629839897156, 0.4230298101902008, 0.06296737492084503, -1.3948394060134888, 0.5173333287239075, 1.08647620677948, 0.16370922327041626, 1.4773023128509521, -0.6322678923606873, 0.02880541980266571, 0.4230310618877411, -0.4452451467514038, -0.5040810704231262, -0.5629110336303711, 0.7253552079200745, 0.028275929391384125, -0.8222302198410034, 0.09673693031072617, -0.1349702924489975, -0.23413564264774323, 0.23500129580497742, -1.4738683700561523, -0.15076661109924316, -0.34561774134635925, -0.6278250217437744, -1.2124027013778687, -0.06981677561998367, 1.372632622718811, -0.758108913898468, -0.1687329113483429, 0.5500473976135254, 0.3770389258861542, 0.5149447917938232, 0.6140611171722412, -0.5783118605613708, -0.3340871036052704, -0.25482460856437683, -0.32825398445129395, 0.35564759373664856, 1.2556465864181519, -0.13407301902770996, -1.016323447227478, 0.7914948463439941, -0.38860180974006653, 0.04998613893985748, 1.8917135000228882, 0.057158224284648895, -0.7748439908027649, 0.22364521026611328, -0.7038542628288269, 1.9973063468933105, 1.6907553672790527, 1.332621455192566, -0.07816345989704132, -0.9857841730117798, 0.6485752463340759, -0.2118014395236969, -0.36111438274383545, 0.8993610739707947, 0.4401484429836273, -0.27854692935943604, -1.3673204183578491, 0.6493480801582336, 1.1795154809951782, -0.8869073987007141, -0.7508260607719421, 0.036093469709157944, -0.8484828472137451, 1.0180882215499878, 0.7326318025588989, 0.41458234190940857, 0.24488802254199982, 1.641918659210205, 0.7428905367851257, -0.48745161294937134, 0.4937245845794678, 0.49283289909362793, -0.12566892802715302, -2.1007096767425537, -1.0883055925369263, 0.3444956839084625, -0.405869722366333, -1.633687973022461, 1.3477054834365845, -1.1838423013687134, -0.871743381023407, 0.5312955379486084, 0.2005387395620346, 1.490596890449524, 0.2288626879453659, 1.62135648727417, 2.1024513244628906, 0.8676868081092834, 0.3440948724746704, 1.3384112119674683, -0.09292314201593399, -0.4289962947368622, 1.7458901405334473, -0.4536551833152771, 0.5714349150657654, 1.0453383922576904, -0.3737986981868744, -1.0508629083633423, -0.7027761340141296, -1.258216142654419, -0.6223564743995667, 1.156917929649353, 0.08148769289255142, -1.17489492893219, 0.23042051494121552, 1.5105220079421997, 0.11336628347635269, -0.3176839053630829, 0.5575485229492188, 0.4551685154438019, -0.7863257527351379, -0.059718675911426544, -0.9247676134109497, 0.5991137027740479, -0.1665026694536209, -0.2818658649921417, 0.43393757939338684, 0.37893301248550415, 1.2940822839736938, -0.011617504060268402, 0.2233196347951889, 1.2563495635986328, -1.3749226331710815, 1.4675889015197754, -0.6358458399772644, 0.21413744986057281, -2.2855961322784424, 1.402719497680664, -0.8168909549713135, 1.8557913303375244, -2.624175786972046, 0.39107683300971985, -0.6269447207450867, -0.3884790241718292, 0.34739911556243896, -0.3472706377506256, 0.13625268638134003, -0.13867217302322388, -1.0855003595352173, -0.11774744838476181, -0.7204253077507019, 0.5854935646057129, 1.182191252708435, 1.4061797857284546, -1.124741554260254, -0.26299458742141724, -1.8209117650985718, -0.1339653879404068, -0.7213504910469055, 0.4254491329193115, -2.002197265625, -0.15922406315803528, -1.9118422269821167, -2.4529106616973877, -1.3725953102111816, -0.8055330514907837, 1.0498887300491333, 0.14971300959587097, -0.8730651140213013, 1.1870547533035278, -0.32492879033088684, -1.7788184881210327, 1.047332763671875, -2.2102670669555664 ]
https://github.com/huggingface/datasets/issues/5913
I tried to load a custom dataset using the following statement: dataset = load_dataset('json', data_files=data_files). The dataset contains 50 million text-image pairs, but an error occurred.
Thanks for reporting, @cjt222. What is the structure of your JSON files. Please note that it is normally simpler if the data file format is JSON-Lines instead.
### Describe the bug File "/home/kas/.conda/envs/diffusers/lib/python3.7/site-packages/datasets/builder.py", line 1858, in _prepare_split_single Downloading and preparing dataset json/default to /home/kas/diffusers/examples/dreambooth/cache_data/datasets/json/default-acf423d8c6ef99d0/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4... Downloading data files: 0%| | 0/1 [00:00<?, ?it/s] Downloading data files: 100%|██████████| 1/1 [00:00<00:00, 84.35it/s] Extracting data files: 0%| | 0/1 [00:00<?, ?it/s] for _, table in generator: File "/home/kas/.conda/envs/diffusers/lib/python3.7/site-packages/datasets/packaged_modules/json/json.py", line 114, in _generate_tables io.BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size) File "pyarrow/_json.pyx", line 258, in pyarrow._json.read_json Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 27.72it/s] Generating train split: 0 examples [00:00, ? examples/s] File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 125, in pyarrow.lib.check_status pyarrow.lib.ArrowCapacityError: array cannot contain more than 2147483646 bytes, have 2390448764 ### Steps to reproduce the bug 1、data_files = ["1.json", "2.json", "3.json"] 2、dataset = load_dataset('json', data_files=data_files) ### Expected behavior Read the dataset normally. ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-4.15.0-29-generic-x86_64-with-debian-buster-sid - Python version: 3.7.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 1.3.5
115
27
I tried to load a custom dataset using the following statement: dataset = load_dataset('json', data_files=data_files). The dataset contains 50 million text-image pairs, but an error occurred. ### Describe the bug File "/home/kas/.conda/envs/diffusers/lib/python3.7/site-packages/datasets/builder.py", line 1858, in _prepare_split_single Downloading and preparing dataset json/default to /home/kas/diffusers/examples/dreambooth/cache_data/datasets/json/default-acf423d8c6ef99d0/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4... Downloading data files: 0%| | 0/1 [00:00<?, ?it/s] Downloading data files: 100%|██████████| 1/1 [00:00<00:00, 84.35it/s] Extracting data files: 0%| | 0/1 [00:00<?, ?it/s] for _, table in generator: File "/home/kas/.conda/envs/diffusers/lib/python3.7/site-packages/datasets/packaged_modules/json/json.py", line 114, in _generate_tables io.BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size) File "pyarrow/_json.pyx", line 258, in pyarrow._json.read_json Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 27.72it/s] Generating train split: 0 examples [00:00, ? examples/s] File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 125, in pyarrow.lib.check_status pyarrow.lib.ArrowCapacityError: array cannot contain more than 2147483646 bytes, have 2390448764 ### Steps to reproduce the bug 1、data_files = ["1.json", "2.json", "3.json"] 2、dataset = load_dataset('json', data_files=data_files) ### Expected behavior Read the dataset normally. ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-4.15.0-29-generic-x86_64-with-debian-buster-sid - Python version: 3.7.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 1.3.5 Thanks for reporting, @cjt222. What is the structure of your JSON files. Please note that it is normally simpler if the data file format is JSON-Lines instead.
[ -1.214315414428711, -0.9003573060035706, -0.7741171717643738, 1.475507140159607, -0.09832651913166046, -1.224456787109375, 0.10411228984594345, -1.0862165689468384, 1.5122780799865723, -0.6888920664787292, 0.23147977888584137, -1.6943081617355347, 0.01101731788367033, -0.47393232583999634, -0.7264605760574341, -0.9246677756309509, -0.358837366104126, -0.910203754901886, 1.0157215595245361, 2.5286028385162354, 1.3070780038833618, -1.3310229778289795, 2.7988193035125732, 0.6327168345451355, -0.247970312833786, -1.0148122310638428, 0.6398317813873291, 0.05694146081805229, -1.241899847984314, -0.45418089628219604, -0.9593052864074707, -0.03596886992454529, -0.5516088008880615, -0.33303284645080566, 0.13682608306407928, 0.43332165479660034, -0.3060508668422699, -0.2767281234264374, -0.5968331098556519, -0.6854550838470459, 0.49453529715538025, -0.33931446075439453, 0.9586349725723267, -0.3605676591396332, 1.7379180192947388, -0.6194508075714111, 0.35913485288619995, 0.765182375907898, 1.227936029434204, 0.12581489980220795, 0.11431016027927399, 0.28770044445991516, 0.3249226212501526, 0.026699956506490707, 0.5293294787406921, 1.2023895978927612, 0.6210982203483582, 0.4566197395324707, 0.6597405076026917, -2.1583149433135986, 1.3178684711456299, -0.9005401730537415, 0.22494633495807648, 1.3131420612335205, -0.800595223903656, 0.38007310032844543, -1.7726863622665405, -0.1148497611284256, 0.6495746374130249, -2.2439675331115723, 0.2975672781467438, -1.2548545598983765, -0.511023759841919, 0.9275057315826416, 0.3229753077030182, -1.1345361471176147, 0.2061181664466858, -0.6068533658981323, 1.131197214126587, 0.4128198027610779, 1.1300592422485352, -1.6455267667770386, -0.030577175319194794, -0.15677358210086823, 0.0627126544713974, -1.343820571899414, -1.6050792932510376, 0.5838825106620789, 0.5682933330535889, 0.682812511920929, -0.057801272720098495, 1.0273640155792236, -1.1095014810562134, 0.8783188462257385, -0.997841477394104, -1.6368063688278198, -1.3359899520874023, -2.4536705017089844, -2.275083303451538, 0.8015434145927429, -0.4799569249153137, -0.549027144908905, 2.0702297687530518, -0.9140459299087524, -1.7065876722335815, 1.049864649772644, 0.26455503702163696, 0.0548650287091732, 2.490455389022827, 0.22125616669654846, -0.8067150712013245, 0.5055875182151794, -0.6777817010879517, 0.8509746193885803, -0.23096218705177307, 1.328660488128662, 0.4625277817249298, -0.9168245792388916, 1.566427230834961, -0.4255927801132202, 0.5799701809883118, -0.6481931209564209, -0.5151785612106323, -0.8596619963645935, 0.21070004999637604, 1.8783361911773682, -0.36535149812698364, 1.4840584993362427, -0.26243647933006287, -1.520574688911438, -1.5151753425598145, 0.843435525894165, 0.5060964226722717, -0.8984044194221497, 0.030616041272878647, -0.479533314704895, 0.18625721335411072, -0.04214348644018173, 1.115146517753601, 1.206595778465271, 0.730595052242279, -0.42562684416770935, -0.8657202124595642, 0.18261602520942688, -0.2305547595024109, -0.7166531682014465, -1.8249250650405884, -0.23471756279468536, 0.1746252328157425, 0.700831413269043, -1.3107054233551025, 1.7286126613616943, 0.9147875308990479, 2.0101253986358643, 1.0061495304107666, -0.4366184175014496, 1.5000810623168945, -0.05606105178594589, 1.8655637502670288, -0.5670204162597656, 0.5833245515823364, -0.3763561546802521, -1.1445051431655884, 0.8882315158843994, -0.302523672580719, -2.0088884830474854, -0.8849377632141113, -0.7533054947853088, -0.22244347631931305, -0.7372301816940308, 0.8886135816574097, -0.34525811672210693, -1.487441062927246, 0.16773183643817902, -0.6638133525848389, 0.10065370798110962, -1.278022289276123, 0.21842293441295624, 0.6642763614654541, -0.6448251605033875, -0.0463290736079216, -0.23851525783538818, -1.2811391353607178, -0.5200923085212708, 0.2912893295288086, 1.9845060110092163, -0.6319636702537537, 0.9368594884872437, 1.0749998092651367, -0.7821044921875, 0.1626884788274765, 0.2668651044368744, -0.34565219283103943, 0.7688837647438049, -1.1575442552566528, -0.45600974559783936, 1.1164096593856812, -0.18558652698993683, -0.729219913482666, 1.4399831295013428, 0.8399776220321655, -1.125187873840332, -0.303753137588501, -0.2020058035850525, -0.8551371097564697, 0.051751524209976196, -1.5056339502334595, -0.16335317492485046, 0.41704124212265015, -1.4937506914138794, -0.3520886301994324, -0.2073516994714737, 1.2768701314926147, -0.2074609249830246, 1.497424840927124, -0.2856016755104065, -0.136428564786911, -0.24251797795295715, -0.42350220680236816, 0.15729154646396637, -0.20672385394573212, -0.48417359590530396, 0.22998982667922974, -0.8700042963027954, 0.26369529962539673, 1.4938173294067383, 0.3983823359012604, 0.054939646273851395, 0.41024479269981384, 1.0588301420211792, 0.4386233389377594, 0.006315912120044231, -0.8380410671234131, -1.4866441488265991, 2.0187151432037354, -1.4655251502990723, 1.9379806518554688, 0.8099516034126282, -0.07858856767416, -1.824325442314148, -1.9065746068954468, 1.300160527229309, 1.0896244049072266, 2.3603055477142334, 0.5436412692070007, 0.42452505230903625, -0.7182996273040771, -0.8326103687286377, 0.302035391330719, -1.0311589241027832, -0.632477343082428, 0.25176432728767395, 2.412377119064331, 1.6940919160842896, -0.5023518204689026, -0.1842852383852005, -0.8413552045822144, 1.2788543701171875, -0.15289738774299622, 0.21906018257141113, 2.106473684310913, -0.250261127948761, -1.0284373760223389, 1.248972773551941, -2.450894594192505, 0.22054441273212433, 2.0756516456604004, 0.3119140565395355, 0.12349624931812286, -1.4454365968704224, -0.6146832704544067, -0.3412737250328064, -0.47341740131378174, -1.302963137626648, 0.6414458155632019, -0.3048006594181061, -0.8997260928153992, -1.488110899925232, 0.029167547821998596, -1.2095615863800049, -1.7555431127548218, 0.3837008774280548, 2.0051333904266357, 2.18072772026062, -0.724808394908905, 1.4863473176956177, -0.2972271144390106, -0.006005538627505302, 1.1916900873184204, 1.3251336812973022, 3.0303072929382324, 1.811416745185852, -1.2757643461227417, 0.6803101301193237, -0.2120097428560257, -0.47812747955322266, 1.0826345682144165, -1.157467246055603, 1.07883882522583, -0.1964523196220398, -1.2466484308242798, -1.2209088802337646, 1.1193506717681885, 0.4583647549152374, 0.022343385964632034, -0.5163336992263794, 1.328321099281311, 0.15643185377120972, 1.3048980236053467, 0.5751173496246338, -0.27293661236763, 0.515326201915741, -0.3500243127346039, -0.5560893416404724, 1.641900658607483, 0.1328589916229248, -1.513714075088501, -2.4177942276000977, -0.3461397886276245, -0.8574625253677368, 0.020404864102602005, -0.5595095753669739, -1.0946171283721924, 1.6263841390609741, 0.39239445328712463, -1.2741066217422485, -0.27344658970832825, -0.25478532910346985, -0.569370687007904, 2.6396381855010986, -1.2865351438522339, -0.10630116611719131, -0.9068808555603027, -0.5213815569877625, 1.6029689311981201, -1.1704968214035034, -0.24179327487945557, -1.0643558502197266, -0.6260658502578735, -1.3368812799453735, -0.4695354402065277, 0.03897310420870781, -0.9957455992698669, 0.8162451982498169, 0.17916136980056763, -1.1150225400924683, -0.2747340202331543, -0.9218289256095886, 1.0588438510894775, -0.038223009556531906, 0.24472291767597198, 1.7922005653381348, 0.36065834760665894, -0.5043607950210571, 0.7560988068580627, 1.1778995990753174, 0.6392091512680054, -0.6588824391365051, 0.019514434039592743, -0.7261471748352051, 0.32137271761894226, -1.3187408447265625, 0.26069265604019165, -2.9480063915252686, 0.7537751197814941, -0.22400778532028198, -0.08333884924650192, -0.07447151839733124, -1.2735648155212402, 1.198754906654358, 2.6446592807769775, -1.1465635299682617, 0.536074161529541, 0.41829803586006165, 1.2016234397888184, -1.5358450412750244, 0.3081608712673187, -0.4788188636302948, 2.0248146057128906, 0.11541220545768738, 1.2427394390106201, -0.5371626615524292, -2.219451427459717, 0.6914745569229126, -1.2666553258895874, -1.0543100833892822, 0.8171428442001343, -0.9182072877883911, 0.266235888004303, -1.4638712406158447, -0.23948943614959717, -1.003352165222168, -1.275790810585022, 0.6788766384124756, 0.11979679763317108, 0.4146709442138672, -0.5493550896644592, 0.29946979880332947, -2.2208404541015625, -1.4478845596313477, -0.1990353763103485, -0.992661714553833, 0.5611807107925415, -0.4176476001739502, 0.6734057664871216, -0.04445317015051842, 0.09693354368209839, 0.38210850954055786, 1.3986525535583496, 3.354855537414551, 0.133328378200531, 0.24146856367588043, -0.09998420625925064, -1.0542494058609009, 1.4195630550384521, 0.8994495868682861, -0.15049606561660767, -0.5584975481033325, -1.0101343393325806, 1.250925064086914, 2.0425407886505127, 1.0649995803833008, 0.08256782591342926, -0.8777450919151306, -0.7184309363365173, 0.06924690306186676, 0.28382885456085205, 0.565122663974762, 0.9633007645606995, -0.08690650016069412, 0.052239853888750076, 1.4600574970245361, 1.1258662939071655, -0.35532689094543457, 0.38750025629997253, -0.9387983679771423, -0.4304025173187256, 0.42759189009666443, 0.10709355026483536, -0.017362244427204132, 0.5020980834960938, -1.0457240343093872, -0.3535858392715454, -0.2665306329727173, -0.914756178855896, -0.7601197957992554, -0.3810035288333893, -0.4266734719276428, 1.6165368556976318, 0.11184755712747574, -0.49783793091773987, 0.10803916305303574, -0.6615169644355774, -0.19390447437763214, -1.1670811176300049, 0.1759853959083557, -0.23564554750919342, -0.10387882590293884, -0.14084792137145996, 1.8532967567443848, -0.939431369304657, -2.0680441856384277, 0.16036184132099152, 0.35954126715660095, -0.2722456753253937, 0.2943176329135895, 1.7319755554199219, 0.5798539519309998, 1.411590576171875, 1.2574357986450195, 0.9169068932533264, -0.6234453320503235, -1.2561125755310059, 0.7097910642623901, 0.9593653082847595, -1.3029661178588867, 0.898525595664978, -0.22925619781017303, -0.4712720811367035, 0.6590560078620911, 1.3958985805511475, 0.3529936373233795, -2.0972752571105957, 0.9188536405563354, -0.9410185813903809, 0.7226694226264954, 0.6907414793968201, 0.7283684611320496, 0.2298753261566162, 0.8270576596260071, -1.1932998895645142, -1.1170426607131958, -0.7624369263648987, -0.6555756330490112, 1.9180537462234497, -0.2630591094493866, 0.5536482930183411, -0.06612507253885269, -1.2317371368408203, -0.0826936736702919, 0.7202858924865723, 0.37911611795425415, -0.38994482159614563, 0.9000516533851624, -0.6210359334945679, -1.0429189205169678, -1.2864620685577393, -0.43603381514549255, -1.0808318853378296, -0.8948029279708862, 1.0091537237167358, 0.7295850515365601, 0.37831103801727295, 1.8460693359375, 0.5860236287117004, 0.31207984685897827, -2.6647849082946777, 0.9092729091644287, 0.2568810284137726, -0.08696597069501877, 0.9329924583435059, 0.2670973539352417, 1.0999867916107178, 0.024898815900087357, 0.5540013909339905, -2.3200578689575195, 2.2623631954193115, -0.2138233482837677, 0.6667596697807312, 0.02608158439397812, -0.23654280602931976, 1.1621840000152588, 0.5994006991386414, 0.6237298250198364, -1.068933129310608, 0.6734264492988586, -0.5988942384719849, 1.1527550220489502, 0.9483112096786499, -0.8669911623001099, 0.10593771934509277, 1.348708152770996, 0.4917391240596771, -0.40035250782966614, -0.9306038022041321, -0.7937895059585571, 0.958059549331665, 1.7100411653518677, -0.0787043645977974, 0.026526078581809998, 0.839791476726532, 0.5900750756263733, -1.2198747396469116, 0.08895119279623032, -0.7135331034660339, -0.7476738095283508, 1.6802310943603516, 2.144582986831665, -0.14924485981464386, -0.08337844163179398, -0.7244359254837036, -1.2698496580123901, 0.7533946633338928, -0.18011637032032013, 0.13896453380584717, 0.5966827273368835, -0.642119824886322, 1.0727522373199463, 0.6368012428283691, 1.0632320642471313, -0.021457724273204803, 0.40358659625053406, 0.3098827004432678, -0.3653978705406189, -1.0993763208389282, -0.3186931908130646, -1.1070531606674194, -2.564258575439453, 0.4104657769203186, -0.282781183719635, -1.4380693435668945, 0.0428449884057045, -0.9867414236068726, 0.949612021446228, -0.5176407098770142, -1.0714746713638306, -1.4231700897216797, 0.3433869779109955, -0.16652168333530426, 1.0215568542480469, -1.6585848331451416, -0.16416294872760773, 1.2481746673583984, 0.831839382648468, -0.6320452094078064, 0.9686256647109985, 0.2902342975139618, 0.9888753890991211, 0.7026820182800293, -0.35252562165260315, 0.5834422707557678, 0.03437233343720436, -1.2839897871017456, 0.4120188057422638, 1.2417540550231934, 0.162819966673851, 1.3921797275543213, -0.44200247526168823, 0.04562891647219658, 0.3904750347137451, -0.6699408292770386, -0.46266576647758484, -0.3530290722846985, 0.7073750495910645, 0.07256121188402176, -1.0463931560516357, -0.08912254869937897, -0.10747165232896805, -0.26643863320350647, 0.18645931780338287, -1.478006362915039, -0.3276641368865967, -0.42483431100845337, -0.4248946011066437, -1.3632203340530396, 0.05650043860077858, 1.271095871925354, -0.7887691259384155, -0.2736339569091797, 0.2995735704898834, 0.3915466070175171, 0.6154378056526184, 0.6895555257797241, -0.7122862339019775, -0.3846033215522766, -0.34143608808517456, -0.30487313866615295, 0.21109703183174133, 1.2137056589126587, -0.0625966265797615, -0.9860928058624268, 0.693573534488678, -0.40021178126335144, 0.09018991887569427, 1.9244898557662964, -0.016054987907409668, -0.7062629461288452, 0.3765072226524353, -0.6880768537521362, 1.7772040367126465, 1.7263954877853394, 1.293258547782898, -0.18406647443771362, -0.7906243205070496, 0.6213940382003784, -0.3274392783641815, -0.33221471309661865, 0.9174360632896423, 0.4671296775341034, -0.26590442657470703, -1.4715880155563354, 0.5780172944068909, 1.2410589456558228, -0.8427055478096008, -0.7580884695053101, 0.1348251849412918, -0.8520507216453552, 1.2313214540481567, 0.6261114478111267, 0.3526321351528168, 0.27240094542503357, 1.4796559810638428, 0.7366631031036377, -0.6135708689689636, 0.5063308477401733, 0.500326931476593, -0.1448163539171219, -2.1601247787475586, -1.0315357446670532, 0.31780877709388733, -0.36952880024909973, -1.5494660139083862, 1.4111751317977905, -1.0249398946762085, -0.974335789680481, 0.586852490901947, 0.0285046249628067, 1.241926908493042, 0.3630850911140442, 1.699544906616211, 2.0659196376800537, 0.8590652942657471, 0.30018845200538635, 1.2693654298782349, -0.09918820112943649, -0.5069164037704468, 1.8854036331176758, -0.42092573642730713, 0.5272731781005859, 1.0303170680999756, -0.3738868534564972, -1.0013835430145264, -0.8147813677787781, -1.1397806406021118, -0.5980808138847351, 1.1413443088531494, 0.08282126486301422, -1.119685411453247, 0.21194709837436676, 1.5874460935592651, 0.16963163018226624, -0.2401559054851532, 0.6649433970451355, 0.4029492437839508, -0.7426416277885437, -0.13764716684818268, -0.8399208784103394, 0.5010586977005005, -0.24336564540863037, -0.28181809186935425, 0.2102445513010025, 0.5092372298240662, 1.3124282360076904, -0.11802104115486145, 0.09744108468294144, 1.1242674589157104, -1.4272730350494385, 1.5372469425201416, -0.5624042749404907, 0.3557237982749939, -2.435434341430664, 1.375348687171936, -0.7431145906448364, 1.933483362197876, -2.5551960468292236, 0.40764349699020386, -0.5769518613815308, -0.4840981960296631, 0.20828530192375183, -0.3845842480659485, 0.1477193981409073, -0.14284075796604156, -0.9636635780334473, -0.0060731335543096066, -0.7743592262268066, 0.62092125415802, 1.1533477306365967, 1.3721017837524414, -1.0328621864318848, -0.24019074440002441, -1.7252867221832275, -0.16029022634029388, -0.7399665713310242, 0.3177298307418823, -1.9775559902191162, -0.19837437570095062, -2.006991386413574, -2.2916624546051025, -1.4085825681686401, -0.9480230212211609, 1.0093754529953003, 0.20978738367557526, -0.992576003074646, 1.1717690229415894, -0.3325294256210327, -1.7780824899673462, 1.1442537307739258, -2.139131546020508 ]
https://github.com/huggingface/datasets/issues/5913
I tried to load a custom dataset using the following statement: dataset = load_dataset('json', data_files=data_files). The dataset contains 50 million text-image pairs, but an error occurred.
> Thanks for reporting, @cjt222. > > What is the structure of your JSON files. Please note that it is normally simpler if the data file format is JSON-Lines instead. Thanks! I have encountered similar problems. I modify the json format from list to line and works!
### Describe the bug File "/home/kas/.conda/envs/diffusers/lib/python3.7/site-packages/datasets/builder.py", line 1858, in _prepare_split_single Downloading and preparing dataset json/default to /home/kas/diffusers/examples/dreambooth/cache_data/datasets/json/default-acf423d8c6ef99d0/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4... Downloading data files: 0%| | 0/1 [00:00<?, ?it/s] Downloading data files: 100%|██████████| 1/1 [00:00<00:00, 84.35it/s] Extracting data files: 0%| | 0/1 [00:00<?, ?it/s] for _, table in generator: File "/home/kas/.conda/envs/diffusers/lib/python3.7/site-packages/datasets/packaged_modules/json/json.py", line 114, in _generate_tables io.BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size) File "pyarrow/_json.pyx", line 258, in pyarrow._json.read_json Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 27.72it/s] Generating train split: 0 examples [00:00, ? examples/s] File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 125, in pyarrow.lib.check_status pyarrow.lib.ArrowCapacityError: array cannot contain more than 2147483646 bytes, have 2390448764 ### Steps to reproduce the bug 1、data_files = ["1.json", "2.json", "3.json"] 2、dataset = load_dataset('json', data_files=data_files) ### Expected behavior Read the dataset normally. ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-4.15.0-29-generic-x86_64-with-debian-buster-sid - Python version: 3.7.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 1.3.5
115
47
I tried to load a custom dataset using the following statement: dataset = load_dataset('json', data_files=data_files). The dataset contains 50 million text-image pairs, but an error occurred. ### Describe the bug File "/home/kas/.conda/envs/diffusers/lib/python3.7/site-packages/datasets/builder.py", line 1858, in _prepare_split_single Downloading and preparing dataset json/default to /home/kas/diffusers/examples/dreambooth/cache_data/datasets/json/default-acf423d8c6ef99d0/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4... Downloading data files: 0%| | 0/1 [00:00<?, ?it/s] Downloading data files: 100%|██████████| 1/1 [00:00<00:00, 84.35it/s] Extracting data files: 0%| | 0/1 [00:00<?, ?it/s] for _, table in generator: File "/home/kas/.conda/envs/diffusers/lib/python3.7/site-packages/datasets/packaged_modules/json/json.py", line 114, in _generate_tables io.BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size) File "pyarrow/_json.pyx", line 258, in pyarrow._json.read_json Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 27.72it/s] Generating train split: 0 examples [00:00, ? examples/s] File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 125, in pyarrow.lib.check_status pyarrow.lib.ArrowCapacityError: array cannot contain more than 2147483646 bytes, have 2390448764 ### Steps to reproduce the bug 1、data_files = ["1.json", "2.json", "3.json"] 2、dataset = load_dataset('json', data_files=data_files) ### Expected behavior Read the dataset normally. ### Environment info - `datasets` version: 2.12.0 - Platform: Linux-4.15.0-29-generic-x86_64-with-debian-buster-sid - Python version: 3.7.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 1.3.5 > Thanks for reporting, @cjt222. > > What is the structure of your JSON files. Please note that it is normally simpler if the data file format is JSON-Lines instead. Thanks! I have encountered similar problems. I modify the json format from list to line and works!
[ -1.214315414428711, -0.9003573060035706, -0.7741171717643738, 1.475507140159607, -0.09832651913166046, -1.224456787109375, 0.10411228984594345, -1.0862165689468384, 1.5122780799865723, -0.6888920664787292, 0.23147977888584137, -1.6943081617355347, 0.01101731788367033, -0.47393232583999634, -0.7264605760574341, -0.9246677756309509, -0.358837366104126, -0.910203754901886, 1.0157215595245361, 2.5286028385162354, 1.3070780038833618, -1.3310229778289795, 2.7988193035125732, 0.6327168345451355, -0.247970312833786, -1.0148122310638428, 0.6398317813873291, 0.05694146081805229, -1.241899847984314, -0.45418089628219604, -0.9593052864074707, -0.03596886992454529, -0.5516088008880615, -0.33303284645080566, 0.13682608306407928, 0.43332165479660034, -0.3060508668422699, -0.2767281234264374, -0.5968331098556519, -0.6854550838470459, 0.49453529715538025, -0.33931446075439453, 0.9586349725723267, -0.3605676591396332, 1.7379180192947388, -0.6194508075714111, 0.35913485288619995, 0.765182375907898, 1.227936029434204, 0.12581489980220795, 0.11431016027927399, 0.28770044445991516, 0.3249226212501526, 0.026699956506490707, 0.5293294787406921, 1.2023895978927612, 0.6210982203483582, 0.4566197395324707, 0.6597405076026917, -2.1583149433135986, 1.3178684711456299, -0.9005401730537415, 0.22494633495807648, 1.3131420612335205, -0.800595223903656, 0.38007310032844543, -1.7726863622665405, -0.1148497611284256, 0.6495746374130249, -2.2439675331115723, 0.2975672781467438, -1.2548545598983765, -0.511023759841919, 0.9275057315826416, 0.3229753077030182, -1.1345361471176147, 0.2061181664466858, -0.6068533658981323, 1.131197214126587, 0.4128198027610779, 1.1300592422485352, -1.6455267667770386, -0.030577175319194794, -0.15677358210086823, 0.0627126544713974, -1.343820571899414, -1.6050792932510376, 0.5838825106620789, 0.5682933330535889, 0.682812511920929, -0.057801272720098495, 1.0273640155792236, -1.1095014810562134, 0.8783188462257385, -0.997841477394104, -1.6368063688278198, -1.3359899520874023, -2.4536705017089844, -2.275083303451538, 0.8015434145927429, -0.4799569249153137, -0.549027144908905, 2.0702297687530518, -0.9140459299087524, -1.7065876722335815, 1.049864649772644, 0.26455503702163696, 0.0548650287091732, 2.490455389022827, 0.22125616669654846, -0.8067150712013245, 0.5055875182151794, -0.6777817010879517, 0.8509746193885803, -0.23096218705177307, 1.328660488128662, 0.4625277817249298, -0.9168245792388916, 1.566427230834961, -0.4255927801132202, 0.5799701809883118, -0.6481931209564209, -0.5151785612106323, -0.8596619963645935, 0.21070004999637604, 1.8783361911773682, -0.36535149812698364, 1.4840584993362427, -0.26243647933006287, -1.520574688911438, -1.5151753425598145, 0.843435525894165, 0.5060964226722717, -0.8984044194221497, 0.030616041272878647, -0.479533314704895, 0.18625721335411072, -0.04214348644018173, 1.115146517753601, 1.206595778465271, 0.730595052242279, -0.42562684416770935, -0.8657202124595642, 0.18261602520942688, -0.2305547595024109, -0.7166531682014465, -1.8249250650405884, -0.23471756279468536, 0.1746252328157425, 0.700831413269043, -1.3107054233551025, 1.7286126613616943, 0.9147875308990479, 2.0101253986358643, 1.0061495304107666, -0.4366184175014496, 1.5000810623168945, -0.05606105178594589, 1.8655637502670288, -0.5670204162597656, 0.5833245515823364, -0.3763561546802521, -1.1445051431655884, 0.8882315158843994, -0.302523672580719, -2.0088884830474854, -0.8849377632141113, -0.7533054947853088, -0.22244347631931305, -0.7372301816940308, 0.8886135816574097, -0.34525811672210693, -1.487441062927246, 0.16773183643817902, -0.6638133525848389, 0.10065370798110962, -1.278022289276123, 0.21842293441295624, 0.6642763614654541, -0.6448251605033875, -0.0463290736079216, -0.23851525783538818, -1.2811391353607178, -0.5200923085212708, 0.2912893295288086, 1.9845060110092163, -0.6319636702537537, 0.9368594884872437, 1.0749998092651367, -0.7821044921875, 0.1626884788274765, 0.2668651044368744, -0.34565219283103943, 0.7688837647438049, -1.1575442552566528, -0.45600974559783936, 1.1164096593856812, -0.18558652698993683, -0.729219913482666, 1.4399831295013428, 0.8399776220321655, -1.125187873840332, -0.303753137588501, -0.2020058035850525, -0.8551371097564697, 0.051751524209976196, -1.5056339502334595, -0.16335317492485046, 0.41704124212265015, -1.4937506914138794, -0.3520886301994324, -0.2073516994714737, 1.2768701314926147, -0.2074609249830246, 1.497424840927124, -0.2856016755104065, -0.136428564786911, -0.24251797795295715, -0.42350220680236816, 0.15729154646396637, -0.20672385394573212, -0.48417359590530396, 0.22998982667922974, -0.8700042963027954, 0.26369529962539673, 1.4938173294067383, 0.3983823359012604, 0.054939646273851395, 0.41024479269981384, 1.0588301420211792, 0.4386233389377594, 0.006315912120044231, -0.8380410671234131, -1.4866441488265991, 2.0187151432037354, -1.4655251502990723, 1.9379806518554688, 0.8099516034126282, -0.07858856767416, -1.824325442314148, -1.9065746068954468, 1.300160527229309, 1.0896244049072266, 2.3603055477142334, 0.5436412692070007, 0.42452505230903625, -0.7182996273040771, -0.8326103687286377, 0.302035391330719, -1.0311589241027832, -0.632477343082428, 0.25176432728767395, 2.412377119064331, 1.6940919160842896, -0.5023518204689026, -0.1842852383852005, -0.8413552045822144, 1.2788543701171875, -0.15289738774299622, 0.21906018257141113, 2.106473684310913, -0.250261127948761, -1.0284373760223389, 1.248972773551941, -2.450894594192505, 0.22054441273212433, 2.0756516456604004, 0.3119140565395355, 0.12349624931812286, -1.4454365968704224, -0.6146832704544067, -0.3412737250328064, -0.47341740131378174, -1.302963137626648, 0.6414458155632019, -0.3048006594181061, -0.8997260928153992, -1.488110899925232, 0.029167547821998596, -1.2095615863800049, -1.7555431127548218, 0.3837008774280548, 2.0051333904266357, 2.18072772026062, -0.724808394908905, 1.4863473176956177, -0.2972271144390106, -0.006005538627505302, 1.1916900873184204, 1.3251336812973022, 3.0303072929382324, 1.811416745185852, -1.2757643461227417, 0.6803101301193237, -0.2120097428560257, -0.47812747955322266, 1.0826345682144165, -1.157467246055603, 1.07883882522583, -0.1964523196220398, -1.2466484308242798, -1.2209088802337646, 1.1193506717681885, 0.4583647549152374, 0.022343385964632034, -0.5163336992263794, 1.328321099281311, 0.15643185377120972, 1.3048980236053467, 0.5751173496246338, -0.27293661236763, 0.515326201915741, -0.3500243127346039, -0.5560893416404724, 1.641900658607483, 0.1328589916229248, -1.513714075088501, -2.4177942276000977, -0.3461397886276245, -0.8574625253677368, 0.020404864102602005, -0.5595095753669739, -1.0946171283721924, 1.6263841390609741, 0.39239445328712463, -1.2741066217422485, -0.27344658970832825, -0.25478532910346985, -0.569370687007904, 2.6396381855010986, -1.2865351438522339, -0.10630116611719131, -0.9068808555603027, -0.5213815569877625, 1.6029689311981201, -1.1704968214035034, -0.24179327487945557, -1.0643558502197266, -0.6260658502578735, -1.3368812799453735, -0.4695354402065277, 0.03897310420870781, -0.9957455992698669, 0.8162451982498169, 0.17916136980056763, -1.1150225400924683, -0.2747340202331543, -0.9218289256095886, 1.0588438510894775, -0.038223009556531906, 0.24472291767597198, 1.7922005653381348, 0.36065834760665894, -0.5043607950210571, 0.7560988068580627, 1.1778995990753174, 0.6392091512680054, -0.6588824391365051, 0.019514434039592743, -0.7261471748352051, 0.32137271761894226, -1.3187408447265625, 0.26069265604019165, -2.9480063915252686, 0.7537751197814941, -0.22400778532028198, -0.08333884924650192, -0.07447151839733124, -1.2735648155212402, 1.198754906654358, 2.6446592807769775, -1.1465635299682617, 0.536074161529541, 0.41829803586006165, 1.2016234397888184, -1.5358450412750244, 0.3081608712673187, -0.4788188636302948, 2.0248146057128906, 0.11541220545768738, 1.2427394390106201, -0.5371626615524292, -2.219451427459717, 0.6914745569229126, -1.2666553258895874, -1.0543100833892822, 0.8171428442001343, -0.9182072877883911, 0.266235888004303, -1.4638712406158447, -0.23948943614959717, -1.003352165222168, -1.275790810585022, 0.6788766384124756, 0.11979679763317108, 0.4146709442138672, -0.5493550896644592, 0.29946979880332947, -2.2208404541015625, -1.4478845596313477, -0.1990353763103485, -0.992661714553833, 0.5611807107925415, -0.4176476001739502, 0.6734057664871216, -0.04445317015051842, 0.09693354368209839, 0.38210850954055786, 1.3986525535583496, 3.354855537414551, 0.133328378200531, 0.24146856367588043, -0.09998420625925064, -1.0542494058609009, 1.4195630550384521, 0.8994495868682861, -0.15049606561660767, -0.5584975481033325, -1.0101343393325806, 1.250925064086914, 2.0425407886505127, 1.0649995803833008, 0.08256782591342926, -0.8777450919151306, -0.7184309363365173, 0.06924690306186676, 0.28382885456085205, 0.565122663974762, 0.9633007645606995, -0.08690650016069412, 0.052239853888750076, 1.4600574970245361, 1.1258662939071655, -0.35532689094543457, 0.38750025629997253, -0.9387983679771423, -0.4304025173187256, 0.42759189009666443, 0.10709355026483536, -0.017362244427204132, 0.5020980834960938, -1.0457240343093872, -0.3535858392715454, -0.2665306329727173, -0.914756178855896, -0.7601197957992554, -0.3810035288333893, -0.4266734719276428, 1.6165368556976318, 0.11184755712747574, -0.49783793091773987, 0.10803916305303574, -0.6615169644355774, -0.19390447437763214, -1.1670811176300049, 0.1759853959083557, -0.23564554750919342, -0.10387882590293884, -0.14084792137145996, 1.8532967567443848, -0.939431369304657, -2.0680441856384277, 0.16036184132099152, 0.35954126715660095, -0.2722456753253937, 0.2943176329135895, 1.7319755554199219, 0.5798539519309998, 1.411590576171875, 1.2574357986450195, 0.9169068932533264, -0.6234453320503235, -1.2561125755310059, 0.7097910642623901, 0.9593653082847595, -1.3029661178588867, 0.898525595664978, -0.22925619781017303, -0.4712720811367035, 0.6590560078620911, 1.3958985805511475, 0.3529936373233795, -2.0972752571105957, 0.9188536405563354, -0.9410185813903809, 0.7226694226264954, 0.6907414793968201, 0.7283684611320496, 0.2298753261566162, 0.8270576596260071, -1.1932998895645142, -1.1170426607131958, -0.7624369263648987, -0.6555756330490112, 1.9180537462234497, -0.2630591094493866, 0.5536482930183411, -0.06612507253885269, -1.2317371368408203, -0.0826936736702919, 0.7202858924865723, 0.37911611795425415, -0.38994482159614563, 0.9000516533851624, -0.6210359334945679, -1.0429189205169678, -1.2864620685577393, -0.43603381514549255, -1.0808318853378296, -0.8948029279708862, 1.0091537237167358, 0.7295850515365601, 0.37831103801727295, 1.8460693359375, 0.5860236287117004, 0.31207984685897827, -2.6647849082946777, 0.9092729091644287, 0.2568810284137726, -0.08696597069501877, 0.9329924583435059, 0.2670973539352417, 1.0999867916107178, 0.024898815900087357, 0.5540013909339905, -2.3200578689575195, 2.2623631954193115, -0.2138233482837677, 0.6667596697807312, 0.02608158439397812, -0.23654280602931976, 1.1621840000152588, 0.5994006991386414, 0.6237298250198364, -1.068933129310608, 0.6734264492988586, -0.5988942384719849, 1.1527550220489502, 0.9483112096786499, -0.8669911623001099, 0.10593771934509277, 1.348708152770996, 0.4917391240596771, -0.40035250782966614, -0.9306038022041321, -0.7937895059585571, 0.958059549331665, 1.7100411653518677, -0.0787043645977974, 0.026526078581809998, 0.839791476726532, 0.5900750756263733, -1.2198747396469116, 0.08895119279623032, -0.7135331034660339, -0.7476738095283508, 1.6802310943603516, 2.144582986831665, -0.14924485981464386, -0.08337844163179398, -0.7244359254837036, -1.2698496580123901, 0.7533946633338928, -0.18011637032032013, 0.13896453380584717, 0.5966827273368835, -0.642119824886322, 1.0727522373199463, 0.6368012428283691, 1.0632320642471313, -0.021457724273204803, 0.40358659625053406, 0.3098827004432678, -0.3653978705406189, -1.0993763208389282, -0.3186931908130646, -1.1070531606674194, -2.564258575439453, 0.4104657769203186, -0.282781183719635, -1.4380693435668945, 0.0428449884057045, -0.9867414236068726, 0.949612021446228, -0.5176407098770142, -1.0714746713638306, -1.4231700897216797, 0.3433869779109955, -0.16652168333530426, 1.0215568542480469, -1.6585848331451416, -0.16416294872760773, 1.2481746673583984, 0.831839382648468, -0.6320452094078064, 0.9686256647109985, 0.2902342975139618, 0.9888753890991211, 0.7026820182800293, -0.35252562165260315, 0.5834422707557678, 0.03437233343720436, -1.2839897871017456, 0.4120188057422638, 1.2417540550231934, 0.162819966673851, 1.3921797275543213, -0.44200247526168823, 0.04562891647219658, 0.3904750347137451, -0.6699408292770386, -0.46266576647758484, -0.3530290722846985, 0.7073750495910645, 0.07256121188402176, -1.0463931560516357, -0.08912254869937897, -0.10747165232896805, -0.26643863320350647, 0.18645931780338287, -1.478006362915039, -0.3276641368865967, -0.42483431100845337, -0.4248946011066437, -1.3632203340530396, 0.05650043860077858, 1.271095871925354, -0.7887691259384155, -0.2736339569091797, 0.2995735704898834, 0.3915466070175171, 0.6154378056526184, 0.6895555257797241, -0.7122862339019775, -0.3846033215522766, -0.34143608808517456, -0.30487313866615295, 0.21109703183174133, 1.2137056589126587, -0.0625966265797615, -0.9860928058624268, 0.693573534488678, -0.40021178126335144, 0.09018991887569427, 1.9244898557662964, -0.016054987907409668, -0.7062629461288452, 0.3765072226524353, -0.6880768537521362, 1.7772040367126465, 1.7263954877853394, 1.293258547782898, -0.18406647443771362, -0.7906243205070496, 0.6213940382003784, -0.3274392783641815, -0.33221471309661865, 0.9174360632896423, 0.4671296775341034, -0.26590442657470703, -1.4715880155563354, 0.5780172944068909, 1.2410589456558228, -0.8427055478096008, -0.7580884695053101, 0.1348251849412918, -0.8520507216453552, 1.2313214540481567, 0.6261114478111267, 0.3526321351528168, 0.27240094542503357, 1.4796559810638428, 0.7366631031036377, -0.6135708689689636, 0.5063308477401733, 0.500326931476593, -0.1448163539171219, -2.1601247787475586, -1.0315357446670532, 0.31780877709388733, -0.36952880024909973, -1.5494660139083862, 1.4111751317977905, -1.0249398946762085, -0.974335789680481, 0.586852490901947, 0.0285046249628067, 1.241926908493042, 0.3630850911140442, 1.699544906616211, 2.0659196376800537, 0.8590652942657471, 0.30018845200538635, 1.2693654298782349, -0.09918820112943649, -0.5069164037704468, 1.8854036331176758, -0.42092573642730713, 0.5272731781005859, 1.0303170680999756, -0.3738868534564972, -1.0013835430145264, -0.8147813677787781, -1.1397806406021118, -0.5980808138847351, 1.1413443088531494, 0.08282126486301422, -1.119685411453247, 0.21194709837436676, 1.5874460935592651, 0.16963163018226624, -0.2401559054851532, 0.6649433970451355, 0.4029492437839508, -0.7426416277885437, -0.13764716684818268, -0.8399208784103394, 0.5010586977005005, -0.24336564540863037, -0.28181809186935425, 0.2102445513010025, 0.5092372298240662, 1.3124282360076904, -0.11802104115486145, 0.09744108468294144, 1.1242674589157104, -1.4272730350494385, 1.5372469425201416, -0.5624042749404907, 0.3557237982749939, -2.435434341430664, 1.375348687171936, -0.7431145906448364, 1.933483362197876, -2.5551960468292236, 0.40764349699020386, -0.5769518613815308, -0.4840981960296631, 0.20828530192375183, -0.3845842480659485, 0.1477193981409073, -0.14284075796604156, -0.9636635780334473, -0.0060731335543096066, -0.7743592262268066, 0.62092125415802, 1.1533477306365967, 1.3721017837524414, -1.0328621864318848, -0.24019074440002441, -1.7252867221832275, -0.16029022634029388, -0.7399665713310242, 0.3177298307418823, -1.9775559902191162, -0.19837437570095062, -2.006991386413574, -2.2916624546051025, -1.4085825681686401, -0.9480230212211609, 1.0093754529953003, 0.20978738367557526, -0.992576003074646, 1.1717690229415894, -0.3325294256210327, -1.7780824899673462, 1.1442537307739258, -2.139131546020508 ]
https://github.com/huggingface/datasets/issues/5912
Missing elements in `map` a batched dataset
Hi ! in your code batching is **only used within** `map`, to process examples in batch. The dataset itself however is not batched and returns elements one by one. To iterate on batches, you can do ```python for batch in dataset.iter(batch_size=8): ... ```
### Describe the bug As outlined [here](https://discuss.huggingface.co/t/length-error-using-map-with-datasets/40969/3?u=sachin), the following collate function drops 5 out of possible 6 elements in the batch (it is 6 because out of the eight, two are bad links in laion). A reproducible [kaggle kernel ](https://www.kaggle.com/sachin/laion-hf-dataset/edit) can be found here. The weirdest part is when inspecting the sizes of the tensors as shown below, both `tokenized_captions["input_ids"]` and `image_features` show the correct shapes. Simply the output only has one element (with the batch dimension squeezed out). ```python class CollateFn: def get_image(self, url): try: response = requests.get(url) return Image.open(io.BytesIO(response.content)).convert("RGB") except PIL.UnidentifiedImageError: logger.info(f"Reading error: Could not transform f{url}") return None except requests.exceptions.ConnectionError: logger.info(f"Connection error: Could not transform f{url}") return None def __call__(self, batch): images = [self.get_image(url) for url in batch["url"]] captions = [caption for caption, image in zip(batch["caption"], images) if image is not None] images = [image for image in images if image is not None] tokenized_captions = tokenizer( captions, padding="max_length", truncation=True, max_length=tokenizer.model_max_length, return_tensors="pt", ) image_features = torch.stack([torch.Tensor(feature_extractor(image)["pixel_values"][0]) for image in images]) # import pdb; pdb.set_trace() return {"input_ids": tokenized_captions["input_ids"], "images": image_features} collate_fn = CollateFn() laion_ds = datasets.load_dataset("laion/laion400m", split="train", streaming=True) laion_ds_batched = laion_ds.map(collate_fn, batched=True, batch_size=8, remove_columns=next(iter(laion_ds)).keys()) ``` ### Steps to reproduce the bug A reproducible [kaggle kernel ](https://www.kaggle.com/sachin/laion-hf-dataset/edit) can be found here. ### Expected behavior Would expect `next(iter(laion_ds_batched))` to produce two tensors of shape `(batch_size, 77)` and `batch_size, image_shape`. ### Environment info datasets==2.12.0 python==3.10
116
43
Missing elements in `map` a batched dataset ### Describe the bug As outlined [here](https://discuss.huggingface.co/t/length-error-using-map-with-datasets/40969/3?u=sachin), the following collate function drops 5 out of possible 6 elements in the batch (it is 6 because out of the eight, two are bad links in laion). A reproducible [kaggle kernel ](https://www.kaggle.com/sachin/laion-hf-dataset/edit) can be found here. The weirdest part is when inspecting the sizes of the tensors as shown below, both `tokenized_captions["input_ids"]` and `image_features` show the correct shapes. Simply the output only has one element (with the batch dimension squeezed out). ```python class CollateFn: def get_image(self, url): try: response = requests.get(url) return Image.open(io.BytesIO(response.content)).convert("RGB") except PIL.UnidentifiedImageError: logger.info(f"Reading error: Could not transform f{url}") return None except requests.exceptions.ConnectionError: logger.info(f"Connection error: Could not transform f{url}") return None def __call__(self, batch): images = [self.get_image(url) for url in batch["url"]] captions = [caption for caption, image in zip(batch["caption"], images) if image is not None] images = [image for image in images if image is not None] tokenized_captions = tokenizer( captions, padding="max_length", truncation=True, max_length=tokenizer.model_max_length, return_tensors="pt", ) image_features = torch.stack([torch.Tensor(feature_extractor(image)["pixel_values"][0]) for image in images]) # import pdb; pdb.set_trace() return {"input_ids": tokenized_captions["input_ids"], "images": image_features} collate_fn = CollateFn() laion_ds = datasets.load_dataset("laion/laion400m", split="train", streaming=True) laion_ds_batched = laion_ds.map(collate_fn, batched=True, batch_size=8, remove_columns=next(iter(laion_ds)).keys()) ``` ### Steps to reproduce the bug A reproducible [kaggle kernel ](https://www.kaggle.com/sachin/laion-hf-dataset/edit) can be found here. ### Expected behavior Would expect `next(iter(laion_ds_batched))` to produce two tensors of shape `(batch_size, 77)` and `batch_size, image_shape`. ### Environment info datasets==2.12.0 python==3.10 Hi ! in your code batching is **only used within** `map`, to process examples in batch. The dataset itself however is not batched and returns elements one by one. To iterate on batches, you can do ```python for batch in dataset.iter(batch_size=8): ... ```
[ -1.2613688707351685, -0.9045363068580627, -0.7689740657806396, 1.5484023094177246, -0.15282121300697327, -1.174800992012024, 0.18357080221176147, -1.1153026819229126, 1.658692479133606, -0.8607015013694763, 0.3649711310863495, -1.625902771949768, 0.048905737698078156, -0.5768985152244568, -0.7285994291305542, -0.8407284617424011, -0.4161182940006256, -0.7827186584472656, 1.1038349866867065, 2.516535520553589, 1.3158669471740723, -1.3629648685455322, 2.760014533996582, 0.7305105924606323, -0.24588289856910706, -0.998640775680542, 0.4882817268371582, -0.06294991075992584, -1.2725404500961304, -0.49924811720848083, -0.9720969200134277, -0.04510623961687088, -0.49567750096321106, -0.5116296410560608, -0.0016298340633511543, 0.3577442765235901, -0.31894147396087646, -0.41123417019844055, -0.6651551127433777, -0.8062348961830139, 0.4998781681060791, -0.40034499764442444, 0.9307450652122498, -0.3241364061832428, 1.8135170936584473, -0.6438329815864563, 0.39445027709007263, 0.6841207146644592, 1.315146565437317, 0.22909241914749146, -0.037645574659109116, 0.35356849431991577, 0.36761507391929626, -0.0053371405228972435, 0.5008025765419006, 1.2406818866729736, 0.6979873180389404, 0.48038673400878906, 0.7047302722930908, -2.2149739265441895, 1.2446273565292358, -1.0788822174072266, 0.2200724184513092, 1.301530122756958, -0.9053592681884766, 0.3676309287548065, -1.7250794172286987, -0.05855242535471916, 0.6777211427688599, -2.278916835784912, 0.27182406187057495, -1.3605674505233765, -0.5215779542922974, 1.0170856714248657, 0.34569668769836426, -1.1869380474090576, 0.15770098567008972, -0.524512767791748, 1.0175071954727173, 0.3739287555217743, 1.0634313821792603, -1.7085753679275513, -0.04294417425990105, -0.2520991563796997, 0.17314699292182922, -1.2806936502456665, -1.5400115251541138, 0.6102889180183411, 0.6982160210609436, 0.48717525601387024, -0.12661707401275635, 1.0957973003387451, -1.0790742635726929, 0.7753868699073792, -1.0011109113693237, -1.700953722000122, -1.5645300149917603, -2.277587890625, -2.17309308052063, 0.6953327655792236, -0.4909285008907318, -0.5812943577766418, 2.0658133029937744, -0.9280582666397095, -1.6585785150527954, 1.142675518989563, 0.2745886743068695, 0.07660491019487381, 2.4075751304626465, 0.16846534609794617, -0.7712475657463074, 0.5009146332740784, -0.7798953652381897, 0.8365736603736877, -0.33979350328445435, 1.3359240293502808, 0.3917389214038849, -1.0280852317810059, 1.6064647436141968, -0.4217832684516907, 0.4983999729156494, -0.5667128562927246, -0.4143246114253998, -0.7385850548744202, 0.35520774126052856, 1.8761100769042969, -0.282087504863739, 1.5474975109100342, -0.30464303493499756, -1.53696870803833, -1.6002217531204224, 0.7888913750648499, 0.4970936179161072, -0.8057637810707092, 0.1808103322982788, -0.4742238521575928, 0.14926037192344666, -0.06279905140399933, 1.2837051153182983, 1.3584949970245361, 0.740694522857666, -0.3056306838989258, -0.8407101035118103, 0.23433953523635864, -0.06879807263612747, -0.7788953185081482, -1.7013304233551025, -0.32541191577911377, 0.18049240112304688, 0.6329351663589478, -1.268531084060669, 1.793184757232666, 0.8847245573997498, 1.9219177961349487, 1.1072816848754883, -0.3587583899497986, 1.5007025003433228, 0.05364294722676277, 1.804465413093567, -0.5131590962409973, 0.6644688844680786, -0.37722378969192505, -1.1901549100875854, 0.8437578082084656, -0.3413102328777313, -2.057180404663086, -0.7726288437843323, -0.6666484475135803, -0.17850670218467712, -0.8055554628372192, 0.9389247298240662, -0.3621180057525635, -1.4133340120315552, 0.260464072227478, -0.8399487137794495, 0.07626627385616302, -1.2028769254684448, 0.2529633641242981, 0.7384630441665649, -0.629147469997406, 0.1518150269985199, -0.1958063244819641, -1.2643296718597412, -0.43670958280563354, 0.23257958889007568, 1.934247374534607, -0.7348013520240784, 0.8702095150947571, 1.079573392868042, -0.661948561668396, 0.05961232632398605, 0.3000393509864807, -0.35232558846473694, 0.8921284079551697, -1.058182716369629, -0.5359065532684326, 1.1628838777542114, -0.2035483419895172, -0.5606633424758911, 1.436348795890808, 0.6509482264518738, -0.9580917358398438, -0.33817631006240845, -0.078891821205616, -0.8735126256942749, 0.07200831174850464, -1.515957236289978, -0.17201143503189087, 0.46432551741600037, -1.565028190612793, -0.4565472900867462, -0.1869141161441803, 1.3865070343017578, -0.2046680450439453, 1.503943681716919, -0.42418789863586426, -0.1367420256137848, -0.3022325038909912, -0.3592408299446106, 0.15241801738739014, -0.20924794673919678, -0.6711516380310059, 0.22807413339614868, -0.8139673471450806, 0.3966909348964691, 1.4028396606445312, 0.36440509557724, 0.11277269572019577, 0.46810537576675415, 1.1331002712249756, 0.40143322944641113, -0.09772982448339462, -0.8814898133277893, -1.5578587055206299, 2.057339668273926, -1.3435639142990112, 2.0275180339813232, 0.8338640928268433, -0.0336478054523468, -1.7991430759429932, -1.8462016582489014, 1.3726403713226318, 1.167702078819275, 2.3258070945739746, 0.580828845500946, 0.4253961443901062, -0.7812566161155701, -0.6908555626869202, 0.35584238171577454, -1.0725617408752441, -0.7136236429214478, 0.14583531022071838, 2.3789150714874268, 1.7626575231552124, -0.43337395787239075, -0.17307576537132263, -0.9617852568626404, 1.315178394317627, -0.19312900304794312, 0.1707974672317505, 1.9226733446121216, -0.2181868851184845, -1.0816320180892944, 1.2941477298736572, -2.3373043537139893, 0.20496481657028198, 2.0064125061035156, 0.2674206495285034, 0.08243708312511444, -1.3795015811920166, -0.5986158847808838, -0.3515963852405548, -0.38057801127433777, -1.2373865842819214, 0.5058378577232361, -0.20112285017967224, -0.8693740367889404, -1.4183801412582397, 0.11836043745279312, -1.0773361921310425, -1.668474793434143, 0.28850919008255005, 1.8352457284927368, 2.0935702323913574, -0.791546106338501, 1.5501601696014404, -0.3481450080871582, 0.07537214457988739, 1.2069238424301147, 1.279036521911621, 3.0793535709381104, 1.866170883178711, -1.2854241132736206, 0.625546395778656, -0.2439829409122467, -0.4198090434074402, 1.1060028076171875, -1.261607050895691, 1.3744808435440063, -0.04219699651002884, -1.201823353767395, -1.2076139450073242, 0.9829944968223572, 0.5143134593963623, -0.03949958086013794, -0.5261143445968628, 1.2073227167129517, 0.1020398661494255, 1.3166865110397339, 0.561370313167572, -0.24243205785751343, 0.5817742347717285, -0.3883601129055023, -0.46259766817092896, 1.500037670135498, 0.13443708419799805, -1.5015078783035278, -2.2556018829345703, -0.14155492186546326, -0.8763805627822876, 0.06932185590267181, -0.648617148399353, -1.0490821599960327, 1.7957898378372192, 0.2600739598274231, -1.2296513319015503, -0.2586764395236969, -0.44963377714157104, -0.5812522172927856, 2.753249406814575, -1.3535242080688477, -0.16312500834465027, -1.021347165107727, -0.6463071703910828, 1.5567938089370728, -1.2612147331237793, -0.13617217540740967, -0.9764261841773987, -0.5637016296386719, -1.2568620443344116, -0.583628237247467, 0.0015718815848231316, -0.9002844095230103, 0.710056722164154, 0.2012568712234497, -1.1765557527542114, -0.3971320688724518, -0.8408308625221252, 0.893649160861969, -0.12489836663007736, 0.13675901293754578, 1.964462399482727, 0.3246082663536072, -0.30234280228614807, 0.7976353764533997, 1.2334880828857422, 0.6480638980865479, -0.5292996764183044, 0.15575474500656128, -0.607819676399231, 0.35492563247680664, -1.3309519290924072, 0.3133513629436493, -2.8209941387176514, 0.6817718744277954, -0.016159016638994217, -0.04907800257205963, 0.014290621504187584, -1.302121639251709, 1.0962135791778564, 2.6503562927246094, -1.2134184837341309, 0.45912280678749084, 0.3122563362121582, 1.1209522485733032, -1.550972819328308, 0.2353299856185913, -0.4872469902038574, 2.1432785987854004, 0.28267529606819153, 1.1805570125579834, -0.42171454429626465, -2.2244889736175537, 0.7011001706123352, -1.274306058883667, -1.0813524723052979, 0.8021262288093567, -0.9335439205169678, 0.13831821084022522, -1.4066303968429565, -0.25566017627716064, -0.8725028038024902, -1.1458650827407837, 0.633136510848999, 0.13805407285690308, 0.42427974939346313, -0.5460348725318909, 0.3028241991996765, -2.237306833267212, -1.3505077362060547, -0.1982221007347107, -1.0150519609451294, 0.5176852345466614, -0.36586993932724, 0.7122253775596619, -0.17098119854927063, -0.025457678362727165, 0.3833766281604767, 1.4484208822250366, 3.3726372718811035, 0.18775475025177002, 0.3603707253932953, -0.25719279050827026, -0.9439831376075745, 1.459578037261963, 0.8822644352912903, -0.1557636260986328, -0.5404822826385498, -1.0962260961532593, 1.2893507480621338, 1.9240468740463257, 0.9213865399360657, 0.04747065529227257, -0.8978549242019653, -0.7908161878585815, -0.052689261734485626, 0.17595639824867249, 0.4603871703147888, 0.8998817205429077, 0.08475050330162048, 0.08104918897151947, 1.5692951679229736, 1.133437156677246, -0.4585249722003937, 0.34482118487358093, -0.8295465707778931, -0.4659196436405182, 0.49303728342056274, 0.27792975306510925, 0.04616371542215347, 0.4473325312137604, -0.9468464255332947, -0.27253657579421997, -0.39692622423171997, -0.8641836643218994, -0.7250850200653076, -0.4010910391807556, -0.31822916865348816, 1.6000882387161255, 0.08599764853715897, -0.4609229564666748, -0.04779035970568657, -0.8049086928367615, -0.17089661955833435, -1.0454994440078735, 0.2272215187549591, -0.012876673601567745, -0.1548445224761963, -0.19415947794914246, 1.6907776594161987, -0.7988265156745911, -2.065316915512085, 0.177504301071167, 0.22572025656700134, -0.30580541491508484, 0.19550684094429016, 1.7198113203048706, 0.5535370707511902, 1.4502954483032227, 1.270982027053833, 0.9362448453903198, -0.5911380052566528, -1.2960484027862549, 0.6683823466300964, 1.0049889087677002, -1.393129587173462, 0.8532587289810181, -0.15821972489356995, -0.48353108763694763, 0.6132388710975647, 1.281004548072815, 0.48827698826789856, -1.9722298383712769, 0.8078384399414062, -1.0172897577285767, 0.7761238217353821, 0.6910103559494019, 0.5926130414009094, 0.17191535234451294, 0.8153014183044434, -1.1757416725158691, -1.16120183467865, -0.6845206022262573, -0.6752574443817139, 1.9403181076049805, -0.35904741287231445, 0.6098505854606628, -0.25684893131256104, -1.3429452180862427, -0.12732014060020447, 0.6572941541671753, 0.252255916595459, -0.47906920313835144, 0.8960981965065002, -0.7493124604225159, -1.038747787475586, -1.3133865594863892, -0.46953752636909485, -1.0110183954238892, -1.003398060798645, 1.1163623332977295, 0.7533027529716492, 0.3171879053115845, 1.9339258670806885, 0.6299741864204407, 0.21105125546455383, -2.604318141937256, 0.8640750646591187, 0.28036266565322876, -0.04312659054994583, 0.9690980315208435, 0.32364267110824585, 0.9856551885604858, -0.050771314650774, 0.5189532041549683, -2.4209892749786377, 2.311264991760254, -0.1408126950263977, 0.7382555603981018, 0.04798577353358269, -0.12899696826934814, 1.0944072008132935, 0.6100475788116455, 0.554332435131073, -1.0876209735870361, 0.5901414155960083, -0.5676324367523193, 1.2624269723892212, 0.8801639080047607, -0.8218528628349304, -0.03701663762331009, 1.3107661008834839, 0.45563632249832153, -0.5775150060653687, -0.8910211324691772, -0.9572789669036865, 0.932728111743927, 1.6850875616073608, 0.01240972988307476, -0.0060653528198599815, 0.818217396736145, 0.6123255491256714, -1.2893295288085938, 0.07139964401721954, -0.7946357131004333, -0.7312735915184021, 1.6483498811721802, 2.130315065383911, -0.2145010232925415, -0.20401883125305176, -0.5752094984054565, -1.328057885169983, 0.7514310479164124, -0.13547080755233765, 0.20727011561393738, 0.5814926624298096, -0.6820659041404724, 1.0129718780517578, 0.8919045329093933, 0.9620699286460876, 0.22881224751472473, 0.2598024606704712, 0.3770903944969177, -0.3661816418170929, -1.192355990409851, -0.25517308712005615, -1.039139747619629, -2.535843849182129, 0.3189382553100586, -0.16459158062934875, -1.4241846799850464, 0.07887007296085358, -1.0176401138305664, 0.8680710196495056, -0.5775224566459656, -1.050870418548584, -1.464943528175354, 0.23125529289245605, -0.003447588998824358, 0.9658107757568359, -1.528029441833496, -0.20352470874786377, 1.2112575769424438, 0.9572334289550781, -0.6964375376701355, 0.9731529951095581, 0.22468525171279907, 1.1021686792373657, 0.9023124575614929, -0.35016930103302, 0.5120134949684143, 0.04908578470349312, -1.3183954954147339, 0.4266483783721924, 1.1119223833084106, 0.18807867169380188, 1.5683879852294922, -0.5077599287033081, 0.03909070044755936, 0.4362291991710663, -0.6235765218734741, -0.4566214084625244, -0.5425744652748108, 0.613164484500885, 0.04775329679250717, -0.953637421131134, -0.12973584234714508, -0.0647384524345398, -0.29886743426322937, 0.17713937163352966, -1.4959903955459595, -0.09217917174100876, -0.38407450914382935, -0.595650315284729, -1.198241114616394, -0.05108517408370972, 1.4006234407424927, -0.8428571820259094, -0.17749595642089844, 0.4566887319087982, 0.3575926423072815, 0.5834001898765564, 0.6748261451721191, -0.7408082485198975, -0.3770175874233246, -0.19529461860656738, -0.3131169080734253, 0.36980706453323364, 1.3172922134399414, -0.09646637737751007, -0.904626190662384, 0.6880469918251038, -0.36395832896232605, 0.09087315201759338, 1.8940123319625854, 0.05919715017080307, -0.7276906967163086, 0.25976669788360596, -0.7327395081520081, 1.903035283088684, 1.6588348150253296, 1.2555721998214722, -0.15075692534446716, -0.8902910947799683, 0.7240623831748962, -0.3646850883960724, -0.40276038646698, 0.79133141040802, 0.386091947555542, -0.2508677840232849, -1.4973971843719482, 0.747911274433136, 1.3058913946151733, -0.94187331199646, -0.7936016917228699, 0.13228046894073486, -0.8677682876586914, 1.11715829372406, 0.6941474080085754, 0.34044307470321655, 0.35244399309158325, 1.6291203498840332, 0.9043605327606201, -0.4777207374572754, 0.46612849831581116, 0.5887754559516907, -0.15049996972084045, -2.1086537837982178, -1.1297532320022583, 0.3676103353500366, -0.5036482214927673, -1.5973366498947144, 1.3545875549316406, -1.232264757156372, -1.0793523788452148, 0.593926191329956, 0.07553580403327942, 1.2679433822631836, 0.3012550473213196, 1.5988614559173584, 2.0898208618164062, 0.8267781138420105, 0.35838961601257324, 1.2157230377197266, -0.1655644178390503, -0.44904446601867676, 1.7356362342834473, -0.41355663537979126, 0.5165055394172668, 1.087816834449768, -0.36561787128448486, -1.053121566772461, -0.7575832009315491, -1.310957908630371, -0.7810724377632141, 1.1179808378219604, 0.19756901264190674, -1.0674887895584106, 0.2105770707130432, 1.559411883354187, 0.108085036277771, -0.3416878581047058, 0.5516750812530518, 0.5496864914894104, -0.7407570481300354, -0.06603731960058212, -0.8269417881965637, 0.5624381303787231, -0.16134175658226013, -0.4455217123031616, 0.3352310359477997, 0.4166982173919678, 1.3852062225341797, -0.07067020237445831, 0.11048976331949234, 1.0506104230880737, -1.4190553426742554, 1.4965591430664062, -0.6343796849250793, 0.27573537826538086, -2.328371524810791, 1.3851745128631592, -0.7822782397270203, 2.0306825637817383, -2.6437525749206543, 0.5373654961585999, -0.6286544799804688, -0.43928033113479614, 0.27685847878456116, -0.35506317019462585, 0.20514994859695435, -0.14020082354545593, -1.1067249774932861, -0.13876387476921082, -0.6773669719696045, 0.5822157859802246, 1.0934432744979858, 1.3664013147354126, -1.136134386062622, -0.2698599100112915, -1.6794122457504272, -0.08410333096981049, -0.7691457867622375, 0.23218786716461182, -1.987962007522583, -0.25203317403793335, -1.9224284887313843, -2.3726253509521484, -1.3770432472229004, -0.7744930386543274, 1.1154197454452515, 0.08347760885953903, -0.8303158283233643, 1.2391231060028076, -0.4667437672615051, -1.8877114057540894, 1.0811269283294678, -2.1443231105804443 ]
https://github.com/huggingface/datasets/issues/5910
Cannot use both set_format and set_transform
Currently, it's not possible to chain `set_format`/`set_transform` calls (plus, this is a breaking change if we decide to implement it), so I see two possible solutions: * using `set_format`/`set_transform` for the 1st transform and then passing the transformed example/batch to the 2nd transform * implementing and registering a custom formatter (the relevant code is [here](https://github.com/huggingface/datasets/tree/main/src/datasets/formatting)) Btw, your example requires a single `set_format` call: ```python ds.set_format("torch", columns=["image"], output_all_columns=True, dtype=torch.double) ```
### Describe the bug I need to process some data using the set_transform method but I also need the data to be formatted for pytorch before processing it. I don't see anywhere in the documentation something that says that both methods cannot be used at the same time. ### Steps to reproduce the bug ``` from datasets import load_dataset ds = load_dataset("mnist", split="train") ds.set_format(type="torch") def transform(entry): return entry["image"].double() ds.set_transform(transform) print(ds[0]) ``` ### Expected behavior It should print the pytorch tensor image as a double, but it errors because "entry" in the transform function doesn't receive a pytorch tensor to begin with, it receives a PIL Image -> entry.double() errors because entry isn't a pytorch tensor. ### Environment info Latest versions. ### Note: It would be at least handy to have access to a function that can do the dataset.set_format in the set_transform function. Something like: ``` from datasets import load_dataset, do_format ds = load_dataset("mnist", split="train") def transform(entry): entry = do_format(entry, type="torch") return entry["image"].double() ds.set_transform(transform) print(ds[0]) ```
117
69
Cannot use both set_format and set_transform ### Describe the bug I need to process some data using the set_transform method but I also need the data to be formatted for pytorch before processing it. I don't see anywhere in the documentation something that says that both methods cannot be used at the same time. ### Steps to reproduce the bug ``` from datasets import load_dataset ds = load_dataset("mnist", split="train") ds.set_format(type="torch") def transform(entry): return entry["image"].double() ds.set_transform(transform) print(ds[0]) ``` ### Expected behavior It should print the pytorch tensor image as a double, but it errors because "entry" in the transform function doesn't receive a pytorch tensor to begin with, it receives a PIL Image -> entry.double() errors because entry isn't a pytorch tensor. ### Environment info Latest versions. ### Note: It would be at least handy to have access to a function that can do the dataset.set_format in the set_transform function. Something like: ``` from datasets import load_dataset, do_format ds = load_dataset("mnist", split="train") def transform(entry): entry = do_format(entry, type="torch") return entry["image"].double() ds.set_transform(transform) print(ds[0]) ``` Currently, it's not possible to chain `set_format`/`set_transform` calls (plus, this is a breaking change if we decide to implement it), so I see two possible solutions: * using `set_format`/`set_transform` for the 1st transform and then passing the transformed example/batch to the 2nd transform * implementing and registering a custom formatter (the relevant code is [here](https://github.com/huggingface/datasets/tree/main/src/datasets/formatting)) Btw, your example requires a single `set_format` call: ```python ds.set_format("torch", columns=["image"], output_all_columns=True, dtype=torch.double) ```
[ -1.1962045431137085, -0.9554942846298218, -0.7098817229270935, 1.5405189990997314, -0.15582190454006195, -1.2904658317565918, 0.1379733830690384, -1.0855450630187988, 1.6740038394927979, -0.8126764893531799, 0.36410877108573914, -1.669192910194397, 0.017796795815229416, -0.5807246565818787, -0.7256718277931213, -0.8115092515945435, -0.40571099519729614, -0.6899479031562805, 1.0666619539260864, 2.433116912841797, 1.2425189018249512, -1.3571521043777466, 2.7280476093292236, 0.7246758937835693, -0.23025427758693695, -0.9786133766174316, 0.5017179250717163, -0.03065900318324566, -1.2461820840835571, -0.47795453667640686, -0.9521852135658264, -0.06028877943754196, -0.4638860821723938, -0.45515176653862, -0.1177370548248291, 0.40397050976753235, -0.35443615913391113, -0.4488290846347809, -0.613638699054718, -0.8226402401924133, 0.4351584017276764, -0.36720725893974304, 0.9427899718284607, -0.3048368990421295, 1.8804638385772705, -0.6220846176147461, 0.4837408661842346, 0.7193981409072876, 1.3025823831558228, 0.18736007809638977, -0.01826130598783493, 0.3532487452030182, 0.4206302762031555, -0.07874856889247894, 0.6117463707923889, 1.2312076091766357, 0.6658948659896851, 0.5042290091514587, 0.7162612676620483, -2.236477851867676, 1.307727575302124, -1.0466941595077515, 0.2667534649372101, 1.2693336009979248, -0.9385619163513184, 0.31084495782852173, -1.7300660610198975, -0.04704703390598297, 0.5745417475700378, -2.2495391368865967, 0.3011285364627838, -1.412683129310608, -0.5745427012443542, 1.026976227760315, 0.3790447413921356, -1.2233514785766602, 0.11780250072479248, -0.3707716166973114, 0.9935874342918396, 0.39889055490493774, 1.0856285095214844, -1.7024534940719604, -0.08413125574588776, -0.2918945550918579, 0.1076667383313179, -1.218381643295288, -1.518468976020813, 0.6042783260345459, 0.6004220843315125, 0.6085737347602844, -0.09865502268075943, 1.1310043334960938, -1.0574754476547241, 0.7872100472450256, -1.0424188375473022, -1.6563552618026733, -1.4866583347320557, -2.2267894744873047, -2.2100870609283447, 0.8138290643692017, -0.539921760559082, -0.5198060870170593, 2.056070566177368, -1.053645372390747, -1.7612195014953613, 1.1492424011230469, 0.25971850752830505, -0.004911115393042564, 2.421607494354248, 0.15649589896202087, -0.6557193994522095, 0.537773847579956, -0.72809898853302, 0.7967880964279175, -0.4070139229297638, 1.3072842359542847, 0.3986645042896271, -1.037427544593811, 1.579350471496582, -0.4026731848716736, 0.5794685482978821, -0.6593471765518188, -0.5231002569198608, -0.6957160830497742, 0.33751288056373596, 1.8616570234298706, -0.3606904149055481, 1.5403995513916016, -0.3140156865119934, -1.5510632991790771, -1.662757396697998, 0.9043839573860168, 0.3813680112361908, -0.7738234996795654, 0.1251378059387207, -0.39650973677635193, 0.13484779000282288, -0.08011535555124283, 1.209458589553833, 1.3001469373703003, 0.7326748371124268, -0.3728785812854767, -0.8361771702766418, 0.13014189898967743, -0.0352461114525795, -0.7388330101966858, -1.6670008897781372, -0.4067801535129547, 0.19780346751213074, 0.5242312550544739, -1.1898586750030518, 1.8085821866989136, 0.8927386403083801, 1.8834350109100342, 1.0793448686599731, -0.27506011724472046, 1.5127205848693848, 0.11118816584348679, 1.8813668489456177, -0.5100555419921875, 0.5519613027572632, -0.3719600439071655, -1.1767079830169678, 0.8020642399787903, -0.3184955418109894, -2.027590751647949, -0.8137152194976807, -0.7538133859634399, -0.22564959526062012, -0.8108797073364258, 0.8888646960258484, -0.40405452251434326, -1.3152475357055664, 0.2250826358795166, -0.6875640749931335, 0.053524456918239594, -1.1744548082351685, 0.33605048060417175, 0.7325479388237, -0.6125044822692871, 0.08532457053661346, -0.19593988358974457, -1.2245111465454102, -0.36506709456443787, 0.2534331977367401, 1.9601540565490723, -0.6939966678619385, 0.9244951009750366, 1.0626192092895508, -0.6687312722206116, 0.018104998394846916, 0.3064468801021576, -0.29534223675727844, 0.7928452491760254, -1.0265642404556274, -0.47113144397735596, 1.1808514595031738, -0.16727983951568604, -0.6264524459838867, 1.4691271781921387, 0.6412344574928284, -1.0118168592453003, -0.18502753973007202, -0.04887170344591141, -0.8182012438774109, 0.039361268281936646, -1.569054126739502, -0.04699457436800003, 0.3810998201370239, -1.51032292842865, -0.5250778198242188, -0.1616756021976471, 1.209274172782898, -0.19206200540065765, 1.4043629169464111, -0.4345175325870514, -0.14761574566364288, -0.34411683678627014, -0.38933810591697693, 0.05257955193519592, -0.18930338323116302, -0.6413180828094482, 0.12222486734390259, -0.7472158670425415, 0.3990987241268158, 1.4594316482543945, 0.36881932616233826, 0.06684137880802155, 0.5112097859382629, 1.1478842496871948, 0.3890727758407593, -0.0015159458853304386, -0.8673716187477112, -1.5618630647659302, 1.9679158926010132, -1.434897541999817, 2.0790343284606934, 0.8274032473564148, -0.11860305070877075, -1.7528079748153687, -1.9477466344833374, 1.3060920238494873, 1.2016233205795288, 2.3005003929138184, 0.5342241525650024, 0.3801869750022888, -0.8083449602127075, -0.6621333360671997, 0.3593791723251343, -1.0324867963790894, -0.6528763175010681, 0.15131333470344543, 2.356928586959839, 1.8758726119995117, -0.4260459840297699, -0.23419195413589478, -1.0331296920776367, 1.4404057264328003, -0.26930922269821167, 0.2111579179763794, 1.9263560771942139, -0.26000288128852844, -1.0060940980911255, 1.3153437376022339, -2.2970688343048096, 0.17805619537830353, 2.0228352546691895, 0.2410624772310257, 0.08851807564496994, -1.3167805671691895, -0.5510820150375366, -0.31539225578308105, -0.41596052050590515, -1.2638657093048096, 0.4484657645225525, -0.26793989539146423, -0.732789933681488, -1.3494402170181274, 0.19585004448890686, -1.0862995386123657, -1.6691192388534546, 0.20971688628196716, 1.8861795663833618, 2.013049602508545, -0.820507824420929, 1.5438640117645264, -0.3406038284301758, 0.12556317448616028, 1.214968204498291, 1.2583608627319336, 3.1714630126953125, 1.8501654863357544, -1.3133041858673096, 0.6495239734649658, -0.2101806104183197, -0.47904226183891296, 1.1899000406265259, -1.2358564138412476, 1.3534201383590698, -0.20829877257347107, -1.2305713891983032, -1.2039265632629395, 0.9685986042022705, 0.447542279958725, 0.0589563325047493, -0.5777668952941895, 1.1254568099975586, 0.15207017958164215, 1.2805184125900269, 0.5634468793869019, -0.412029892206192, 0.6333839893341064, -0.3570689260959625, -0.4923272132873535, 1.4572385549545288, 0.22185826301574707, -1.4691009521484375, -2.217860460281372, -0.10188359022140503, -0.9238025546073914, 0.04992332309484482, -0.5952730178833008, -1.0475326776504517, 1.6695479154586792, 0.3480397164821625, -1.2796673774719238, -0.2873799502849579, -0.3874208927154541, -0.5876619815826416, 2.788902759552002, -1.351669430732727, -0.2416440099477768, -1.0542759895324707, -0.6477786898612976, 1.6956055164337158, -1.1520336866378784, -0.16469721496105194, -1.0400595664978027, -0.5304197669029236, -1.236817717552185, -0.5290243625640869, 0.04509381204843521, -0.9671366214752197, 0.8504631519317627, 0.17990566790103912, -1.1867916584014893, -0.34111854434013367, -0.9049025177955627, 0.9735534191131592, -0.1919257491827011, 0.09278206527233124, 1.87203848361969, 0.34778058528900146, -0.4669789969921112, 0.7990562319755554, 1.2208706140518188, 0.5822690725326538, -0.6295611262321472, 0.2715573310852051, -0.6799730658531189, 0.4042185842990875, -1.2985789775848389, 0.27277106046676636, -2.8142569065093994, 0.5897441506385803, -0.04568108916282654, -0.0755239799618721, 0.049783430993556976, -1.3273946046829224, 1.0175139904022217, 2.5470149517059326, -1.1325888633728027, 0.5085996985435486, 0.3051256239414215, 1.217077374458313, -1.6786829233169556, 0.25394466519355774, -0.5261548757553101, 2.093059778213501, 0.2135237604379654, 1.199539065361023, -0.4608858823776245, -2.2935256958007812, 0.6584131717681885, -1.2784243822097778, -1.2215797901153564, 0.7767629027366638, -0.999592125415802, 0.10475312173366547, -1.3611608743667603, -0.2889154553413391, -0.7929474115371704, -1.102085828781128, 0.7528637647628784, 0.13202261924743652, 0.42617976665496826, -0.5595465898513794, 0.305466890335083, -2.2351298332214355, -1.4460498094558716, -0.1621340662240982, -0.9365151524543762, 0.5183813571929932, -0.4519837200641632, 0.7102267146110535, -0.26076576113700867, -0.05955445021390915, 0.3519652485847473, 1.4901589155197144, 3.3755264282226562, 0.24207963049411774, 0.35112011432647705, -0.2333562821149826, -0.9366748332977295, 1.4293651580810547, 0.8484402298927307, -0.1793886125087738, -0.5064536333084106, -1.037759780883789, 1.2780263423919678, 1.8735600709915161, 1.0337446928024292, -0.05361957848072052, -0.7921724319458008, -0.7158886194229126, -0.10176496207714081, 0.12562915682792664, 0.4080994427204132, 0.9378827214241028, 0.07671484351158142, 0.13653646409511566, 1.3909518718719482, 1.1592292785644531, -0.458207905292511, 0.3888978958129883, -0.7722445130348206, -0.4851010739803314, 0.5474917888641357, 0.22356033325195312, -0.025014374405145645, 0.3396278917789459, -1.0006269216537476, -0.34907037019729614, -0.5060093402862549, -0.8000074625015259, -0.7335907816886902, -0.36295899748802185, -0.3131769299507141, 1.6462390422821045, 0.07329591363668442, -0.450374037027359, -0.03565791994333267, -0.8214051723480225, -0.12717604637145996, -1.0713896751403809, 0.22665083408355713, -0.08147968351840973, -0.1413116157054901, -0.11591920256614685, 1.6655309200286865, -0.9470685720443726, -2.0055367946624756, 0.21648889780044556, 0.21314452588558197, -0.17831778526306152, 0.23886077105998993, 1.6432030200958252, 0.5416752099990845, 1.4269049167633057, 1.3908125162124634, 0.9547838568687439, -0.6638367176055908, -1.2616384029388428, 0.6644100546836853, 0.9824122786521912, -1.3682013750076294, 0.8501409888267517, -0.025658369064331055, -0.4954293370246887, 0.5773375630378723, 1.2132529020309448, 0.48317185044288635, -1.9610557556152344, 0.7792513966560364, -0.9975601434707642, 0.8007624745368958, 0.7332081198692322, 0.7314627170562744, 0.19339057803153992, 0.8530822992324829, -1.1178714036941528, -1.2407236099243164, -0.762726902961731, -0.7610732913017273, 1.9804344177246094, -0.26221686601638794, 0.6172972321510315, -0.17009484767913818, -1.364274024963379, -0.07660247385501862, 0.6895350217819214, 0.4048248529434204, -0.5416454672813416, 0.8007105588912964, -0.6381925344467163, -0.973797619342804, -1.3990468978881836, -0.37351107597351074, -1.1059956550598145, -0.9423279166221619, 1.0262480974197388, 0.7908767461776733, 0.19094182550907135, 1.928655982017517, 0.7120124101638794, 0.343878835439682, -2.5823111534118652, 0.991973340511322, 0.26833581924438477, -0.08398235589265823, 0.8077621459960938, 0.3927326798439026, 0.9795182347297668, 0.05412207543849945, 0.5042883157730103, -2.3971543312072754, 2.261899471282959, -0.22014190256595612, 0.7151892781257629, -0.04327002167701721, -0.1779777556657791, 1.097678780555725, 0.6136645674705505, 0.513639509677887, -1.0932888984680176, 0.5761549472808838, -0.5007269978523254, 1.212699294090271, 0.887810468673706, -0.8681211471557617, 0.0003198161721229553, 1.4462555646896362, 0.43791377544403076, -0.573855459690094, -1.0100005865097046, -0.9521921277046204, 1.0008717775344849, 1.7421257495880127, 0.02729540877044201, 0.013181829825043678, 0.8476758003234863, 0.633389413356781, -1.297373652458191, 0.0829346626996994, -0.7254065871238708, -0.696733832359314, 1.6662296056747437, 2.123295545578003, -0.2669752240180969, -0.21388310194015503, -0.6217160820960999, -1.2157593965530396, 0.8472200036048889, -0.10993793606758118, 0.16261659562587738, 0.7023759484291077, -0.6610058546066284, 1.1035966873168945, 0.8452779650688171, 0.9608843326568604, 0.1863923817873001, 0.2340475618839264, 0.4230074882507324, -0.3040902018547058, -1.1661617755889893, -0.15569403767585754, -1.1122545003890991, -2.5731418132781982, 0.4149918556213379, -0.21284347772598267, -1.3461309671401978, 0.028129862621426582, -1.0141879320144653, 0.9546980857849121, -0.5459990501403809, -1.0582789182662964, -1.50287926197052, 0.15398719906806946, -0.002443938050419092, 0.9902908205986023, -1.637665033340454, -0.20164480805397034, 1.16849946975708, 0.9464825391769409, -0.719127893447876, 0.8801643252372742, 0.20509609580039978, 1.0542079210281372, 0.894964873790741, -0.46143388748168945, 0.5410373210906982, -0.06041876971721649, -1.4307295083999634, 0.4614180028438568, 1.2062162160873413, 0.18164490163326263, 1.5080609321594238, -0.5174276828765869, 0.03100753016769886, 0.4201827347278595, -0.5669193863868713, -0.4462776184082031, -0.5463311672210693, 0.6929025053977966, -0.02315339259803295, -0.8724765181541443, -0.06397385895252228, -0.04946368932723999, -0.3357200026512146, 0.13334162533283234, -1.4327034950256348, -0.12382951378822327, -0.38279515504837036, -0.6639387607574463, -1.2810624837875366, -0.08301229774951935, 1.3580876588821411, -0.8327196836471558, -0.17139482498168945, 0.5240536332130432, 0.29077741503715515, 0.49177196621894836, 0.5545177459716797, -0.7060903310775757, -0.23036114871501923, -0.1652478575706482, -0.34334295988082886, 0.3866487443447113, 1.4295099973678589, -0.11894633620977402, -0.9494181275367737, 0.6340585350990295, -0.3255578875541687, 0.07660310715436935, 1.8727450370788574, 0.09295058250427246, -0.6590598821640015, 0.2637675106525421, -0.7423391938209534, 1.8646584749221802, 1.7270405292510986, 1.3705483675003052, -0.1405952125787735, -0.9477783441543579, 0.6545888781547546, -0.3813855051994324, -0.3682193160057068, 0.8344451785087585, 0.28124240040779114, -0.21902914345264435, -1.519195318222046, 0.7819257974624634, 1.2082324028015137, -0.8963602781295776, -0.7691140174865723, 0.033732593059539795, -0.8099342584609985, 1.10627281665802, 0.6085436940193176, 0.3608947992324829, 0.24973444640636444, 1.6205337047576904, 0.7952092885971069, -0.44816911220550537, 0.49777451157569885, 0.5419055223464966, -0.08456773310899734, -2.2148594856262207, -1.0751031637191772, 0.3016450107097626, -0.5184091329574585, -1.5750036239624023, 1.4031848907470703, -1.1790131330490112, -0.9855089783668518, 0.5985216498374939, 0.081061951816082, 1.4673523902893066, 0.30723142623901367, 1.5376027822494507, 2.194999933242798, 0.869570791721344, 0.45860353112220764, 1.2608542442321777, -0.20460300147533417, -0.41369324922561646, 1.766654372215271, -0.41032466292381287, 0.4733968675136566, 1.0016659498214722, -0.3564149737358093, -1.1591262817382812, -0.7237443327903748, -1.3675665855407715, -0.7725293636322021, 1.1221522092819214, -0.023384682834148407, -1.0340728759765625, 0.2712460458278656, 1.5542523860931396, 0.08205124735832214, -0.31805872917175293, 0.6710038185119629, 0.48332643508911133, -0.8156198859214783, -0.07033631205558777, -0.8433510065078735, 0.5467565655708313, -0.07272116094827652, -0.3654436469078064, 0.413278728723526, 0.449844628572464, 1.4049290418624878, -0.05063916742801666, 0.13832828402519226, 1.079101324081421, -1.4163343906402588, 1.5149086713790894, -0.7517891526222229, 0.2091449350118637, -2.3332695960998535, 1.4438246488571167, -0.8092383146286011, 1.9293211698532104, -2.619509220123291, 0.5463836193084717, -0.6103184819221497, -0.47324836254119873, 0.31430304050445557, -0.29567354917526245, 0.1387336254119873, -0.10028767585754395, -1.1260719299316406, 0.02755780704319477, -0.5853509306907654, 0.6112270355224609, 1.1118465662002563, 1.3797508478164673, -1.1296699047088623, -0.3014968931674957, -1.7724785804748535, -0.05594746023416519, -0.7329334020614624, 0.2567451000213623, -2.009047031402588, -0.16543644666671753, -1.9324827194213867, -2.3707618713378906, -1.2901926040649414, -0.7755065560340881, 1.0966728925704956, 0.17556056380271912, -0.8602845668792725, 1.2975621223449707, -0.39420899748802185, -1.8841356039047241, 1.1346017122268677, -2.1698384284973145 ]
https://github.com/huggingface/datasets/issues/5910
Cannot use both set_format and set_transform
Hey Mario, Thanks, for getting back to me. the toDouble was just an example my real life case requires many more transforms. What do you mean by: > using set_format/set_transform for the 1st transform and then passing the transformed example/batch to the 2nd transform How would that go, I thought you can't chain them? As for the custom formatter, is it possible to reference an existing formatter, in my case `torch_formatter` inside of my custom formatter? maybe I can inherit from it and just call `super.recursive_tensorize()`?
### Describe the bug I need to process some data using the set_transform method but I also need the data to be formatted for pytorch before processing it. I don't see anywhere in the documentation something that says that both methods cannot be used at the same time. ### Steps to reproduce the bug ``` from datasets import load_dataset ds = load_dataset("mnist", split="train") ds.set_format(type="torch") def transform(entry): return entry["image"].double() ds.set_transform(transform) print(ds[0]) ``` ### Expected behavior It should print the pytorch tensor image as a double, but it errors because "entry" in the transform function doesn't receive a pytorch tensor to begin with, it receives a PIL Image -> entry.double() errors because entry isn't a pytorch tensor. ### Environment info Latest versions. ### Note: It would be at least handy to have access to a function that can do the dataset.set_format in the set_transform function. Something like: ``` from datasets import load_dataset, do_format ds = load_dataset("mnist", split="train") def transform(entry): entry = do_format(entry, type="torch") return entry["image"].double() ds.set_transform(transform) print(ds[0]) ```
117
86
Cannot use both set_format and set_transform ### Describe the bug I need to process some data using the set_transform method but I also need the data to be formatted for pytorch before processing it. I don't see anywhere in the documentation something that says that both methods cannot be used at the same time. ### Steps to reproduce the bug ``` from datasets import load_dataset ds = load_dataset("mnist", split="train") ds.set_format(type="torch") def transform(entry): return entry["image"].double() ds.set_transform(transform) print(ds[0]) ``` ### Expected behavior It should print the pytorch tensor image as a double, but it errors because "entry" in the transform function doesn't receive a pytorch tensor to begin with, it receives a PIL Image -> entry.double() errors because entry isn't a pytorch tensor. ### Environment info Latest versions. ### Note: It would be at least handy to have access to a function that can do the dataset.set_format in the set_transform function. Something like: ``` from datasets import load_dataset, do_format ds = load_dataset("mnist", split="train") def transform(entry): entry = do_format(entry, type="torch") return entry["image"].double() ds.set_transform(transform) print(ds[0]) ``` Hey Mario, Thanks, for getting back to me. the toDouble was just an example my real life case requires many more transforms. What do you mean by: > using set_format/set_transform for the 1st transform and then passing the transformed example/batch to the 2nd transform How would that go, I thought you can't chain them? As for the custom formatter, is it possible to reference an existing formatter, in my case `torch_formatter` inside of my custom formatter? maybe I can inherit from it and just call `super.recursive_tensorize()`?
[ -1.1929880380630493, -0.9725824594497681, -0.711422324180603, 1.56049382686615, -0.15872026979923248, -1.2374155521392822, 0.12541748583316803, -1.0926978588104248, 1.6653180122375488, -0.8458207249641418, 0.33287307620048523, -1.6364455223083496, 0.04797825217247009, -0.5497223734855652, -0.7341068387031555, -0.8268616199493408, -0.42880621552467346, -0.7357364296913147, 1.0720802545547485, 2.473874092102051, 1.2049669027328491, -1.3558015823364258, 2.7015433311462402, 0.7241911292076111, -0.24348323047161102, -1.005123257637024, 0.520285964012146, 0.009276687167584896, -1.2713342905044556, -0.4768654406070709, -0.9340136647224426, -0.03619769588112831, -0.4573160707950592, -0.4469478130340576, -0.10260391235351562, 0.3739268183708191, -0.35835686326026917, -0.46650633215904236, -0.5877229571342468, -0.8089097142219543, 0.4485777020454407, -0.3839903175830841, 0.9626528024673462, -0.3031820058822632, 1.8904368877410889, -0.588121771812439, 0.5191882848739624, 0.7275446057319641, 1.2761036157608032, 0.18412940204143524, -0.0441436842083931, 0.32862961292266846, 0.4404471218585968, -0.1004178375005722, 0.5879368185997009, 1.1932616233825684, 0.6858924627304077, 0.5103175044059753, 0.7170650362968445, -2.2171740531921387, 1.3162966966629028, -1.0835851430892944, 0.26510635018348694, 1.2811698913574219, -0.934741199016571, 0.37466859817504883, -1.7197089195251465, -0.06903914362192154, 0.5701032876968384, -2.244931936264038, 0.306241899728775, -1.3879802227020264, -0.5861883163452148, 1.0165228843688965, 0.34219977259635925, -1.259132981300354, 0.10716744512319565, -0.4094330072402954, 0.9769493937492371, 0.4106244146823883, 1.0839531421661377, -1.7189241647720337, -0.07841236144304276, -0.3279086947441101, 0.07984788715839386, -1.2593698501586914, -1.4742341041564941, 0.5909360647201538, 0.6181139349937439, 0.5711631774902344, -0.06954284012317657, 1.1127033233642578, -1.0712147951126099, 0.8020502924919128, -1.0473042726516724, -1.640820860862732, -1.4800434112548828, -2.238891363143921, -2.229264974594116, 0.7925159931182861, -0.5124584436416626, -0.5482296347618103, 2.101783275604248, -1.0830910205841064, -1.7177860736846924, 1.2191203832626343, 0.22599945962429047, -0.0216139517724514, 2.438732385635376, 0.1510946899652481, -0.6465228199958801, 0.5163089632987976, -0.6778889894485474, 0.8286058902740479, -0.42252612113952637, 1.2927532196044922, 0.39890730381011963, -1.0159738063812256, 1.5910236835479736, -0.3733689486980438, 0.5850540399551392, -0.6171891093254089, -0.5505168437957764, -0.7174480557441711, 0.34262025356292725, 1.850042700767517, -0.33504539728164673, 1.5522502660751343, -0.32323378324508667, -1.5473777055740356, -1.6682069301605225, 0.9068902730941772, 0.39903420209884644, -0.7992929220199585, 0.1455421894788742, -0.35360655188560486, 0.10304340720176697, -0.07069911062717438, 1.203543782234192, 1.3411931991577148, 0.7340732216835022, -0.34733107686042786, -0.8623999953269958, 0.11670489609241486, -0.07799839973449707, -0.7475159168243408, -1.6468629837036133, -0.42143818736076355, 0.14544717967510223, 0.5427654981613159, -1.2221739292144775, 1.7894045114517212, 0.9168446063995361, 1.8916183710098267, 1.0879391431808472, -0.29277002811431885, 1.494454026222229, 0.13182000815868378, 1.8272582292556763, -0.4978310763835907, 0.5724299550056458, -0.4058632254600525, -1.1848088502883911, 0.790840744972229, -0.3221525549888611, -2.0073130130767822, -0.8077623844146729, -0.7608724236488342, -0.21662652492523193, -0.825813889503479, 0.8820134401321411, -0.3951655328273773, -1.3118607997894287, 0.30367311835289, -0.6499622464179993, 0.0694325789809227, -1.1761107444763184, 0.36837106943130493, 0.7144548892974854, -0.6030415892601013, 0.10906869918107986, -0.1958293467760086, -1.241743803024292, -0.3508404493331909, 0.28328612446784973, 1.9303444623947144, -0.7140461206436157, 0.9360654354095459, 1.0213643312454224, -0.6547769904136658, -0.035237763077020645, 0.28970032930374146, -0.335862934589386, 0.8132728338241577, -0.9912476539611816, -0.4688313901424408, 1.1905920505523682, -0.2222728580236435, -0.5931885838508606, 1.4645087718963623, 0.5992634296417236, -0.9909309148788452, -0.2225067913532257, -0.06932853907346725, -0.8383902311325073, 0.03787815943360329, -1.5993942022323608, -0.06725259125232697, 0.3866157829761505, -1.5586776733398438, -0.5233483910560608, -0.13374324142932892, 1.1990772485733032, -0.19575580954551697, 1.4500116109848022, -0.4848146140575409, -0.14978183805942535, -0.3190244734287262, -0.410723477602005, 0.09719374775886536, -0.15012051165103912, -0.6045300960540771, 0.120913565158844, -0.7661248445510864, 0.41001465916633606, 1.4394383430480957, 0.4126920998096466, 0.04481838271021843, 0.4958097040653229, 1.1059391498565674, 0.39225393533706665, 0.007084702141582966, -0.8877233862876892, -1.550553798675537, 2.008880376815796, -1.468496322631836, 2.083785057067871, 0.824293851852417, -0.12972047924995422, -1.7674710750579834, -1.9399895668029785, 1.2912455797195435, 1.2048125267028809, 2.2376708984375, 0.5602747797966003, 0.4093029201030731, -0.7736626267433167, -0.6376686692237854, 0.3823000192642212, -1.083901286125183, -0.6667556166648865, 0.16556324064731598, 2.3480629920959473, 1.806147575378418, -0.42616918683052063, -0.23227126896381378, -1.012288212776184, 1.474674105644226, -0.24151667952537537, 0.18863332271575928, 1.9478120803833008, -0.2590459883213043, -1.046911597251892, 1.304997444152832, -2.3087477684020996, 0.198023721575737, 1.998884916305542, 0.26707759499549866, 0.062265872955322266, -1.3176629543304443, -0.5147011280059814, -0.3164796829223633, -0.40212634205818176, -1.2403576374053955, 0.48523378372192383, -0.28026044368743896, -0.7142583131790161, -1.367958903312683, 0.18703532218933105, -1.1235227584838867, -1.6664928197860718, 0.23209191858768463, 1.8864099979400635, 2.035107374191284, -0.8291670680046082, 1.5622804164886475, -0.3332332968711853, 0.14249801635742188, 1.1947709321975708, 1.2116562128067017, 3.1620702743530273, 1.8744698762893677, -1.3056011199951172, 0.608267068862915, -0.1651531457901001, -0.4577104449272156, 1.167432427406311, -1.2145164012908936, 1.3920878171920776, -0.19515684247016907, -1.2165590524673462, -1.1971371173858643, 0.973511278629303, 0.4298977851867676, 0.052591703832149506, -0.5804335474967957, 1.1370716094970703, 0.1416282057762146, 1.3051649332046509, 0.5293368101119995, -0.4193616509437561, 0.6462130546569824, -0.41360488533973694, -0.4818650782108307, 1.476785659790039, 0.2058839648962021, -1.4549801349639893, -2.1963131427764893, -0.15906427800655365, -0.8542093634605408, 0.0649300366640091, -0.5710740685462952, -1.0266036987304688, 1.6511260271072388, 0.36151212453842163, -1.3106857538223267, -0.32498040795326233, -0.39181432127952576, -0.5960519313812256, 2.7933743000030518, -1.3989841938018799, -0.23422156274318695, -1.0342471599578857, -0.6726934313774109, 1.668068766593933, -1.2089695930480957, -0.20993924140930176, -1.0166908502578735, -0.5416125059127808, -1.2524747848510742, -0.5638847351074219, 0.03230123966932297, -0.9843746423721313, 0.8046268224716187, 0.2200666069984436, -1.1289650201797485, -0.3445685803890228, -0.8769353032112122, 0.9441592693328857, -0.17298680543899536, 0.10843802988529205, 1.8545109033584595, 0.3510361313819885, -0.4534176290035248, 0.7927902340888977, 1.206781029701233, 0.6244229674339294, -0.617595911026001, 0.21549321711063385, -0.6904640197753906, 0.3897525370121002, -1.2739901542663574, 0.2723565995693207, -2.800657272338867, 0.5687792897224426, -0.027327973395586014, -0.06675150990486145, 0.042388368397951126, -1.2990177869796753, 1.0278126001358032, 2.5451455116271973, -1.0934016704559326, 0.5099689960479736, 0.2821221649646759, 1.181326150894165, -1.6838334798812866, 0.2940385043621063, -0.49079805612564087, 2.086949110031128, 0.22485250234603882, 1.2323075532913208, -0.48929083347320557, -2.332022190093994, 0.6541500687599182, -1.273308515548706, -1.2539559602737427, 0.7491474151611328, -0.9904041886329651, 0.08338045328855515, -1.3669140338897705, -0.31882572174072266, -0.7831726670265198, -1.11955988407135, 0.7433875799179077, 0.1744103878736496, 0.4237178564071655, -0.5396825075149536, 0.28745999932289124, -2.245455026626587, -1.4540637731552124, -0.16971948742866516, -0.9392217397689819, 0.49929913878440857, -0.4449025094509125, 0.7092990279197693, -0.28621402382850647, -0.04845593497157097, 0.35132020711898804, 1.4715030193328857, 3.396453857421875, 0.2834227681159973, 0.3658299744129181, -0.24706785380840302, -0.94266277551651, 1.4212453365325928, 0.8729652166366577, -0.1963416486978531, -0.5347205400466919, -1.055704116821289, 1.3039484024047852, 1.8732973337173462, 0.978119969367981, -0.04048527032136917, -0.7323370575904846, -0.6858015656471252, -0.10796141624450684, 0.11086055636405945, 0.44460850954055786, 0.9212547540664673, 0.08352542668581009, 0.12755423784255981, 1.4414560794830322, 1.1783947944641113, -0.45742881298065186, 0.3502071499824524, -0.7425727844238281, -0.49840718507766724, 0.5211955904960632, 0.2718690037727356, -0.07501862198114395, 0.30357879400253296, -0.9474841356277466, -0.32506027817726135, -0.5125702023506165, -0.8467645049095154, -0.7424920797348022, -0.2965501844882965, -0.31405991315841675, 1.6584805250167847, 0.09853222966194153, -0.4584592282772064, -0.05266343802213669, -0.8193626999855042, -0.1412704885005951, -1.0628621578216553, 0.23038500547409058, -0.08291839808225632, -0.1461729109287262, -0.12234444171190262, 1.72077476978302, -0.9493656158447266, -1.9874646663665771, 0.20049042999744415, 0.17335253953933716, -0.12741053104400635, 0.24501752853393555, 1.6382619142532349, 0.5004462599754333, 1.4197359085083008, 1.3871896266937256, 0.9501982927322388, -0.7039098739624023, -1.2564890384674072, 0.6651905179023743, 0.9692835211753845, -1.4385302066802979, 0.8251479864120483, -0.005331042222678661, -0.5208669304847717, 0.5882159471511841, 1.190347671508789, 0.50515216588974, -1.9404634237289429, 0.8250158429145813, -1.0045322179794312, 0.7868942022323608, 0.7446562647819519, 0.7267881631851196, 0.20313020050525665, 0.8310235142707825, -1.1202309131622314, -1.2012758255004883, -0.7642646431922913, -0.7451452016830444, 1.9986019134521484, -0.29864078760147095, 0.6054309010505676, -0.15052171051502228, -1.3644256591796875, -0.0754779651761055, 0.6661599278450012, 0.3731025159358978, -0.48586398363113403, 0.7785426378250122, -0.6411462426185608, -1.026909589767456, -1.4586836099624634, -0.3641873002052307, -1.1013938188552856, -0.9353868961334229, 1.0421665906906128, 0.7706422209739685, 0.14594155550003052, 1.94281005859375, 0.6918321251869202, 0.36455222964286804, -2.592590570449829, 0.9757272601127625, 0.26583540439605713, -0.12367992848157883, 0.8030881881713867, 0.3714042603969574, 0.9448569416999817, 0.06439027190208435, 0.48561498522758484, -2.412559747695923, 2.284379482269287, -0.2487579733133316, 0.7537379264831543, -0.019841257482767105, -0.13040292263031006, 1.111681580543518, 0.6358265280723572, 0.5645787715911865, -1.117857813835144, 0.5789573192596436, -0.4966311752796173, 1.2434568405151367, 0.9199420213699341, -0.8536218404769897, -0.03419476002454758, 1.4515466690063477, 0.4310714304447174, -0.5961834788322449, -0.9909403920173645, -0.9480087757110596, 0.9651496410369873, 1.7487999200820923, -0.003422405570745468, 0.010459708981215954, 0.8292598128318787, 0.6163535714149475, -1.3241965770721436, 0.10975491255521774, -0.732689619064331, -0.7510372400283813, 1.648006796836853, 2.1326024532318115, -0.2710827887058258, -0.23981937766075134, -0.6107420921325684, -1.2361918687820435, 0.8850542902946472, -0.1157616451382637, 0.15375785529613495, 0.6812998652458191, -0.6801720857620239, 1.0736359357833862, 0.8852081298828125, 0.9510741829872131, 0.1919504851102829, 0.22582580149173737, 0.42096441984176636, -0.25883951783180237, -1.161025881767273, -0.12510286271572113, -1.0779974460601807, -2.552821159362793, 0.43393900990486145, -0.22252847254276276, -1.3386482000350952, 0.012507635168731213, -1.0084023475646973, 0.9736812710762024, -0.540642261505127, -1.0590064525604248, -1.5622928142547607, 0.1439991593360901, -0.011162465438246727, 1.0077526569366455, -1.6466050148010254, -0.20717529952526093, 1.159554123878479, 0.9546929597854614, -0.6989069581031799, 0.9479905366897583, 0.19562818109989166, 1.0129634141921997, 0.8449972867965698, -0.4748733639717102, 0.5384103655815125, -0.03016626089811325, -1.4020353555679321, 0.471520334482193, 1.1745882034301758, 0.2120385318994522, 1.4748520851135254, -0.5786643624305725, 0.016094010323286057, 0.4068882465362549, -0.5559239983558655, -0.37982863187789917, -0.5350027680397034, 0.720247745513916, -0.03326614201068878, -0.8160068392753601, -0.06526096910238266, -0.11869398504495621, -0.3546386659145355, 0.15815334022045135, -1.4719239473342896, -0.1391611099243164, -0.3910417854785919, -0.619745135307312, -1.3211390972137451, -0.08496684581041336, 1.3890912532806396, -0.8178470134735107, -0.17512938380241394, 0.5130893588066101, 0.3394045829772949, 0.4987272322177887, 0.5610550045967102, -0.6791040897369385, -0.23297038674354553, -0.19539016485214233, -0.31778499484062195, 0.3913288116455078, 1.454573392868042, -0.12581083178520203, -0.944857656955719, 0.6365504264831543, -0.2902982532978058, 0.07024765014648438, 1.882744312286377, 0.10389119386672974, -0.6761952638626099, 0.27781185507774353, -0.7380613684654236, 1.912510633468628, 1.7158604860305786, 1.3614308834075928, -0.14686965942382812, -0.9743374586105347, 0.6739996075630188, -0.3808932304382324, -0.34432172775268555, 0.8307083249092102, 0.33617717027664185, -0.2260454148054123, -1.5114225149154663, 0.8084410429000854, 1.166306734085083, -0.9054780006408691, -0.7687389254570007, 0.0452238991856575, -0.7722371220588684, 1.08231520652771, 0.6254653334617615, 0.4169253408908844, 0.21634961664676666, 1.6646089553833008, 0.7968733310699463, -0.48533111810684204, 0.5185297727584839, 0.5721027851104736, -0.08582761883735657, -2.217449426651001, -1.0654867887496948, 0.3134588301181793, -0.5379365086555481, -1.5843089818954468, 1.4419348239898682, -1.1418118476867676, -0.9843474626541138, 0.6044439673423767, 0.04426037147641182, 1.4495337009429932, 0.29622748494148254, 1.5371220111846924, 2.157763957977295, 0.8818575739860535, 0.46524831652641296, 1.2937097549438477, -0.22005674242973328, -0.38984477519989014, 1.7676492929458618, -0.4106571078300476, 0.45627713203430176, 1.064907431602478, -0.3692091405391693, -1.1065324544906616, -0.7184002995491028, -1.3263286352157593, -0.7559114694595337, 1.1126726865768433, -0.046253953129053116, -1.0296986103057861, 0.27031901478767395, 1.5769286155700684, 0.09896628558635712, -0.3358329236507416, 0.6090195775032043, 0.47142624855041504, -0.7734878063201904, -0.11242430657148361, -0.8549680709838867, 0.5367806553840637, -0.07985205203294754, -0.38243186473846436, 0.41536688804626465, 0.3835182785987854, 1.4000300168991089, -0.055606260895729065, 0.14280565083026886, 1.1019175052642822, -1.4428168535232544, 1.4794107675552368, -0.7381004691123962, 0.20769090950489044, -2.2900571823120117, 1.4397363662719727, -0.785083532333374, 1.9376782178878784, -2.6415324211120605, 0.5240648984909058, -0.6703693866729736, -0.4828176498413086, 0.334852010011673, -0.2868122458457947, 0.1609710305929184, -0.14353002607822418, -1.092308759689331, 0.025727085769176483, -0.58587247133255, 0.6425031423568726, 1.0662835836410522, 1.3542003631591797, -1.133231282234192, -0.2963400185108185, -1.7201026678085327, -0.05703819543123245, -0.7003654837608337, 0.2633749842643738, -2.0107035636901855, -0.1743137538433075, -1.9060672521591187, -2.3623921871185303, -1.3193416595458984, -0.7452559471130371, 1.0945477485656738, 0.1332816481590271, -0.8447167277336121, 1.339281439781189, -0.3687160611152649, -1.8861511945724487, 1.1543519496917725, -2.1298115253448486 ]
https://github.com/huggingface/datasets/issues/5910
Cannot use both set_format and set_transform
> How would that go, I thought you can't chain them? Yes, they cannot be chained. This is what I meant: ```python ds.set_transform(first_transform) # calling the 2nd transform on each accessed batch second_transform(ds[2:3]) ``` > As for the custom formatter, is it possible to reference an existing formatter, in my case torch_formatter inside of my custom formatter? > >maybe I can inherit from it and just call super.recursive_tensorize()? Yes, subclassing makes the most sense.
### Describe the bug I need to process some data using the set_transform method but I also need the data to be formatted for pytorch before processing it. I don't see anywhere in the documentation something that says that both methods cannot be used at the same time. ### Steps to reproduce the bug ``` from datasets import load_dataset ds = load_dataset("mnist", split="train") ds.set_format(type="torch") def transform(entry): return entry["image"].double() ds.set_transform(transform) print(ds[0]) ``` ### Expected behavior It should print the pytorch tensor image as a double, but it errors because "entry" in the transform function doesn't receive a pytorch tensor to begin with, it receives a PIL Image -> entry.double() errors because entry isn't a pytorch tensor. ### Environment info Latest versions. ### Note: It would be at least handy to have access to a function that can do the dataset.set_format in the set_transform function. Something like: ``` from datasets import load_dataset, do_format ds = load_dataset("mnist", split="train") def transform(entry): entry = do_format(entry, type="torch") return entry["image"].double() ds.set_transform(transform) print(ds[0]) ```
117
74
Cannot use both set_format and set_transform ### Describe the bug I need to process some data using the set_transform method but I also need the data to be formatted for pytorch before processing it. I don't see anywhere in the documentation something that says that both methods cannot be used at the same time. ### Steps to reproduce the bug ``` from datasets import load_dataset ds = load_dataset("mnist", split="train") ds.set_format(type="torch") def transform(entry): return entry["image"].double() ds.set_transform(transform) print(ds[0]) ``` ### Expected behavior It should print the pytorch tensor image as a double, but it errors because "entry" in the transform function doesn't receive a pytorch tensor to begin with, it receives a PIL Image -> entry.double() errors because entry isn't a pytorch tensor. ### Environment info Latest versions. ### Note: It would be at least handy to have access to a function that can do the dataset.set_format in the set_transform function. Something like: ``` from datasets import load_dataset, do_format ds = load_dataset("mnist", split="train") def transform(entry): entry = do_format(entry, type="torch") return entry["image"].double() ds.set_transform(transform) print(ds[0]) ``` > How would that go, I thought you can't chain them? Yes, they cannot be chained. This is what I meant: ```python ds.set_transform(first_transform) # calling the 2nd transform on each accessed batch second_transform(ds[2:3]) ``` > As for the custom formatter, is it possible to reference an existing formatter, in my case torch_formatter inside of my custom formatter? > >maybe I can inherit from it and just call super.recursive_tensorize()? Yes, subclassing makes the most sense.
[ -1.168801188468933, -0.9402036666870117, -0.700160562992096, 1.5810835361480713, -0.16430777311325073, -1.255759358406067, 0.12602271139621735, -1.0644527673721313, 1.696113109588623, -0.8411428332328796, 0.3384011685848236, -1.6515110731124878, 0.04300512373447418, -0.5639449954032898, -0.7245301008224487, -0.8224032521247864, -0.41639408469200134, -0.712806224822998, 1.0762301683425903, 2.466418981552124, 1.1896885633468628, -1.3751262426376343, 2.6941750049591064, 0.6881152391433716, -0.24656268954277039, -0.9940246939659119, 0.533484697341919, 0.027232341468334198, -1.2818467617034912, -0.48093846440315247, -0.9342688918113708, -0.053255148231983185, -0.46239715814590454, -0.45817670226097107, -0.10525704175233841, 0.35748234391212463, -0.34657222032546997, -0.4836214780807495, -0.5731649398803711, -0.818242073059082, 0.4329162836074829, -0.3700370192527771, 0.9732609987258911, -0.2927319407463074, 1.8781338930130005, -0.6042500734329224, 0.5159832835197449, 0.7290681600570679, 1.277735710144043, 0.22273115813732147, -0.061151936650276184, 0.349456787109375, 0.44859108328819275, -0.082806296646595, 0.6123818159103394, 1.185828447341919, 0.7017032504081726, 0.49942630529403687, 0.7261884212493896, -2.2151968479156494, 1.3119221925735474, -1.0919612646102905, 0.2630949914455414, 1.266464114189148, -0.9299135804176331, 0.3458350598812103, -1.7181907892227173, -0.06528547406196594, 0.5773765444755554, -2.2285406589508057, 0.31799283623695374, -1.4177939891815186, -0.5682154893875122, 1.009295105934143, 0.3615526854991913, -1.2564877271652222, 0.08614029735326767, -0.38591858744621277, 0.9621298313140869, 0.3911758363246918, 1.092773675918579, -1.7258208990097046, -0.05339888110756874, -0.32270997762680054, 0.08134844899177551, -1.2296091318130493, -1.4721225500106812, 0.5880931615829468, 0.6108167767524719, 0.5422144532203674, -0.0754852220416069, 1.1028337478637695, -1.0698691606521606, 0.7764757871627808, -1.0353575944900513, -1.6366102695465088, -1.4859989881515503, -2.235189199447632, -2.2316479682922363, 0.8008692264556885, -0.5162730813026428, -0.5415273904800415, 2.1151340007781982, -1.0730727910995483, -1.7124911546707153, 1.2170050144195557, 0.20172962546348572, -0.031855300068855286, 2.4245975017547607, 0.15866830945014954, -0.6530606150627136, 0.5087259411811829, -0.6971529126167297, 0.8256586194038391, -0.4140032231807709, 1.2830309867858887, 0.3887282609939575, -1.0098850727081299, 1.5680382251739502, -0.352597177028656, 0.5802147388458252, -0.6234105825424194, -0.55268394947052, -0.6839715838432312, 0.3223792016506195, 1.8796882629394531, -0.30820319056510925, 1.5398916006088257, -0.31314530968666077, -1.5596482753753662, -1.6810697317123413, 0.9120289087295532, 0.4044128358364105, -0.7945466637611389, 0.1322469264268875, -0.35211536288261414, 0.12410686165094376, -0.05193977430462837, 1.219934105873108, 1.3408927917480469, 0.7253414988517761, -0.35853296518325806, -0.8562226295471191, 0.09662917256355286, -0.05192312225699425, -0.7383818626403809, -1.673422932624817, -0.4070357382297516, 0.12562625110149384, 0.55872642993927, -1.2146220207214355, 1.7846802473068237, 0.9014495611190796, 1.8787668943405151, 1.1067025661468506, -0.28059566020965576, 1.5044549703598022, 0.12900890409946442, 1.8207858800888062, -0.49442151188850403, 0.5665825009346008, -0.42421236634254456, -1.188638687133789, 0.8057423830032349, -0.32198524475097656, -2.010240316390991, -0.7955018877983093, -0.7738775610923767, -0.19587650895118713, -0.8338661193847656, 0.8852514028549194, -0.3813779354095459, -1.3189857006072998, 0.30798959732055664, -0.6892518401145935, 0.06281895190477371, -1.16689932346344, 0.3822418451309204, 0.6975475549697876, -0.6125761270523071, 0.10242767632007599, -0.1939411163330078, -1.2559514045715332, -0.3345770835876465, 0.2645091414451599, 1.9351794719696045, -0.7549670934677124, 0.9339177012443542, 1.034267783164978, -0.6506541967391968, -0.03445916995406151, 0.2961769700050354, -0.31827840209007263, 0.8170334100723267, -1.0085594654083252, -0.45693179965019226, 1.1947314739227295, -0.21996617317199707, -0.583518385887146, 1.4659935235977173, 0.5887241959571838, -0.9968518614768982, -0.2029837667942047, -0.05697764828801155, -0.8478076457977295, 0.020314741879701614, -1.6083364486694336, -0.07606551051139832, 0.42283713817596436, -1.5445374250411987, -0.5208863019943237, -0.12191211432218552, 1.2065001726150513, -0.17319278419017792, 1.4245373010635376, -0.4836158752441406, -0.14276744425296783, -0.33961382508277893, -0.40355488657951355, 0.09672034531831741, -0.15798451006412506, -0.5969334840774536, 0.12404382973909378, -0.7593964338302612, 0.3951587677001953, 1.4395911693572998, 0.365435928106308, 0.04183042421936989, 0.49881893396377563, 1.1229280233383179, 0.3850267827510834, 0.003753161057829857, -0.8730486035346985, -1.5532623529434204, 2.0275216102600098, -1.4623743295669556, 2.073981285095215, 0.8233948945999146, -0.1206425204873085, -1.7491421699523926, -1.9651525020599365, 1.2996089458465576, 1.2077019214630127, 2.241450071334839, 0.5209996700286865, 0.3937009274959564, -0.7771676778793335, -0.6271706223487854, 0.3577200174331665, -1.0736311674118042, -0.6752127408981323, 0.15041761100292206, 2.3689463138580322, 1.7933577299118042, -0.4017125964164734, -0.21449217200279236, -1.0231887102127075, 1.4797004461288452, -0.2460525631904602, 0.1917678415775299, 1.9464393854141235, -0.2269928902387619, -1.0735362768173218, 1.3019819259643555, -2.2928903102874756, 0.17673100531101227, 2.004822015762329, 0.2595355212688446, 0.08446978032588959, -1.3415900468826294, -0.5365166664123535, -0.3117024302482605, -0.4145981967449188, -1.24089777469635, 0.5097442865371704, -0.2918282449245453, -0.7289865016937256, -1.3625036478042603, 0.19162622094154358, -1.1041632890701294, -1.7011009454727173, 0.21944037079811096, 1.893613338470459, 2.047051429748535, -0.8435714840888977, 1.5484875440597534, -0.35665732622146606, 0.14851251244544983, 1.2104699611663818, 1.2014087438583374, 3.1633548736572266, 1.897192120552063, -1.2986572980880737, 0.5935177803039551, -0.14475290477275848, -0.4639488756656647, 1.1710048913955688, -1.213840365409851, 1.365103840827942, -0.1935444474220276, -1.2174599170684814, -1.1829631328582764, 0.938558042049408, 0.43239784240722656, 0.04175863042473793, -0.565622866153717, 1.14287269115448, 0.1140093132853508, 1.300007939338684, 0.5548151135444641, -0.38573744893074036, 0.6508147120475769, -0.41300004720687866, -0.44730207324028015, 1.4897511005401611, 0.23559711873531342, -1.469739556312561, -2.206075429916382, -0.14497387409210205, -0.8565588593482971, 0.06841760873794556, -0.5511864423751831, -1.0163397789001465, 1.6544400453567505, 0.36634570360183716, -1.2999236583709717, -0.32014796137809753, -0.3899986445903778, -0.5788518786430359, 2.8136379718780518, -1.3914732933044434, -0.2265673726797104, -1.052129864692688, -0.6893458962440491, 1.6756638288497925, -1.1870533227920532, -0.1978190541267395, -1.0104830265045166, -0.5198684334754944, -1.2593445777893066, -0.5655552744865417, 0.021499980241060257, -0.9859504699707031, 0.804841160774231, 0.19822537899017334, -1.1517653465270996, -0.3414625823497772, -0.8878566026687622, 0.9292033910751343, -0.17807883024215698, 0.11931241303682327, 1.8688691854476929, 0.32634350657463074, -0.45342278480529785, 0.7876147627830505, 1.220389485359192, 0.6163910031318665, -0.6172989010810852, 0.23513105511665344, -0.6744221448898315, 0.40311795473098755, -1.2985914945602417, 0.2606719434261322, -2.7917230129241943, 0.5731304883956909, -0.02403755486011505, -0.07797010242938995, 0.03847145661711693, -1.3078850507736206, 1.032103180885315, 2.528502941131592, -1.102708101272583, 0.510205864906311, 0.2757636606693268, 1.1916732788085938, -1.6888993978500366, 0.28636765480041504, -0.4947553873062134, 2.1283323764801025, 0.2575279772281647, 1.2313519716262817, -0.4446972608566284, -2.343233346939087, 0.6738438010215759, -1.2850086688995361, -1.2512539625167847, 0.7445069551467896, -0.972461462020874, 0.07472442090511322, -1.382203221321106, -0.3034903109073639, -0.7661252617835999, -1.1066789627075195, 0.7446255087852478, 0.15591523051261902, 0.40676605701446533, -0.5274176597595215, 0.28290703892707825, -2.2520077228546143, -1.437723159790039, -0.14419950544834137, -0.9463801383972168, 0.5081270337104797, -0.4527803957462311, 0.7142742872238159, -0.3053036034107208, -0.05557761713862419, 0.3645743131637573, 1.4893527030944824, 3.395237922668457, 0.25208914279937744, 0.35655608773231506, -0.26381275057792664, -0.9299477338790894, 1.4202924966812134, 0.8738731145858765, -0.2187037169933319, -0.53708416223526, -1.0724272727966309, 1.296478271484375, 1.8856374025344849, 0.9640743136405945, -0.03792248293757439, -0.7317368984222412, -0.6874122023582458, -0.11226710677146912, 0.1107344701886177, 0.4485469460487366, 0.9315221905708313, 0.09408441185951233, 0.11804426461458206, 1.4248534440994263, 1.157417893409729, -0.44971591234207153, 0.3651157319545746, -0.7537439465522766, -0.4780665636062622, 0.543186604976654, 0.26085564494132996, -0.06681903451681137, 0.30157190561294556, -0.9467303156852722, -0.3255358934402466, -0.5020795464515686, -0.8255741000175476, -0.7503985166549683, -0.290960431098938, -0.3097896873950958, 1.6572760343551636, 0.06917551159858704, -0.4675634205341339, -0.058648813515901566, -0.8021537661552429, -0.1374751478433609, -1.0579451322555542, 0.24954500794410706, -0.08570042997598648, -0.15436838567256927, -0.11528099328279495, 1.7149676084518433, -0.9219362735748291, -1.9777748584747314, 0.21971429884433746, 0.1886034458875656, -0.14911533892154694, 0.2578980028629303, 1.6349645853042603, 0.528041660785675, 1.4087241888046265, 1.3817386627197266, 0.9551071524620056, -0.6865059733390808, -1.2794091701507568, 0.6333142518997192, 0.9879381060600281, -1.4456270933151245, 0.7978223562240601, -0.02559901773929596, -0.51133131980896, 0.5598287582397461, 1.1977323293685913, 0.5290923714637756, -1.9597736597061157, 0.821408212184906, -0.9913308024406433, 0.7841097712516785, 0.7349852919578552, 0.7435747385025024, 0.20440678298473358, 0.8168218731880188, -1.1306565999984741, -1.1805709600448608, -0.7508175373077393, -0.7653198838233948, 1.9865180253982544, -0.3074093759059906, 0.6018669605255127, -0.17778567969799042, -1.3703608512878418, -0.06896654516458511, 0.6647568941116333, 0.35155627131462097, -0.49124661087989807, 0.7738465666770935, -0.6345221996307373, -1.0145227909088135, -1.4554693698883057, -0.3731154799461365, -1.0895333290100098, -0.942962110042572, 1.0277451276779175, 0.766151487827301, 0.17992843687534332, 1.9401050806045532, 0.6724170446395874, 0.3536578416824341, -2.5804266929626465, 0.9973818063735962, 0.2799111306667328, -0.12932193279266357, 0.8083707690238953, 0.37797272205352783, 0.9543487429618835, 0.015012848190963268, 0.5023167729377747, -2.4105384349823, 2.2871434688568115, -0.22998085618019104, 0.7544804215431213, 0.007386679761111736, -0.12030897289514542, 1.1079312562942505, 0.6414977312088013, 0.5715450644493103, -1.0985981225967407, 0.5742290019989014, -0.4995427429676056, 1.2298965454101562, 0.9147726893424988, -0.8471741080284119, -0.037205010652542114, 1.452091932296753, 0.428189218044281, -0.6063506007194519, -0.986447274684906, -0.9527154564857483, 0.9594869613647461, 1.7506179809570312, 0.006438480690121651, 0.0018754592165350914, 0.8169214725494385, 0.6046125292778015, -1.3071708679199219, 0.07962150871753693, -0.7348284125328064, -0.7485589385032654, 1.6394840478897095, 2.133965492248535, -0.28741729259490967, -0.23993879556655884, -0.6184113621711731, -1.2436764240264893, 0.8876593112945557, -0.10404839366674423, 0.15505696833133698, 0.6822429299354553, -0.6559295654296875, 1.0751992464065552, 0.8918102979660034, 0.9335635900497437, 0.21895480155944824, 0.21727032959461212, 0.4055139124393463, -0.24011710286140442, -1.1764321327209473, -0.16412708163261414, -1.0971453189849854, -2.537670850753784, 0.43061262369155884, -0.2395397126674652, -1.337758183479309, 0.019556783139705658, -1.0340538024902344, 0.9411833882331848, -0.5366244912147522, -1.048185110092163, -1.5541367530822754, 0.13077601790428162, 0.012074694968760014, 1.0183019638061523, -1.640343189239502, -0.20833657681941986, 1.1736915111541748, 0.959670901298523, -0.706592857837677, 0.9483444690704346, 0.21158906817436218, 1.0214641094207764, 0.860933244228363, -0.47434738278388977, 0.5663560628890991, -0.006144585087895393, -1.3904476165771484, 0.5019610524177551, 1.1789193153381348, 0.19384458661079407, 1.4856278896331787, -0.5837729573249817, -0.003906882368028164, 0.41275161504745483, -0.5639186501502991, -0.37245482206344604, -0.5601567029953003, 0.7165328860282898, -0.03628118708729744, -0.8260192275047302, -0.08343413472175598, -0.10286431759595871, -0.32605746388435364, 0.17744103074073792, -1.4816975593566895, -0.11861687898635864, -0.37033775448799133, -0.6294205784797668, -1.2887232303619385, -0.14865827560424805, 1.3951925039291382, -0.8018503785133362, -0.14699289202690125, 0.503354012966156, 0.33754077553749084, 0.4977971315383911, 0.5644074082374573, -0.6651909947395325, -0.2611844837665558, -0.16300202906131744, -0.3348986804485321, 0.40196940302848816, 1.4528716802597046, -0.11916651576757431, -0.9663895964622498, 0.6448987722396851, -0.3012615442276001, 0.07918892055749893, 1.8779233694076538, 0.0828937217593193, -0.7123517990112305, 0.27647221088409424, -0.7405244708061218, 1.934146523475647, 1.725466251373291, 1.3472057580947876, -0.16492046415805817, -0.9760168790817261, 0.6709922552108765, -0.37650203704833984, -0.3656735420227051, 0.7986189126968384, 0.3190305233001709, -0.23826968669891357, -1.5070734024047852, 0.8250333070755005, 1.1502814292907715, -0.9033114910125732, -0.7770341634750366, 0.052223023027181625, -0.7736919522285461, 1.0687226057052612, 0.6067565679550171, 0.4239210784435272, 0.21042455732822418, 1.659308671951294, 0.8077541589736938, -0.4880498945713043, 0.5115624666213989, 0.5703428387641907, -0.06478581577539444, -2.219406843185425, -1.0735526084899902, 0.32653453946113586, -0.5497463941574097, -1.5812290906906128, 1.443213939666748, -1.1418564319610596, -0.9834862947463989, 0.6104311943054199, 0.05271204188466072, 1.4421510696411133, 0.303999662399292, 1.5409444570541382, 2.1461403369903564, 0.8872417211532593, 0.4710909128189087, 1.278342843055725, -0.22609512507915497, -0.4031235873699188, 1.764185905456543, -0.42239081859588623, 0.46835190057754517, 1.057721495628357, -0.36031702160835266, -1.1267356872558594, -0.723362147808075, -1.3480767011642456, -0.7839177250862122, 1.079193353652954, -0.030716557055711746, -1.0569308996200562, 0.2656610608100891, 1.5729527473449707, 0.09285646677017212, -0.3392476737499237, 0.6163950562477112, 0.4485146105289459, -0.7899186611175537, -0.10831606388092041, -0.8893296122550964, 0.5331541895866394, -0.0926743671298027, -0.3922320306301117, 0.42549198865890503, 0.39856866002082825, 1.3932852745056152, -0.025417495518922806, 0.14000175893306732, 1.1081126928329468, -1.44912850856781, 1.5037366151809692, -0.7340533137321472, 0.21041366457939148, -2.270968198776245, 1.4438354969024658, -0.7765567898750305, 1.9435641765594482, -2.661043643951416, 0.5278891921043396, -0.6737614870071411, -0.48102274537086487, 0.298291951417923, -0.2578689157962799, 0.17423877120018005, -0.14131061732769012, -1.10263192653656, 0.006968870759010315, -0.5820039510726929, 0.6312443017959595, 1.0629804134368896, 1.3732892274856567, -1.130052089691162, -0.2869396209716797, -1.7247174978256226, -0.054966237396001816, -0.707701563835144, 0.22076916694641113, -2.0047640800476074, -0.16781046986579895, -1.8762565851211548, -2.3624770641326904, -1.3217332363128662, -0.7330706119537354, 1.097022533416748, 0.134104922413826, -0.8378691673278809, 1.32956862449646, -0.3591736853122711, -1.8724019527435303, 1.1527982950210571, -2.1250345706939697 ]
https://github.com/huggingface/datasets/issues/5908
Unbearably slow sorting on big mapped datasets
Hi ! `shard` currently returns a slow dataset by default, with examples evenly distributed in the dataset. You can get a fast dataset using `contiguous=True` (which should be the default imo): ```python dataset = dataset.shard(10, 0, contiguous=True) ``` This way you don't need to flatten_indices() and sort should be fast as well
### Describe the bug For me, with ~40k lines, sorting took 3.5 seconds on a flattened dataset (including the flatten operation) and 22.7 seconds on a mapped dataset (right after sharding), which is about x5 slowdown. Moreover, it seems like it slows down exponentially with bigger datasets (wasn't able to sort 700k lines at all, with flattening takes about a minute). ### Steps to reproduce the bug ```Python from datasets import load_dataset import time dataset = load_dataset("xnli", "en", split="train") dataset = dataset.shard(10, 0) print(len(dataset)) t = time.time() # dataset = dataset.flatten_indices() # uncomment this line and it's fast dataset = dataset.sort("label", reverse=True, load_from_cache_file=False) print(f"finished in {time.time() - t:.4f} seconds") ``` ### Expected behavior Expect sorting to take the same or less time than flattening and then sorting. ### Environment info - `datasets` version: 2.12.1.dev0 (same with 2.12.0 too) - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.10.10 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1
118
52
Unbearably slow sorting on big mapped datasets ### Describe the bug For me, with ~40k lines, sorting took 3.5 seconds on a flattened dataset (including the flatten operation) and 22.7 seconds on a mapped dataset (right after sharding), which is about x5 slowdown. Moreover, it seems like it slows down exponentially with bigger datasets (wasn't able to sort 700k lines at all, with flattening takes about a minute). ### Steps to reproduce the bug ```Python from datasets import load_dataset import time dataset = load_dataset("xnli", "en", split="train") dataset = dataset.shard(10, 0) print(len(dataset)) t = time.time() # dataset = dataset.flatten_indices() # uncomment this line and it's fast dataset = dataset.sort("label", reverse=True, load_from_cache_file=False) print(f"finished in {time.time() - t:.4f} seconds") ``` ### Expected behavior Expect sorting to take the same or less time than flattening and then sorting. ### Environment info - `datasets` version: 2.12.1.dev0 (same with 2.12.0 too) - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.10.10 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 Hi ! `shard` currently returns a slow dataset by default, with examples evenly distributed in the dataset. You can get a fast dataset using `contiguous=True` (which should be the default imo): ```python dataset = dataset.shard(10, 0, contiguous=True) ``` This way you don't need to flatten_indices() and sort should be fast as well
[ -1.2905364036560059, -0.9583756327629089, -0.620995044708252, 1.4027750492095947, -0.1813255399465561, -1.1900031566619873, 0.13535702228546143, -1.025447130203247, 1.6899755001068115, -0.830793559551239, 0.28892964124679565, -1.6771329641342163, 0.04762488231062889, -0.5541487336158752, -0.6933190822601318, -0.8681398034095764, -0.4783560335636139, -0.7306352257728577, 1.1128071546554565, 2.512023448944092, 1.2337534427642822, -1.3355135917663574, 2.740022897720337, 0.768583357334137, -0.1907178908586502, -0.9579779505729675, 0.5472427606582642, 0.030898168683052063, -1.4750791788101196, -0.36820200085639954, -0.994246780872345, -0.055970583111047745, -0.5239968299865723, -0.589881956577301, -0.006370814982801676, 0.35181406140327454, -0.3171404004096985, -0.4707268178462982, -0.4929734468460083, -0.7817680835723877, 0.42500007152557373, -0.4065309762954712, 0.9249199032783508, -0.3457845449447632, 1.78241765499115, -0.5689619183540344, 0.559701681137085, 0.6752631068229675, 1.3015927076339722, 0.21627600491046906, -0.01515473984181881, 0.41685235500335693, 0.41003766655921936, 0.012346788309514523, 0.5758697986602783, 1.2000433206558228, 0.6554706692695618, 0.44092029333114624, 0.663793683052063, -2.2726635932922363, 1.3161940574645996, -1.060481309890747, 0.3522215485572815, 1.298588752746582, -0.9284132719039917, 0.4350873827934265, -1.7029998302459717, -0.15858536958694458, 0.5004287958145142, -2.2652618885040283, 0.23655548691749573, -1.3539440631866455, -0.5142179727554321, 1.0188817977905273, 0.42985180020332336, -1.199554204940796, 0.08077069371938705, -0.43756937980651855, 0.9808205962181091, 0.4285523295402527, 1.1600921154022217, -1.6633721590042114, -0.08804687857627869, -0.33638525009155273, 0.11384136974811554, -1.228143334388733, -1.5075215101242065, 0.5800592303276062, 0.694267988204956, 0.5621606707572937, -0.13451221585273743, 1.0610857009887695, -1.0310386419296265, 0.7001988291740417, -1.0394365787506104, -1.7598286867141724, -1.4645001888275146, -2.308178663253784, -2.313297986984253, 0.7618568539619446, -0.44451820850372314, -0.5546822547912598, 2.049522638320923, -1.1462596654891968, -1.7890607118606567, 1.1320531368255615, 0.26970845460891724, -0.153375506401062, 2.385148525238037, 0.19447766244411469, -0.7392695546150208, 0.5679476857185364, -0.8189097046852112, 0.6901323199272156, -0.36081236600875854, 1.3514362573623657, 0.41680899262428284, -1.0779322385787964, 1.505979299545288, -0.34293460845947266, 0.583796501159668, -0.6378699541091919, -0.4848078787326813, -0.7277463674545288, 0.255989670753479, 1.9283697605133057, -0.3678627610206604, 1.550850510597229, -0.3036700189113617, -1.5866419076919556, -1.5395686626434326, 0.8886977434158325, 0.4602085053920746, -0.6903179287910461, 0.09191309660673141, -0.36632272601127625, 0.1216723620891571, 0.01565597578883171, 1.1083725690841675, 1.2432985305786133, 0.7377492189407349, -0.35719048976898193, -0.8732719421386719, 0.2697688639163971, -0.06751488894224167, -0.7064507007598877, -1.7135769128799438, -0.3618795573711395, 0.09034088253974915, 0.5939908623695374, -1.1921499967575073, 1.7380859851837158, 0.9204432368278503, 1.8602901697158813, 1.0964566469192505, -0.3162238895893097, 1.4838860034942627, 0.15424373745918274, 1.8176816701889038, -0.474119633436203, 0.7343086004257202, -0.3819694519042969, -1.1974046230316162, 0.7913549542427063, -0.322460800409317, -2.0809097290039062, -0.6658334732055664, -0.8040563464164734, -0.1793176680803299, -0.8183965086936951, 1.0324887037277222, -0.28132152557373047, -1.4213484525680542, 0.21738889813423157, -0.7730434536933899, 0.17051370441913605, -1.2195122241973877, 0.3619679808616638, 0.7491915225982666, -0.6034296154975891, 0.12492230534553528, -0.22066426277160645, -1.2666938304901123, -0.3651621341705322, 0.25236475467681885, 1.7701923847198486, -0.8673754930496216, 0.9642168283462524, 1.0529612302780151, -0.7807600498199463, -0.018510619178414345, 0.36581671237945557, -0.28111040592193604, 0.9548417329788208, -0.9635800719261169, -0.3982446491718292, 1.257650375366211, -0.15068766474723816, -0.5344527363777161, 1.4638428688049316, 0.6654753088951111, -0.9662110805511475, -0.21680012345314026, -0.06278298050165176, -0.8563868999481201, 0.052333272993564606, -1.6084496974945068, -0.05033474788069725, 0.4550645053386688, -1.5955753326416016, -0.4464114010334015, -0.24868184328079224, 1.2512099742889404, -0.08960866183042526, 1.4154481887817383, -0.31854552030563354, -0.20451776683330536, -0.40632155537605286, -0.3305906057357788, 0.13484013080596924, -0.17455162107944489, -0.5513640642166138, 0.2505152225494385, -0.7943596243858337, 0.3265784680843353, 1.489001750946045, 0.33331653475761414, 0.010047662071883678, 0.5973853468894958, 1.02920663356781, 0.4314257800579071, -0.23897705972194672, -0.8040990233421326, -1.5996187925338745, 2.0651209354400635, -1.4106009006500244, 1.9613372087478638, 0.7038470506668091, -0.025415316224098206, -1.8609024286270142, -1.9845926761627197, 1.3328015804290771, 1.1033973693847656, 2.4175188541412354, 0.497394323348999, 0.4972957968711853, -0.786102294921875, -0.7082985043525696, 0.3211660087108612, -1.0346136093139648, -0.7720300555229187, 0.20605343580245972, 2.366849184036255, 1.7712098360061646, -0.4264611601829529, -0.1596485823392868, -1.1504913568496704, 1.4282931089401245, -0.16431930661201477, 0.2030506134033203, 1.9304362535476685, -0.2754303216934204, -1.0499811172485352, 1.333336353302002, -2.2919304370880127, 0.06681262701749802, 1.9253039360046387, 0.24165894091129303, 0.027870282530784607, -1.3498657941818237, -0.6475216746330261, -0.28949233889579773, -0.43579375743865967, -1.248051404953003, 0.5303201079368591, -0.19223397970199585, -0.7892090678215027, -1.4305994510650635, 0.1037479117512703, -1.0597913265228271, -1.6540873050689697, 0.19335401058197021, 1.8091466426849365, 2.0115644931793213, -0.7944173216819763, 1.482694149017334, -0.2613537311553955, 0.24429230391979218, 1.176418423652649, 1.1446192264556885, 3.1401212215423584, 1.937941551208496, -1.3471155166625977, 0.7021305561065674, -0.10940078645944595, -0.4455042779445648, 1.2040084600448608, -1.273978590965271, 1.341525912284851, -0.17450034618377686, -1.2962534427642822, -1.142050862312317, 0.9528533220291138, 0.4446944296360016, 0.0679289922118187, -0.4940655827522278, 1.1610121726989746, 0.031461939215660095, 1.3429372310638428, 0.5606626272201538, -0.3026658296585083, 0.7177345156669617, -0.4188436269760132, -0.5184440612792969, 1.4764835834503174, 0.2173919826745987, -1.398606300354004, -2.261807680130005, -0.21979780495166779, -0.855230987071991, 0.0763683021068573, -0.6318416595458984, -0.908137857913971, 1.590127944946289, 0.4137856662273407, -1.2141486406326294, -0.24746714532375336, -0.2773084044456482, -0.5428511500358582, 2.773733377456665, -1.384934425354004, -0.21765390038490295, -1.0227504968643188, -0.6733678579330444, 1.626668930053711, -1.1786433458328247, -0.1989957094192505, -0.9588892459869385, -0.5553131699562073, -1.2900837659835815, -0.62272047996521, -0.05645572021603584, -0.9550210237503052, 0.7796503305435181, 0.1542155146598816, -1.164858341217041, -0.3073188364505768, -0.9136496782302856, 0.8631291389465332, -0.13907836377620697, 0.18861514329910278, 1.879175066947937, 0.3623903691768646, -0.3230017125606537, 0.733165979385376, 1.162532091140747, 0.6742895245552063, -0.6807608604431152, 0.2517976760864258, -0.8103204369544983, 0.298274427652359, -1.2733628749847412, 0.24586443603038788, -2.828827381134033, 0.5997714996337891, -0.06295273452997208, -0.04928775876760483, -0.02079647406935692, -1.2989871501922607, 1.0453293323516846, 2.515411853790283, -1.206260085105896, 0.4881240725517273, 0.2705230116844177, 1.0997861623764038, -1.5286915302276611, 0.3244822323322296, -0.48308032751083374, 2.1403284072875977, 0.2504676580429077, 1.1706984043121338, -0.40195369720458984, -2.2709476947784424, 0.6572005748748779, -1.325533390045166, -1.2171709537506104, 0.7822399735450745, -0.9042053818702698, 0.0542074590921402, -1.3293745517730713, -0.21946188807487488, -0.7455152273178101, -1.1698871850967407, 0.6220825910568237, 0.07038123905658722, 0.5183345675468445, -0.5362022519111633, 0.4079381227493286, -2.2060563564300537, -1.3152257204055786, -0.2712877690792084, -0.9809700846672058, 0.44455668330192566, -0.3126300871372223, 0.6994315385818481, -0.24149379134178162, -0.09931569546461105, 0.4160926640033722, 1.3280587196350098, 3.3892087936401367, 0.19912800192832947, 0.2938857078552246, -0.10481419414281845, -1.0335869789123535, 1.4217466115951538, 0.9535821080207825, -0.17470130324363708, -0.5638040900230408, -1.0441418886184692, 1.2911244630813599, 1.8611282110214233, 1.0633729696273804, -0.011879125609993935, -0.7988223433494568, -0.7550374865531921, 0.023494165390729904, 0.15872995555400848, 0.4123905897140503, 0.9068505167961121, 0.13759933412075043, 0.17842841148376465, 1.5399318933486938, 1.2026968002319336, -0.35411545634269714, 0.337524950504303, -0.8223794102668762, -0.526340126991272, 0.5650342702865601, 0.26071780920028687, -0.03635193407535553, 0.3174521028995514, -1.0594476461410522, -0.26296791434288025, -0.41915228962898254, -0.9504746198654175, -0.7135123610496521, -0.3974511921405792, -0.37258774042129517, 1.626235008239746, 0.060547053813934326, -0.48683303594589233, -0.06224030628800392, -0.7859671711921692, -0.061929766088724136, -0.9980887174606323, 0.41437020897865295, -0.09590288251638412, -0.12879368662834167, -0.15669481456279755, 1.744455337524414, -0.9210512638092041, -2.0365641117095947, 0.24635173380374908, 0.13264934718608856, -0.31875723600387573, 0.15759223699569702, 1.5942631959915161, 0.5943673849105835, 1.5085500478744507, 1.3457095623016357, 0.9513704180717468, -0.580024242401123, -1.2964277267456055, 0.7154554724693298, 0.989259660243988, -1.383350133895874, 0.7577663660049438, 0.04031798616051674, -0.5684410929679871, 0.6092486381530762, 1.210404872894287, 0.5278342366218567, -1.9825950860977173, 0.7762326598167419, -0.9480510354042053, 0.7405278086662292, 0.7154713273048401, 0.8004146814346313, 0.15604956448078156, 0.7670097351074219, -1.2917566299438477, -1.1064423322677612, -0.6585271954536438, -0.5993809103965759, 1.9252928495407104, -0.2727814316749573, 0.6487519145011902, -0.3149300217628479, -1.355977177619934, -0.025224708020687103, 0.6721477508544922, 0.27300482988357544, -0.593492865562439, 0.8149415254592896, -0.5944154262542725, -1.1630685329437256, -1.3986502885818481, -0.3827223479747772, -1.090911865234375, -0.8792600631713867, 1.0231691598892212, 0.7256537675857544, 0.3341295123100281, 1.8019801378250122, 0.6326597929000854, 0.26173993945121765, -2.7190983295440674, 0.9339084625244141, 0.19418054819107056, -0.06112943962216377, 0.8410794138908386, 0.2845577001571655, 0.9394735097885132, -0.10571358352899551, 0.537736177444458, -2.4035751819610596, 2.2775936126708984, -0.20544852316379547, 0.7378523349761963, 0.0066151851788163185, -0.06313979625701904, 1.0713685750961304, 0.589471697807312, 0.5582581162452698, -1.0118340253829956, 0.7567692995071411, -0.5651472806930542, 1.2862894535064697, 0.8850231766700745, -0.8519749045372009, -0.10289112478494644, 1.2816150188446045, 0.458286315202713, -0.4435577690601349, -0.887729823589325, -1.0323439836502075, 1.0390597581863403, 1.7634633779525757, -0.09762148559093475, 0.032696474343538284, 0.9207789897918701, 0.6390910744667053, -1.3392490148544312, 0.047502193599939346, -0.6747329235076904, -0.643842339515686, 1.6259181499481201, 2.0624351501464844, -0.07919087260961533, -0.2002309411764145, -0.7077515721321106, -1.277713656425476, 0.8367020487785339, 0.03513433039188385, 0.13777022063732147, 0.7234392762184143, -0.5554084777832031, 1.1035462617874146, 0.9510747194290161, 0.9247568249702454, 0.2865910828113556, 0.1445135623216629, 0.2652052342891693, -0.32574304938316345, -1.1949477195739746, -0.1633782833814621, -0.9539768695831299, -2.5538527965545654, 0.4674249291419983, -0.1962379813194275, -1.433098316192627, 0.09166891127824783, -1.0311391353607178, 0.9308822154998779, -0.5763992667198181, -1.0612609386444092, -1.5709447860717773, 0.17166508734226227, -0.06352978199720383, 0.9106429219245911, -1.5700430870056152, -0.08154463768005371, 1.2465571165084839, 0.9877235293388367, -0.628354549407959, 1.0546132326126099, 0.2728407382965088, 0.9986905455589294, 0.8881591558456421, -0.32379910349845886, 0.5809321403503418, 0.15494784712791443, -1.4281268119812012, 0.45140671730041504, 1.2496519088745117, 0.23962968587875366, 1.451869010925293, -0.6500811576843262, -0.06023041531443596, 0.4087355136871338, -0.5262898802757263, -0.4314101040363312, -0.5405240654945374, 0.6744092702865601, 0.0645928606390953, -0.9039531946182251, -0.06745683401823044, -0.07411575317382812, -0.17398756742477417, 0.15216466784477234, -1.4624136686325073, -0.08340317755937576, -0.3424941301345825, -0.7387712001800537, -1.2060860395431519, -0.1451198011636734, 1.4550985097885132, -0.9206520318984985, -0.18537484109401703, 0.48256155848503113, 0.2550361454486847, 0.5918780565261841, 0.6732351183891296, -0.6154884099960327, -0.2846703827381134, -0.21482400596141815, -0.3752400577068329, 0.3278212249279022, 1.408246397972107, -0.06964189559221268, -0.9789965152740479, 0.749683678150177, -0.34049972891807556, 0.08036616444587708, 1.8801162242889404, 0.055829644203186035, -0.8358811736106873, 0.2809165120124817, -0.6856526136398315, 1.9282362461090088, 1.7386587858200073, 1.3653607368469238, -0.09977429360151291, -0.9490060806274414, 0.5480167269706726, -0.2898346483707428, -0.4258028566837311, 0.9020897746086121, 0.39309972524642944, -0.16792327165603638, -1.361128330230713, 0.7106413245201111, 1.2308217287063599, -0.9079439640045166, -0.8017737865447998, 0.15516039729118347, -0.7939073443412781, 1.123786211013794, 0.7045753598213196, 0.33833637833595276, 0.23037634789943695, 1.605263113975525, 0.8276495337486267, -0.4243704676628113, 0.5166336297988892, 0.5246785879135132, -0.17786185443401337, -2.139202117919922, -1.1083199977874756, 0.4010084867477417, -0.5447810888290405, -1.559292197227478, 1.3554116487503052, -1.1534168720245361, -0.9162906408309937, 0.5908841490745544, 0.06797953695058823, 1.4358867406845093, 0.3634231984615326, 1.514373779296875, 2.0671536922454834, 0.9362111687660217, 0.33541223406791687, 1.2911627292633057, -0.22979463636875153, -0.3380645215511322, 1.7309914827346802, -0.4369897246360779, 0.54209965467453, 1.0660408735275269, -0.35762205719947815, -1.0208557844161987, -0.7244632244110107, -1.2906782627105713, -0.7148641347885132, 1.1658226251602173, 0.09128733724355698, -1.1016428470611572, 0.25538673996925354, 1.5382734537124634, 0.08273368328809738, -0.269485741853714, 0.6527195572853088, 0.34767478704452515, -0.8013936281204224, -0.0406235009431839, -0.956767737865448, 0.5153141021728516, -0.25857749581336975, -0.37266087532043457, 0.30297738313674927, 0.44392362236976624, 1.2988712787628174, 0.03540812432765961, 0.10452582687139511, 1.193381667137146, -1.3710360527038574, 1.4849894046783447, -0.7520571947097778, 0.2215658724308014, -2.3434324264526367, 1.379424810409546, -0.8375413417816162, 1.8892542123794556, -2.703577756881714, 0.48990389704704285, -0.5004810094833374, -0.44091400504112244, 0.2697751522064209, -0.39245545864105225, 0.11766579747200012, -0.18949569761753082, -1.2091310024261475, -0.10243663191795349, -0.6758654713630676, 0.5633859634399414, 1.0601609945297241, 1.3859469890594482, -1.1622556447982788, -0.3846415877342224, -1.7393507957458496, -0.13255657255649567, -0.7038617730140686, 0.2696738839149475, -1.9325673580169678, -0.12215855717658997, -1.82939612865448, -2.4854695796966553, -1.2011860609054565, -0.7928423285484314, 1.2010172605514526, 0.08804585039615631, -0.8600021600723267, 1.199252724647522, -0.4153129458427429, -1.9484848976135254, 1.166976809501648, -2.3166823387145996 ]
https://github.com/huggingface/datasets/issues/5908
Unbearably slow sorting on big mapped datasets
@lhoestq > contiguous=True (which should be the default imo) For `IterableDataset`, it's not possible to implement contiguous sharding without knowing the number of examples in advance, so setting the default value to `contiguous=True` would result in an inconsistency between `Dataset` and `IterableDataset` (when we add `IterableDataset.shard`)
### Describe the bug For me, with ~40k lines, sorting took 3.5 seconds on a flattened dataset (including the flatten operation) and 22.7 seconds on a mapped dataset (right after sharding), which is about x5 slowdown. Moreover, it seems like it slows down exponentially with bigger datasets (wasn't able to sort 700k lines at all, with flattening takes about a minute). ### Steps to reproduce the bug ```Python from datasets import load_dataset import time dataset = load_dataset("xnli", "en", split="train") dataset = dataset.shard(10, 0) print(len(dataset)) t = time.time() # dataset = dataset.flatten_indices() # uncomment this line and it's fast dataset = dataset.sort("label", reverse=True, load_from_cache_file=False) print(f"finished in {time.time() - t:.4f} seconds") ``` ### Expected behavior Expect sorting to take the same or less time than flattening and then sorting. ### Environment info - `datasets` version: 2.12.1.dev0 (same with 2.12.0 too) - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.10.10 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1
118
46
Unbearably slow sorting on big mapped datasets ### Describe the bug For me, with ~40k lines, sorting took 3.5 seconds on a flattened dataset (including the flatten operation) and 22.7 seconds on a mapped dataset (right after sharding), which is about x5 slowdown. Moreover, it seems like it slows down exponentially with bigger datasets (wasn't able to sort 700k lines at all, with flattening takes about a minute). ### Steps to reproduce the bug ```Python from datasets import load_dataset import time dataset = load_dataset("xnli", "en", split="train") dataset = dataset.shard(10, 0) print(len(dataset)) t = time.time() # dataset = dataset.flatten_indices() # uncomment this line and it's fast dataset = dataset.sort("label", reverse=True, load_from_cache_file=False) print(f"finished in {time.time() - t:.4f} seconds") ``` ### Expected behavior Expect sorting to take the same or less time than flattening and then sorting. ### Environment info - `datasets` version: 2.12.1.dev0 (same with 2.12.0 too) - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.10.10 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 @lhoestq > contiguous=True (which should be the default imo) For `IterableDataset`, it's not possible to implement contiguous sharding without knowing the number of examples in advance, so setting the default value to `contiguous=True` would result in an inconsistency between `Dataset` and `IterableDataset` (when we add `IterableDataset.shard`)
[ -1.2704607248306274, -0.9528551697731018, -0.6407310366630554, 1.445859670639038, -0.13518880307674408, -1.1908025741577148, 0.1405484825372696, -1.0209639072418213, 1.6982144117355347, -0.8348231315612793, 0.31354185938835144, -1.6874817609786987, 0.04302075132727623, -0.5347610712051392, -0.7021118998527527, -0.8553805351257324, -0.4866359829902649, -0.7344735860824585, 1.1035863161087036, 2.4968907833099365, 1.2424325942993164, -1.3675041198730469, 2.724982976913452, 0.7228124737739563, -0.1909835934638977, -0.9459323883056641, 0.5318999886512756, 0.008660850115120411, -1.4492082595825195, -0.40472280979156494, -0.9575775265693665, -0.074376679956913, -0.5314264297485352, -0.600639283657074, 0.0022559454664587975, 0.35757219791412354, -0.29673224687576294, -0.4512680172920227, -0.4832078814506531, -0.7753731608390808, 0.45207494497299194, -0.4334108829498291, 0.9471623301506042, -0.3366667628288269, 1.7755296230316162, -0.5549493432044983, 0.5607181191444397, 0.6658671498298645, 1.3379874229431152, 0.21822324395179749, -0.019136540591716766, 0.4180869162082672, 0.4026414155960083, 0.008320352993905544, 0.5700665712356567, 1.1846446990966797, 0.6619679927825928, 0.4706101417541504, 0.6954336762428284, -2.2822976112365723, 1.3318583965301514, -1.0684223175048828, 0.32438918948173523, 1.3121800422668457, -0.9309001564979553, 0.40405306220054626, -1.7240979671478271, -0.13065771758556366, 0.4939248561859131, -2.2832322120666504, 0.23665255308151245, -1.340014934539795, -0.4744313657283783, 1.0342520475387573, 0.41134536266326904, -1.2104568481445312, 0.0743914395570755, -0.4349510371685028, 0.957120418548584, 0.4227939546108246, 1.1758089065551758, -1.6818828582763672, -0.07664977759122849, -0.33227720856666565, 0.13446183502674103, -1.2344197034835815, -1.5137901306152344, 0.5639374852180481, 0.6671289801597595, 0.5522019863128662, -0.11591256409883499, 1.0427579879760742, -1.0087790489196777, 0.6661854386329651, -1.0344241857528687, -1.7535794973373413, -1.4522464275360107, -2.2831203937530518, -2.2871358394622803, 0.7239905595779419, -0.4725712239742279, -0.5445060729980469, 2.061345338821411, -1.1122608184814453, -1.7764698266983032, 1.1333250999450684, 0.28949007391929626, -0.11800315231084824, 2.3648271560668945, 0.1785544455051422, -0.7311533093452454, 0.5311011075973511, -0.8001594543457031, 0.6941345930099487, -0.3936341404914856, 1.3560645580291748, 0.4120887219905853, -1.0886552333831787, 1.4819504022598267, -0.35844123363494873, 0.5903148651123047, -0.6351904273033142, -0.4783312678337097, -0.7524778246879578, 0.2683035433292389, 1.9284123182296753, -0.35548511147499084, 1.5721383094787598, -0.30880963802337646, -1.602852463722229, -1.529980182647705, 0.8975054025650024, 0.4649062752723694, -0.6919715404510498, 0.07970866560935974, -0.3541024625301361, 0.1202651634812355, -0.0012916354462504387, 1.0929133892059326, 1.2473597526550293, 0.7190942168235779, -0.3425843417644501, -0.9047670364379883, 0.26437097787857056, -0.06051059439778328, -0.7216149568557739, -1.7132107019424438, -0.36582615971565247, 0.09336137771606445, 0.5943768620491028, -1.226009488105774, 1.7104721069335938, 0.9542658925056458, 1.8637903928756714, 1.0805282592773438, -0.30700626969337463, 1.4868377447128296, 0.16370128095149994, 1.8375725746154785, -0.4587480425834656, 0.7029604315757751, -0.3927198052406311, -1.2015159130096436, 0.788252055644989, -0.3227999806404114, -2.0716824531555176, -0.6761074662208557, -0.812476634979248, -0.16494302451610565, -0.8313103914260864, 1.0395352840423584, -0.27205008268356323, -1.4040734767913818, 0.23204641044139862, -0.7666991353034973, 0.1554710417985916, -1.2539359331130981, 0.35456088185310364, 0.7399426698684692, -0.6187227368354797, 0.13710802793502808, -0.2320801317691803, -1.2837812900543213, -0.3742688000202179, 0.255603551864624, 1.7873729467391968, -0.8532673716545105, 0.9594497084617615, 1.0610449314117432, -0.774590790271759, -0.003974078688770533, 0.3436833918094635, -0.28684893250465393, 0.9281545281410217, -0.9754459261894226, -0.37079918384552, 1.2769091129302979, -0.16420140862464905, -0.5558316707611084, 1.4656567573547363, 0.6523277759552002, -0.9760510921478271, -0.21239644289016724, -0.043770451098680496, -0.8341792821884155, 0.06574463844299316, -1.5881539583206177, -0.06059642136096954, 0.42911431193351746, -1.5845069885253906, -0.4343339204788208, -0.2532860040664673, 1.2369906902313232, -0.08554945141077042, 1.4267878532409668, -0.28669241070747375, -0.19672487676143646, -0.38924747705459595, -0.329830139875412, 0.1107756495475769, -0.19673354923725128, -0.5812954902648926, 0.254269003868103, -0.7711213231086731, 0.36513787508010864, 1.4834157228469849, 0.32581013441085815, 0.02357419580221176, 0.5738762021064758, 1.0284535884857178, 0.4379574954509735, -0.19994835555553436, -0.8221802115440369, -1.5908255577087402, 2.062864303588867, -1.4259036779403687, 1.9715701341629028, 0.7216024994850159, -0.03764183074235916, -1.8108233213424683, -1.9727535247802734, 1.32858145236969, 1.1065593957901, 2.426668882369995, 0.5270273089408875, 0.47600993514060974, -0.7829964756965637, -0.6686618328094482, 0.33173879981040955, -1.0224111080169678, -0.7795134782791138, 0.19726011157035828, 2.3680214881896973, 1.7439022064208984, -0.41341638565063477, -0.14529602229595184, -1.13435697555542, 1.4066276550292969, -0.15874481201171875, 0.2142132669687271, 1.9174987077713013, -0.26162004470825195, -1.1038353443145752, 1.3367726802825928, -2.3063793182373047, 0.10541517287492752, 1.9286149740219116, 0.2785249352455139, 0.018256500363349915, -1.3724980354309082, -0.652644157409668, -0.2928990423679352, -0.4137340188026428, -1.256038784980774, 0.5132402181625366, -0.17354537546634674, -0.7970629334449768, -1.4367027282714844, 0.13557884097099304, -1.077612280845642, -1.6628707647323608, 0.1860424280166626, 1.8447695970535278, 2.0070085525512695, -0.7541825771331787, 1.4721323251724243, -0.2679613530635834, 0.24200235307216644, 1.165546178817749, 1.1440279483795166, 3.11869740486145, 1.9762039184570312, -1.363227367401123, 0.7138578295707703, -0.11739826947450638, -0.46690624952316284, 1.2016892433166504, -1.2541165351867676, 1.3307693004608154, -0.1457226425409317, -1.2851245403289795, -1.1678667068481445, 0.9208038449287415, 0.4591178596019745, 0.04403546825051308, -0.49511945247650146, 1.1502196788787842, 0.05877462401986122, 1.3247389793395996, 0.5516608953475952, -0.3058037757873535, 0.7275272607803345, -0.4183298945426941, -0.5248728394508362, 1.484419345855713, 0.20583592355251312, -1.4414290189743042, -2.256748914718628, -0.20979110896587372, -0.857999324798584, 0.059107277542352676, -0.6249302625656128, -0.9193938970565796, 1.6060940027236938, 0.3944060802459717, -1.2134684324264526, -0.2444651871919632, -0.29119959473609924, -0.5567510724067688, 2.731968402862549, -1.3862031698226929, -0.2191941738128662, -1.0177310705184937, -0.6960398554801941, 1.610461950302124, -1.1904226541519165, -0.20848599076271057, -0.9464632868766785, -0.5514877438545227, -1.2562477588653564, -0.6006320118904114, -0.0445866659283638, -0.9286397099494934, 0.7800676822662354, 0.2127816528081894, -1.1779155731201172, -0.3160259425640106, -0.8962497115135193, 0.8602120876312256, -0.11622793972492218, 0.18970416486263275, 1.8950445652008057, 0.38709768652915955, -0.30953338742256165, 0.7044273614883423, 1.1474260091781616, 0.6590451598167419, -0.6657365560531616, 0.2346842885017395, -0.7671974301338196, 0.2870524525642395, -1.286942958831787, 0.275995135307312, -2.822638750076294, 0.5663646459579468, -0.08622026443481445, -0.04917661473155022, -0.024212393909692764, -1.292572021484375, 1.0807499885559082, 2.540846109390259, -1.1835094690322876, 0.4925387501716614, 0.28802862763404846, 1.0927740335464478, -1.5811856985092163, 0.3290913999080658, -0.4712808430194855, 2.1495954990386963, 0.2468067854642868, 1.1804007291793823, -0.4362007677555084, -2.2962725162506104, 0.6268998384475708, -1.3116042613983154, -1.2281854152679443, 0.7973610162734985, -0.907187819480896, 0.01775575429201126, -1.347227931022644, -0.2230067402124405, -0.7256574630737305, -1.1795315742492676, 0.6518900394439697, 0.06547623872756958, 0.5186218023300171, -0.5286850333213806, 0.40774431824684143, -2.2193403244018555, -1.3338934183120728, -0.2733228802680969, -1.0003854036331177, 0.43439000844955444, -0.3527120053768158, 0.7207167744636536, -0.24571757018566132, -0.09201133996248245, 0.4091901481151581, 1.3390212059020996, 3.394289493560791, 0.20599353313446045, 0.33282846212387085, -0.12681010365486145, -0.998140275478363, 1.4357792139053345, 0.9435678720474243, -0.19856950640678406, -0.546299159526825, -1.0447189807891846, 1.2813693284988403, 1.8994009494781494, 1.0303895473480225, -0.016079943627119064, -0.8315674066543579, -0.7809612154960632, 0.0033337147906422615, 0.13460293412208557, 0.4120752215385437, 0.8974172472953796, 0.1363968551158905, 0.16697481274604797, 1.525635004043579, 1.1741461753845215, -0.3640749454498291, 0.338453471660614, -0.7817296385765076, -0.5118979811668396, 0.5555440783500671, 0.28044208884239197, -0.049330323934555054, 0.32962766289711, -1.0342296361923218, -0.2531782388687134, -0.42919203639030457, -0.9190471172332764, -0.7191684246063232, -0.39340677857398987, -0.3228265941143036, 1.668614387512207, 0.05931582674384117, -0.5004477500915527, -0.03270089253783226, -0.7759922742843628, -0.06374859809875488, -1.0332518815994263, 0.4014703631401062, -0.09158364683389664, -0.11922632902860641, -0.12187301367521286, 1.7194533348083496, -0.9444191455841064, -2.0651559829711914, 0.2225629687309265, 0.13881142437458038, -0.3304755389690399, 0.18429258465766907, 1.6154414415359497, 0.5868597626686096, 1.4934284687042236, 1.3504372835159302, 0.961836576461792, -0.6187543869018555, -1.3143390417099, 0.7172751426696777, 0.9710121750831604, -1.383202075958252, 0.7647573351860046, 0.03112616017460823, -0.5631787776947021, 0.6145915985107422, 1.2173656225204468, 0.5014635920524597, -2.004321336746216, 0.766395628452301, -0.9448686838150024, 0.757891058921814, 0.7174137234687805, 0.7933133840560913, 0.16185396909713745, 0.7483018636703491, -1.2735260725021362, -1.1130890846252441, -0.6639968752861023, -0.6239780783653259, 1.9184852838516235, -0.27657660841941833, 0.6293821334838867, -0.28403425216674805, -1.3694236278533936, -0.020434923470020294, 0.654669463634491, 0.2852586507797241, -0.5633618831634521, 0.7881520986557007, -0.604130744934082, -1.1742157936096191, -1.4246481657028198, -0.4133748710155487, -1.1074246168136597, -0.9019829630851746, 1.0362298488616943, 0.7325683832168579, 0.30851054191589355, 1.807905673980713, 0.6534688472747803, 0.2505161166191101, -2.7268917560577393, 0.9284781217575073, 0.23562876880168915, -0.0527176558971405, 0.8607211112976074, 0.29382967948913574, 0.9409822821617126, -0.07819323241710663, 0.5412615537643433, -2.4130163192749023, 2.3020577430725098, -0.21500705182552338, 0.7032232284545898, 0.010434499941766262, -0.08485043048858643, 1.0515369176864624, 0.5940009951591492, 0.5591951012611389, -1.0784245729446411, 0.7626208066940308, -0.5635876059532166, 1.2515374422073364, 0.8849189281463623, -0.8536571264266968, -0.1042288988828659, 1.2772693634033203, 0.45790383219718933, -0.4827113449573517, -0.8966619372367859, -1.0318235158920288, 1.021811604499817, 1.764670968055725, -0.09128882735967636, 0.03610654175281525, 0.9254831075668335, 0.6327543258666992, -1.3096197843551636, 0.04759005084633827, -0.6849775314331055, -0.665793776512146, 1.6163727045059204, 2.0648353099823, -0.063291035592556, -0.22311420738697052, -0.7219489812850952, -1.281137228012085, 0.8313197493553162, 0.0386950746178627, 0.12315278500318527, 0.6900672912597656, -0.5935583710670471, 1.1056349277496338, 0.9587260484695435, 0.9568076729774475, 0.2782437801361084, 0.15540443360805511, 0.3000355064868927, -0.3355660140514374, -1.1671568155288696, -0.16144272685050964, -0.9742716550827026, -2.539090633392334, 0.46419116854667664, -0.16771714389324188, -1.4309192895889282, 0.09920861572027206, -1.0339319705963135, 0.9290456175804138, -0.5669507384300232, -1.0698573589324951, -1.5640487670898438, 0.153170645236969, -0.0931585282087326, 0.8962252736091614, -1.5852022171020508, -0.1081281453371048, 1.248767375946045, 0.9942935705184937, -0.6356789469718933, 1.0704413652420044, 0.2397165447473526, 1.020605206489563, 0.8987045288085938, -0.32462379336357117, 0.5702133178710938, 0.1546585112810135, -1.3800089359283447, 0.4550796151161194, 1.2295548915863037, 0.24613945186138153, 1.4525401592254639, -0.6393309235572815, -0.02493610978126526, 0.402601420879364, -0.5351718664169312, -0.44139084219932556, -0.5715296864509583, 0.7007933259010315, 0.048133838921785355, -0.8945360779762268, -0.021935835480690002, -0.11189963668584824, -0.1601325124502182, 0.1360473781824112, -1.465178370475769, -0.0704517662525177, -0.3414774239063263, -0.7159137725830078, -1.2140774726867676, -0.14956064522266388, 1.4533461332321167, -0.9050808548927307, -0.1701527237892151, 0.5076770186424255, 0.2829931378364563, 0.568760097026825, 0.6673457622528076, -0.6496090292930603, -0.2927926182746887, -0.20673924684524536, -0.3856881260871887, 0.3573634922504425, 1.4166862964630127, -0.055466555058956146, -0.9976770877838135, 0.7383341193199158, -0.33486512303352356, 0.07694024592638016, 1.8584473133087158, 0.03238460794091225, -0.8156768679618835, 0.27715450525283813, -0.7008174657821655, 1.9517998695373535, 1.7377479076385498, 1.3520748615264893, -0.1044476255774498, -0.9746224880218506, 0.5876064896583557, -0.2951382100582123, -0.4323289692401886, 0.9120106101036072, 0.40240219235420227, -0.17208409309387207, -1.3970688581466675, 0.6700513362884521, 1.247995138168335, -0.8928238153457642, -0.7924641370773315, 0.14674124121665955, -0.7984709143638611, 1.1102639436721802, 0.6928980946540833, 0.35036444664001465, 0.2266647070646286, 1.6145999431610107, 0.8434106111526489, -0.446311354637146, 0.5140287280082703, 0.5240260362625122, -0.1848675012588501, -2.1172218322753906, -1.1146080493927002, 0.3949410617351532, -0.5016108155250549, -1.524946689605713, 1.356162190437317, -1.1438604593276978, -0.9108161330223083, 0.5793150663375854, 0.08220474421977997, 1.4605883359909058, 0.3795347809791565, 1.5173003673553467, 2.081599473953247, 0.9459797143936157, 0.3524947464466095, 1.2792867422103882, -0.22210201621055603, -0.35200509428977966, 1.7224494218826294, -0.4099770188331604, 0.5047008395195007, 1.0793442726135254, -0.3605347275733948, -1.0304924249649048, -0.7402138113975525, -1.3315590620040894, -0.6918971538543701, 1.1325716972351074, 0.09531731903553009, -1.1347845792770386, 0.2684002220630646, 1.5600380897521973, 0.08797428756952286, -0.2656335234642029, 0.6394068002700806, 0.36259958148002625, -0.7956880331039429, -0.055133406072854996, -0.9394022226333618, 0.5053399205207825, -0.27978184819221497, -0.3677988350391388, 0.28553858399391174, 0.4403305649757385, 1.314009666442871, 0.04234238713979721, 0.12275073677301407, 1.2126531600952148, -1.355072021484375, 1.4739941358566284, -0.7702581286430359, 0.2229878008365631, -2.317312002182007, 1.3738476037979126, -0.8196327686309814, 1.9087504148483276, -2.6847174167633057, 0.49869054555892944, -0.5407631397247314, -0.44040772318840027, 0.2906985282897949, -0.3838452994823456, 0.1390731930732727, -0.18415303528308868, -1.1879974603652954, -0.14040479063987732, -0.657625675201416, 0.5847353935241699, 1.0648739337921143, 1.3721247911453247, -1.1362148523330688, -0.393112450838089, -1.746200680732727, -0.13581189513206482, -0.6665391325950623, 0.26339513063430786, -1.923485279083252, -0.1645735502243042, -1.8751330375671387, -2.462306499481201, -1.2321094274520874, -0.7444862127304077, 1.19304358959198, 0.12338057905435562, -0.8147280216217041, 1.1904387474060059, -0.3744216561317444, -1.9160070419311523, 1.1436772346496582, -2.302098512649536 ]
https://github.com/huggingface/datasets/issues/5908
Unbearably slow sorting on big mapped datasets
Actually sharded iterable datasets are made of sub iterables that generally yield contiguous data no ? So in a way it's possible to shard an iterable dataset contiguously. If the dataset is made of one shard it's indeed not possible to shard it contiguously though
### Describe the bug For me, with ~40k lines, sorting took 3.5 seconds on a flattened dataset (including the flatten operation) and 22.7 seconds on a mapped dataset (right after sharding), which is about x5 slowdown. Moreover, it seems like it slows down exponentially with bigger datasets (wasn't able to sort 700k lines at all, with flattening takes about a minute). ### Steps to reproduce the bug ```Python from datasets import load_dataset import time dataset = load_dataset("xnli", "en", split="train") dataset = dataset.shard(10, 0) print(len(dataset)) t = time.time() # dataset = dataset.flatten_indices() # uncomment this line and it's fast dataset = dataset.sort("label", reverse=True, load_from_cache_file=False) print(f"finished in {time.time() - t:.4f} seconds") ``` ### Expected behavior Expect sorting to take the same or less time than flattening and then sorting. ### Environment info - `datasets` version: 2.12.1.dev0 (same with 2.12.0 too) - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.10.10 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1
118
45
Unbearably slow sorting on big mapped datasets ### Describe the bug For me, with ~40k lines, sorting took 3.5 seconds on a flattened dataset (including the flatten operation) and 22.7 seconds on a mapped dataset (right after sharding), which is about x5 slowdown. Moreover, it seems like it slows down exponentially with bigger datasets (wasn't able to sort 700k lines at all, with flattening takes about a minute). ### Steps to reproduce the bug ```Python from datasets import load_dataset import time dataset = load_dataset("xnli", "en", split="train") dataset = dataset.shard(10, 0) print(len(dataset)) t = time.time() # dataset = dataset.flatten_indices() # uncomment this line and it's fast dataset = dataset.sort("label", reverse=True, load_from_cache_file=False) print(f"finished in {time.time() - t:.4f} seconds") ``` ### Expected behavior Expect sorting to take the same or less time than flattening and then sorting. ### Environment info - `datasets` version: 2.12.1.dev0 (same with 2.12.0 too) - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.10.10 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 Actually sharded iterable datasets are made of sub iterables that generally yield contiguous data no ? So in a way it's possible to shard an iterable dataset contiguously. If the dataset is made of one shard it's indeed not possible to shard it contiguously though
[ -1.2956740856170654, -0.9560195207595825, -0.6549262404441833, 1.4137053489685059, -0.1566047966480255, -1.1755940914154053, 0.12435031682252884, -0.9785116314888, 1.6702497005462646, -0.8343794345855713, 0.27757954597473145, -1.681793451309204, 0.04029139131307602, -0.5411255955696106, -0.6664055585861206, -0.8824591636657715, -0.4739348292350769, -0.7535069584846497, 1.1292446851730347, 2.5158536434173584, 1.230387806892395, -1.376438856124878, 2.7224481105804443, 0.7520923614501953, -0.1947876513004303, -0.9601759910583496, 0.5532108545303345, 0.059353478252887726, -1.4539645910263062, -0.38850054144859314, -0.9529662728309631, -0.05463622510433197, -0.5002501010894775, -0.5443211793899536, 0.0015594428405165672, 0.3289375603199005, -0.2641661465167999, -0.44351598620414734, -0.4893982708454132, -0.7664780616760254, 0.4299406111240387, -0.4229719638824463, 0.9405936598777771, -0.36413007974624634, 1.8245344161987305, -0.5380304455757141, 0.5369499325752258, 0.6531227231025696, 1.314044713973999, 0.24245983362197876, -0.0019128485582768917, 0.38051000237464905, 0.39616864919662476, -0.011894261464476585, 0.5074514150619507, 1.1957491636276245, 0.6598650813102722, 0.4294154942035675, 0.6560513377189636, -2.2787113189697266, 1.3175476789474487, -1.047577142715454, 0.3396216630935669, 1.3274145126342773, -0.9496332406997681, 0.4543796479701996, -1.6852017641067505, -0.1614648997783661, 0.5386635065078735, -2.2856719493865967, 0.2198828160762787, -1.316641926765442, -0.5018646121025085, 0.9976041913032532, 0.41852283477783203, -1.1681702136993408, 0.0867869034409523, -0.47387781739234924, 0.9718190431594849, 0.44872555136680603, 1.2269929647445679, -1.648413062095642, -0.08276864141225815, -0.299608439207077, 0.12188384681940079, -1.281585931777954, -1.5264379978179932, 0.5764195919036865, 0.6813042163848877, 0.5487915873527527, -0.10243458300828934, 1.037333369255066, -1.0310487747192383, 0.6985774636268616, -1.0264825820922852, -1.7239208221435547, -1.4790288209915161, -2.347841501235962, -2.3661234378814697, 0.787776529788971, -0.42695942521095276, -0.5685703754425049, 2.0608677864074707, -1.115858793258667, -1.7569851875305176, 1.1371580362319946, 0.26455995440483093, -0.10544365644454956, 2.407658100128174, 0.165333092212677, -0.7541489601135254, 0.5362043380737305, -0.7964712977409363, 0.7232502102851868, -0.3872147500514984, 1.3466975688934326, 0.43910083174705505, -1.069692611694336, 1.4775807857513428, -0.36893805861473083, 0.5688849687576294, -0.6001451015472412, -0.5019063949584961, -0.7767963409423828, 0.2630441188812256, 1.9159367084503174, -0.3455868661403656, 1.6050220727920532, -0.3079942762851715, -1.5942943096160889, -1.5595144033432007, 0.882858395576477, 0.4341357946395874, -0.6876084804534912, 0.04769675433635712, -0.40193673968315125, 0.14799343049526215, 0.0017821798101067543, 1.0689777135849, 1.2218550443649292, 0.6978708505630493, -0.3571505546569824, -0.938221275806427, 0.282581627368927, -0.09681152552366257, -0.6932920217514038, -1.7162444591522217, -0.34547749161720276, 0.11937906593084335, 0.6103136539459229, -1.2329045534133911, 1.6801434755325317, 0.9370073676109314, 1.8952317237854004, 1.07587468624115, -0.295655757188797, 1.516380786895752, 0.1304578334093094, 1.8045181035995483, -0.46186697483062744, 0.7249302268028259, -0.36153870820999146, -1.1842225790023804, 0.7575127482414246, -0.34423044323921204, -2.055304765701294, -0.7244402170181274, -0.8098191022872925, -0.17419204115867615, -0.8160622715950012, 1.0372288227081299, -0.27319619059562683, -1.4142967462539673, 0.2531726360321045, -0.7567628622055054, 0.17836271226406097, -1.2340266704559326, 0.3668472468852997, 0.7740989327430725, -0.5854923129081726, 0.11755957454442978, -0.20464573800563812, -1.280115008354187, -0.35934945940971375, 0.24500033259391785, 1.836458444595337, -0.8378162980079651, 0.9872871041297913, 1.0664360523223877, -0.7802456021308899, 0.028157906606793404, 0.30412057042121887, -0.2818589508533478, 0.9377227425575256, -0.9812938570976257, -0.37077030539512634, 1.2711297273635864, -0.2234773486852646, -0.5419020652770996, 1.5009864568710327, 0.6924216151237488, -0.9645880460739136, -0.21897044777870178, -0.025600193068385124, -0.8080747723579407, 0.04267619550228119, -1.5884381532669067, -0.07444070279598236, 0.42404890060424805, -1.561662197113037, -0.4419313669204712, -0.2624901831150055, 1.251975417137146, -0.08283955603837967, 1.4148588180541992, -0.29903513193130493, -0.21068483591079712, -0.4107705056667328, -0.36032602190971375, 0.12455786019563675, -0.20776809751987457, -0.5961072444915771, 0.27861547470092773, -0.8030871152877808, 0.3508010506629944, 1.4696485996246338, 0.35812637209892273, 0.02367432229220867, 0.5709164142608643, 1.0490696430206299, 0.4456086754798889, -0.22045385837554932, -0.8025568127632141, -1.6070566177368164, 2.0667474269866943, -1.392901062965393, 1.9656871557235718, 0.7425450682640076, -0.0653979629278183, -1.8121049404144287, -1.9588549137115479, 1.306308627128601, 1.1143202781677246, 2.4070754051208496, 0.49416694045066833, 0.4807601273059845, -0.7954980134963989, -0.6901181936264038, 0.3237428367137909, -1.0293132066726685, -0.7461062669754028, 0.1999836415052414, 2.3756470680236816, 1.745337724685669, -0.4253722131252289, -0.11881279945373535, -1.1410198211669922, 1.3798143863677979, -0.11908648163080215, 0.1960812658071518, 1.9404168128967285, -0.2577158808708191, -1.0807983875274658, 1.3109354972839355, -2.3145968914031982, 0.07340270280838013, 1.9522103071212769, 0.2846330404281616, -0.010119232349097729, -1.3685094118118286, -0.6222277283668518, -0.3564157485961914, -0.39945781230926514, -1.2110110521316528, 0.5658965706825256, -0.18860775232315063, -0.7940700650215149, -1.4532757997512817, 0.13390406966209412, -1.0909423828125, -1.6280206441879272, 0.22105425596237183, 1.794918179512024, 2.027421474456787, -0.7578433752059937, 1.4347927570343018, -0.2278587818145752, 0.19442252814769745, 1.153848648071289, 1.1444498300552368, 3.137247085571289, 1.9463478326797485, -1.3168319463729858, 0.6674365401268005, -0.11374027281999588, -0.4498336613178253, 1.1720716953277588, -1.2909750938415527, 1.3484230041503906, -0.13061095774173737, -1.286709189414978, -1.1748690605163574, 0.9406482577323914, 0.4577924907207489, 0.03423919528722763, -0.48469746112823486, 1.179620623588562, 0.036187611520290375, 1.3520013093948364, 0.5314429998397827, -0.28903642296791077, 0.6836917996406555, -0.44606879353523254, -0.5202378034591675, 1.5087363719940186, 0.1741674691438675, -1.5167804956436157, -2.232776403427124, -0.2536959946155548, -0.8417977690696716, 0.054333388805389404, -0.6558497548103333, -0.9376634955406189, 1.5923024415969849, 0.38352304697036743, -1.2147852182388306, -0.2578774392604828, -0.31511232256889343, -0.5700644850730896, 2.7631914615631104, -1.4121694564819336, -0.215492382645607, -1.0023046731948853, -0.6899864673614502, 1.615250825881958, -1.219528317451477, -0.2108207643032074, -0.9461864829063416, -0.6037785410881042, -1.2692177295684814, -0.6190141439437866, -0.04787234961986542, -0.9473141431808472, 0.7608742117881775, 0.18720513582229614, -1.1102254390716553, -0.28456804156303406, -0.944995641708374, 0.855783224105835, -0.10666380822658539, 0.19384117424488068, 1.8604295253753662, 0.37816935777664185, -0.3168724775314331, 0.711125910282135, 1.187528133392334, 0.6787509322166443, -0.7046633362770081, 0.1863967925310135, -0.7818000912666321, 0.2876826226711273, -1.270090937614441, 0.2640048563480377, -2.828298807144165, 0.5743712782859802, -0.084462471306324, -0.07536538690328598, -0.005587310530245304, -1.257501244544983, 1.1262506246566772, 2.5078227519989014, -1.2126978635787964, 0.49266454577445984, 0.2843417823314667, 1.1076959371566772, -1.555753231048584, 0.3456210196018219, -0.4766746759414673, 2.1357808113098145, 0.26932141184806824, 1.1765389442443848, -0.44427499175071716, -2.2882087230682373, 0.6853587627410889, -1.3098467588424683, -1.196876049041748, 0.777819037437439, -0.99648517370224, 0.055753953754901886, -1.3461720943450928, -0.24101315438747406, -0.7333406805992126, -1.1957848072052002, 0.5952824354171753, 0.04674550145864487, 0.5051895380020142, -0.514442503452301, 0.37649476528167725, -2.2664706707000732, -1.3423439264297485, -0.2871231138706207, -1.0362529754638672, 0.46270111203193665, -0.35646846890449524, 0.7179666757583618, -0.23674647510051727, -0.09060198068618774, 0.4208432137966156, 1.3204448223114014, 3.3686954975128174, 0.22907625138759613, 0.34468477964401245, -0.061387091875076294, -1.0361413955688477, 1.4277899265289307, 0.9581037759780884, -0.1803310364484787, -0.5244224667549133, -1.0085586309432983, 1.3187944889068604, 1.8860934972763062, 1.0919901132583618, -0.033235110342502594, -0.8084538578987122, -0.7611638903617859, 0.008420543745160103, 0.17430099844932556, 0.42905205488204956, 0.8978402614593506, 0.06383407115936279, 0.20363755524158478, 1.5627446174621582, 1.1953045129776, -0.3701832592487335, 0.29157543182373047, -0.8195812106132507, -0.5254462361335754, 0.5688474774360657, 0.2409469485282898, -0.05186792463064194, 0.37608468532562256, -1.0452630519866943, -0.24997644126415253, -0.4049205780029297, -0.9255829453468323, -0.7096141576766968, -0.42133522033691406, -0.32903948426246643, 1.6581939458847046, 0.06908594816923141, -0.466758668422699, -0.041360042989254, -0.7933493256568909, -0.07450149208307266, -1.0564863681793213, 0.4042748510837555, -0.06845217198133469, -0.12475968897342682, -0.1393415927886963, 1.7555979490280151, -0.9431383609771729, -2.074997901916504, 0.23037654161453247, 0.14275407791137695, -0.317911833524704, 0.12629617750644684, 1.624087929725647, 0.5647274851799011, 1.4937905073165894, 1.3462626934051514, 0.9644366502761841, -0.6170873045921326, -1.315097689628601, 0.7258498668670654, 0.9642861485481262, -1.341275930404663, 0.8056057095527649, -0.026764709502458572, -0.5710726380348206, 0.6069643497467041, 1.2193588018417358, 0.5433919429779053, -1.9806822538375854, 0.8170737028121948, -0.9910724759101868, 0.7495604157447815, 0.6978005766868591, 0.801567554473877, 0.13988162577152252, 0.7534043788909912, -1.2937864065170288, -1.103472352027893, -0.6769090294837952, -0.6287574768066406, 1.9288254976272583, -0.26000815629959106, 0.6420269012451172, -0.3039453625679016, -1.3380736112594604, -0.012263394892215729, 0.6445916891098022, 0.2557177245616913, -0.5270915627479553, 0.8620891571044922, -0.6343722343444824, -1.1933043003082275, -1.4390074014663696, -0.38239413499832153, -1.087086796760559, -0.8751170039176941, 1.0837608575820923, 0.69129478931427, 0.28609320521354675, 1.8140604496002197, 0.6574722528457642, 0.29089081287384033, -2.7344038486480713, 0.9213046431541443, 0.2119922786951065, -0.04464336484670639, 0.8478950262069702, 0.2648490369319916, 0.9756295680999756, -0.08715891093015671, 0.5021859407424927, -2.395707368850708, 2.2654266357421875, -0.23339711129665375, 0.7484557032585144, -0.0017744475044310093, -0.03567582741379738, 1.0698834657669067, 0.6289035677909851, 0.5847024321556091, -1.0674619674682617, 0.7939575910568237, -0.547833263874054, 1.2355678081512451, 0.904952883720398, -0.8189369440078735, -0.08254124224185944, 1.273652195930481, 0.47848403453826904, -0.43552082777023315, -0.8828063011169434, -0.9939165711402893, 1.0215986967086792, 1.7827215194702148, -0.07427863031625748, 0.06453105807304382, 0.9400232434272766, 0.6197489500045776, -1.3310270309448242, 0.033155374228954315, -0.685961127281189, -0.6317655444145203, 1.6010868549346924, 2.071552038192749, -0.055531516671180725, -0.2154427319765091, -0.6739845275878906, -1.2734638452529907, 0.7919763922691345, 0.00793924555182457, 0.14572502672672272, 0.7061463594436646, -0.5941095948219299, 1.0965025424957275, 0.952462911605835, 0.9512260556221008, 0.25930294394493103, 0.10800641775131226, 0.28894880414009094, -0.288534015417099, -1.1686956882476807, -0.17133566737174988, -0.9159230589866638, -2.522387981414795, 0.4549597501754761, -0.2143678516149521, -1.46297287940979, 0.08378803730010986, -1.0385668277740479, 0.9526176452636719, -0.5539612174034119, -1.0317662954330444, -1.5936193466186523, 0.14681847393512726, -0.10998982936143875, 0.898753821849823, -1.5762208700180054, -0.15067416429519653, 1.259926438331604, 0.9594887495040894, -0.6094847917556763, 1.1044195890426636, 0.23976828157901764, 0.986287534236908, 0.8535945415496826, -0.35113388299942017, 0.5507539510726929, 0.18999941647052765, -1.3920788764953613, 0.4515770375728607, 1.226874589920044, 0.22104360163211823, 1.423025131225586, -0.6479142904281616, -0.06109064072370529, 0.39398127794265747, -0.5480417013168335, -0.44904962182044983, -0.5440536141395569, 0.7136363983154297, 0.04438985884189606, -0.9082034826278687, -0.04371611773967743, -0.15350772440433502, -0.19240719079971313, 0.16197055578231812, -1.4575655460357666, -0.13088367879390717, -0.36383354663848877, -0.713095486164093, -1.2163023948669434, -0.10218790918588638, 1.4674216508865356, -0.9205682277679443, -0.16933231055736542, 0.46419239044189453, 0.34150761365890503, 0.5920880436897278, 0.681901752948761, -0.6292312741279602, -0.2679503858089447, -0.18867559731006622, -0.32719993591308594, 0.3038605749607086, 1.385029673576355, -0.08352785557508469, -1.0107102394104004, 0.7524530291557312, -0.31644055247306824, 0.11418484896421432, 1.8900446891784668, 0.06744199246168137, -0.7958083748817444, 0.2607574462890625, -0.742864191532135, 1.9355601072311401, 1.6930882930755615, 1.4186632633209229, -0.09416892379522324, -0.9418320655822754, 0.562359631061554, -0.2606184184551239, -0.4095877707004547, 0.8741174340248108, 0.4237062633037567, -0.19592317938804626, -1.3947473764419556, 0.6616960167884827, 1.2012921571731567, -0.9308493733406067, -0.7667301297187805, 0.17238250374794006, -0.8111667633056641, 1.1342848539352417, 0.6801931858062744, 0.3595770001411438, 0.23383766412734985, 1.6283210515975952, 0.8272485733032227, -0.4519093930721283, 0.5003107786178589, 0.5327754616737366, -0.18653205037117004, -2.110675096511841, -1.0681779384613037, 0.39873260259628296, -0.508400559425354, -1.501802921295166, 1.3724812269210815, -1.1171445846557617, -0.9077994227409363, 0.5672706365585327, 0.051177576184272766, 1.4271411895751953, 0.374104380607605, 1.537964940071106, 2.0795297622680664, 0.941721498966217, 0.3481872081756592, 1.2760943174362183, -0.22763025760650635, -0.34130430221557617, 1.7331089973449707, -0.3960225284099579, 0.5109334588050842, 1.0582407712936401, -0.38346123695373535, -0.9962670207023621, -0.7012287974357605, -1.2773089408874512, -0.6818915009498596, 1.1248807907104492, 0.11398862302303314, -1.121945858001709, 0.24923399090766907, 1.521026372909546, 0.09316842257976532, -0.23876626789569855, 0.6000427603721619, 0.3777278661727905, -0.7851698994636536, -0.06112278252840042, -0.9687251448631287, 0.5070407390594482, -0.2786922752857208, -0.3661845922470093, 0.2552247643470764, 0.4366099536418915, 1.3184846639633179, 0.05320979654788971, 0.10528982430696487, 1.2300691604614258, -1.3680875301361084, 1.4933302402496338, -0.7411693334579468, 0.19062753021717072, -2.3003005981445312, 1.3662043809890747, -0.8213080167770386, 1.902999758720398, -2.670248508453369, 0.4979804456233978, -0.5447946190834045, -0.433103084564209, 0.29129964113235474, -0.39616572856903076, 0.13946200907230377, -0.18311378359794617, -1.1833122968673706, -0.1068904921412468, -0.6932029128074646, 0.5756350755691528, 1.074554681777954, 1.361700177192688, -1.1240894794464111, -0.40550515055656433, -1.7156100273132324, -0.15631690621376038, -0.7026918530464172, 0.25667160749435425, -1.890390396118164, -0.17550350725650787, -1.8651764392852783, -2.460526466369629, -1.235827922821045, -0.7837396860122681, 1.20759916305542, 0.11150966584682465, -0.8842604756355286, 1.1649458408355713, -0.4110372066497803, -1.9264482259750366, 1.1576452255249023, -2.2950401306152344 ]
https://github.com/huggingface/datasets/issues/5908
Unbearably slow sorting on big mapped datasets
> Actually sharded iterable datasets are made of sub iterables that generally yield contiguous data no ? So in a way it's possible to shard an iterable dataset contiguously. But sharding an iterable dataset by sharding its `gen_kwargs` would still yield approximate shards(not equal to `Dataset.shard`), no?
### Describe the bug For me, with ~40k lines, sorting took 3.5 seconds on a flattened dataset (including the flatten operation) and 22.7 seconds on a mapped dataset (right after sharding), which is about x5 slowdown. Moreover, it seems like it slows down exponentially with bigger datasets (wasn't able to sort 700k lines at all, with flattening takes about a minute). ### Steps to reproduce the bug ```Python from datasets import load_dataset import time dataset = load_dataset("xnli", "en", split="train") dataset = dataset.shard(10, 0) print(len(dataset)) t = time.time() # dataset = dataset.flatten_indices() # uncomment this line and it's fast dataset = dataset.sort("label", reverse=True, load_from_cache_file=False) print(f"finished in {time.time() - t:.4f} seconds") ``` ### Expected behavior Expect sorting to take the same or less time than flattening and then sorting. ### Environment info - `datasets` version: 2.12.1.dev0 (same with 2.12.0 too) - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.10.10 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1
118
47
Unbearably slow sorting on big mapped datasets ### Describe the bug For me, with ~40k lines, sorting took 3.5 seconds on a flattened dataset (including the flatten operation) and 22.7 seconds on a mapped dataset (right after sharding), which is about x5 slowdown. Moreover, it seems like it slows down exponentially with bigger datasets (wasn't able to sort 700k lines at all, with flattening takes about a minute). ### Steps to reproduce the bug ```Python from datasets import load_dataset import time dataset = load_dataset("xnli", "en", split="train") dataset = dataset.shard(10, 0) print(len(dataset)) t = time.time() # dataset = dataset.flatten_indices() # uncomment this line and it's fast dataset = dataset.sort("label", reverse=True, load_from_cache_file=False) print(f"finished in {time.time() - t:.4f} seconds") ``` ### Expected behavior Expect sorting to take the same or less time than flattening and then sorting. ### Environment info - `datasets` version: 2.12.1.dev0 (same with 2.12.0 too) - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.10.10 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 > Actually sharded iterable datasets are made of sub iterables that generally yield contiguous data no ? So in a way it's possible to shard an iterable dataset contiguously. But sharding an iterable dataset by sharding its `gen_kwargs` would still yield approximate shards(not equal to `Dataset.shard`), no?
[ -1.286099910736084, -0.947054386138916, -0.6517029404640198, 1.3852754831314087, -0.1441306173801422, -1.1795710325241089, 0.1321674883365631, -0.9895349144935608, 1.674692988395691, -0.8460705280303955, 0.26822999119758606, -1.6637943983078003, 0.034982822835445404, -0.5468370318412781, -0.6915507316589355, -0.8859776854515076, -0.4666866958141327, -0.7533987164497375, 1.120585322380066, 2.523238182067871, 1.2240856885910034, -1.3629904985427856, 2.714354991912842, 0.7555161714553833, -0.2023603469133377, -0.9644628763198853, 0.5403380393981934, 0.036862313747406006, -1.4465526342391968, -0.3930647373199463, -0.9578710794448853, -0.04924885556101799, -0.5310567617416382, -0.571809709072113, 0.012050283141434193, 0.3453362286090851, -0.2733430862426758, -0.4567454159259796, -0.4896182119846344, -0.7592272758483887, 0.4366021454334259, -0.42666593194007874, 0.9505841732025146, -0.3610347509384155, 1.8049880266189575, -0.5455226302146912, 0.5551819205284119, 0.6464740037918091, 1.3225244283676147, 0.24118006229400635, -0.010183396749198437, 0.40524065494537354, 0.3838737905025482, -0.003938048612326384, 0.5134906768798828, 1.1906297206878662, 0.661396324634552, 0.4417383074760437, 0.6599522829055786, -2.284620761871338, 1.313603162765503, -1.0519078969955444, 0.3494672179222107, 1.3072898387908936, -0.9386206865310669, 0.44203171133995056, -1.7193067073822021, -0.15645797550678253, 0.5130926966667175, -2.283140182495117, 0.21173110604286194, -1.3432862758636475, -0.4866092801094055, 1.004479169845581, 0.42714089155197144, -1.195027470588684, 0.08612899482250214, -0.4569796621799469, 0.9528496861457825, 0.4440034031867981, 1.2234909534454346, -1.6615047454833984, -0.07640390843153, -0.33155909180641174, 0.14285367727279663, -1.2503948211669922, -1.5261385440826416, 0.5879321098327637, 0.6882383227348328, 0.5535865426063538, -0.11116452515125275, 1.0385774374008179, -1.0294525623321533, 0.6971823573112488, -1.037947416305542, -1.7290726900100708, -1.4752510786056519, -2.324934959411621, -2.3756587505340576, 0.7753503322601318, -0.44200095534324646, -0.5607449412345886, 2.068974733352661, -1.1174246072769165, -1.7582472562789917, 1.1479209661483765, 0.28194141387939453, -0.09277328103780746, 2.3722946643829346, 0.16432489454746246, -0.7373183965682983, 0.5314005613327026, -0.7922524809837341, 0.735894501209259, -0.3754870891571045, 1.3559976816177368, 0.42956268787384033, -1.0729691982269287, 1.4830018281936646, -0.33505281805992126, 0.5956940054893494, -0.5839052200317383, -0.5016394257545471, -0.7603358626365662, 0.27220889925956726, 1.914762258529663, -0.32877084612846375, 1.6071956157684326, -0.3035377860069275, -1.6018543243408203, -1.5521037578582764, 0.8947064876556396, 0.4731072783470154, -0.7038732171058655, 0.058872565627098083, -0.41470223665237427, 0.1318035125732422, 0.008048039861023426, 1.0872026681900024, 1.2297083139419556, 0.7245627045631409, -0.35372939705848694, -0.9278736114501953, 0.2755155563354492, -0.07133685052394867, -0.7244753837585449, -1.7120647430419922, -0.3743506669998169, 0.10466219484806061, 0.6023678183555603, -1.216154932975769, 1.7012114524841309, 0.9356176853179932, 1.9056092500686646, 1.0759432315826416, -0.3022703528404236, 1.524367094039917, 0.1372167021036148, 1.7904205322265625, -0.44315028190612793, 0.726265549659729, -0.370897114276886, -1.1996229887008667, 0.7726608514785767, -0.3542798161506653, -2.0763633251190186, -0.7012801170349121, -0.81837397813797, -0.17525066435337067, -0.8221418261528015, 1.0001856088638306, -0.2676824927330017, -1.4183653593063354, 0.24554288387298584, -0.7485887408256531, 0.16447971761226654, -1.2404571771621704, 0.352556049823761, 0.7555471658706665, -0.6099695563316345, 0.11665428429841995, -0.211883544921875, -1.2835447788238525, -0.36456093192100525, 0.2352171540260315, 1.813039779663086, -0.8447140455245972, 0.9763734936714172, 1.0666298866271973, -0.778326153755188, 0.01884707808494568, 0.3279205560684204, -0.28997084498405457, 0.921059250831604, -0.9925248622894287, -0.3483392000198364, 1.2924137115478516, -0.196552112698555, -0.5250148773193359, 1.477648138999939, 0.6741060614585876, -0.9676694273948669, -0.22708342969417572, -0.03409901633858681, -0.8190346360206604, 0.04964776337146759, -1.608802318572998, -0.0706384927034378, 0.4226723611354828, -1.5698069334030151, -0.4494006931781769, -0.27728691697120667, 1.2506474256515503, -0.08489705622196198, 1.419402837753296, -0.30722498893737793, -0.1905457228422165, -0.40430405735969543, -0.36381399631500244, 0.11394022405147552, -0.20607121288776398, -0.5944803357124329, 0.25916269421577454, -0.8058101534843445, 0.3516791760921478, 1.477164626121521, 0.33773359656333923, 0.009753732942044735, 0.5651886463165283, 1.048720359802246, 0.44740697741508484, -0.20784607529640198, -0.8062800168991089, -1.5955159664154053, 2.0645334720611572, -1.3995230197906494, 1.9589366912841797, 0.7297827005386353, -0.04342951253056526, -1.8249258995056152, -1.9509305953979492, 1.307170033454895, 1.108724594116211, 2.396301031112671, 0.5105722546577454, 0.499196320772171, -0.7861681580543518, -0.6694722175598145, 0.3413505256175995, -1.0287399291992188, -0.7474759817123413, 0.19507800042629242, 2.3520681858062744, 1.746752142906189, -0.4376843273639679, -0.1395248919725418, -1.1191834211349487, 1.394906997680664, -0.15741696953773499, 0.20276260375976562, 1.9552918672561646, -0.2726813852787018, -1.0923168659210205, 1.329569935798645, -2.306018114089966, 0.08971916884183884, 1.9362188577651978, 0.28531789779663086, 0.0025088265538215637, -1.3766003847122192, -0.6148031949996948, -0.3213183283805847, -0.40829765796661377, -1.219734787940979, 0.5519065260887146, -0.16645535826683044, -0.8095425367355347, -1.4595634937286377, 0.13032475113868713, -1.099305272102356, -1.6424589157104492, 0.21519574522972107, 1.8152453899383545, 2.0088515281677246, -0.7670977115631104, 1.4292206764221191, -0.24715733528137207, 0.19563356041908264, 1.1506847143173218, 1.127900242805481, 3.1358625888824463, 1.930678367614746, -1.3409372568130493, 0.6704195141792297, -0.12936756014823914, -0.4661905765533447, 1.1824030876159668, -1.2733112573623657, 1.3129218816757202, -0.1496846228837967, -1.2813948392868042, -1.161815881729126, 0.9412035346031189, 0.449616938829422, 0.04061990976333618, -0.4910350739955902, 1.1831505298614502, 0.009831833653151989, 1.3419791460037231, 0.5516589879989624, -0.3083234429359436, 0.6792122721672058, -0.4366230368614197, -0.5194727182388306, 1.4851220846176147, 0.19564612209796906, -1.4869223833084106, -2.2565877437591553, -0.2532276511192322, -0.8510062098503113, 0.0751936286687851, -0.648435652256012, -0.9311875700950623, 1.599943995475769, 0.3795068860054016, -1.2039611339569092, -0.2559131979942322, -0.2872354984283447, -0.5455121994018555, 2.7578399181365967, -1.396324872970581, -0.2155197560787201, -0.9917049407958984, -0.6822757720947266, 1.6187353134155273, -1.1849545240402222, -0.21025946736335754, -0.9455779790878296, -0.5681359171867371, -1.2728363275527954, -0.6437143087387085, -0.05246061459183693, -0.9547810554504395, 0.7639057636260986, 0.19390831887722015, -1.114450454711914, -0.2780410051345825, -0.9441419243812561, 0.8741414546966553, -0.11135479062795639, 0.1845349818468094, 1.8750075101852417, 0.39164185523986816, -0.32484200596809387, 0.7269653677940369, 1.1777147054672241, 0.6628420352935791, -0.683430016040802, 0.20070263743400574, -0.7873378396034241, 0.2972789704799652, -1.2869923114776611, 0.270596981048584, -2.8272545337677, 0.6009242534637451, -0.0872272178530693, -0.06975842267274857, -0.009388203732669353, -1.2904011011123657, 1.090704083442688, 2.5399699211120605, -1.2038520574569702, 0.4985547959804535, 0.2853819727897644, 1.1205880641937256, -1.5424232482910156, 0.35082313418388367, -0.48486074805259705, 2.157259464263916, 0.2699170708656311, 1.1940078735351562, -0.4396224319934845, -2.3139874935150146, 0.6713366508483887, -1.3208808898925781, -1.2093849182128906, 0.7983949780464172, -0.9769200086593628, 0.046020083129405975, -1.362418532371521, -0.2351805865764618, -0.7174073457717896, -1.1692448854446411, 0.6015170812606812, 0.06739271432161331, 0.503652811050415, -0.529160737991333, 0.37130194902420044, -2.237320899963379, -1.3560330867767334, -0.2696632444858551, -1.0182621479034424, 0.4390033781528473, -0.33734825253486633, 0.7177640795707703, -0.24019382894039154, -0.09919248521327972, 0.4324931502342224, 1.3306459188461304, 3.390239953994751, 0.21343252062797546, 0.3238712549209595, -0.07993423193693161, -1.0335041284561157, 1.437148928642273, 0.9475744962692261, -0.19898837804794312, -0.5323122143745422, -1.0232161283493042, 1.2937157154083252, 1.9051015377044678, 1.0752333402633667, -0.03919881209731102, -0.8160891532897949, -0.7410983443260193, 0.012750179506838322, 0.1749294251203537, 0.43308985233306885, 0.8893079161643982, 0.09447501599788666, 0.20983833074569702, 1.5340360403060913, 1.1756864786148071, -0.3639720678329468, 0.30524152517318726, -0.8095131516456604, -0.5155301094055176, 0.5585429072380066, 0.2517949342727661, -0.04520060122013092, 0.3733447194099426, -1.0466371774673462, -0.2671360373497009, -0.4059634506702423, -0.9271647930145264, -0.7233021259307861, -0.42148149013519287, -0.3306252658367157, 1.6537877321243286, 0.05435510724782944, -0.4595414102077484, -0.03586169704794884, -0.7645720839500427, -0.07639153301715851, -1.0477485656738281, 0.40525010228157043, -0.0768134742975235, -0.1136920154094696, -0.13627281785011292, 1.7439415454864502, -0.9472492337226868, -2.056678056716919, 0.22570852935314178, 0.13967765867710114, -0.3406294584274292, 0.1503891795873642, 1.6307671070098877, 0.5569953322410583, 1.4953545331954956, 1.3642349243164062, 0.956792950630188, -0.6277064085006714, -1.2979652881622314, 0.7289870977401733, 0.9679259657859802, -1.3476440906524658, 0.7829126715660095, 0.0031787408515810966, -0.561680257320404, 0.6139315962791443, 1.210768699645996, 0.5401146411895752, -1.9797807931900024, 0.8192362785339355, -0.9719207882881165, 0.7383019924163818, 0.6955955624580383, 0.7995150089263916, 0.15256255865097046, 0.746147096157074, -1.2990615367889404, -1.1059497594833374, -0.6704385280609131, -0.6225733160972595, 1.931462049484253, -0.2671615183353424, 0.6324663758277893, -0.3002125322818756, -1.3544033765792847, -0.02565736696124077, 0.6534711122512817, 0.2649811804294586, -0.5301121473312378, 0.8352956175804138, -0.6282407641410828, -1.1826680898666382, -1.430938959121704, -0.3953215181827545, -1.0866564512252808, -0.8796388506889343, 1.0827088356018066, 0.697208046913147, 0.29426154494285583, 1.8122373819351196, 0.6672558784484863, 0.28355181217193604, -2.724391222000122, 0.9208698272705078, 0.21063916385173798, -0.05140899121761322, 0.8549419641494751, 0.2634355425834656, 0.9909915924072266, -0.07608857750892639, 0.5255542397499084, -2.386019229888916, 2.274907112121582, -0.21126356720924377, 0.7454301714897156, 0.00041807442903518677, -0.0475606806576252, 1.0637409687042236, 0.6148267388343811, 0.5843178033828735, -1.0733367204666138, 0.7810378074645996, -0.5518373847007751, 1.2013092041015625, 0.9054294228553772, -0.8196836113929749, -0.0757327526807785, 1.2763689756393433, 0.4696655869483948, -0.44372034072875977, -0.8973878026008606, -0.984137237071991, 1.0305172204971313, 1.7704384326934814, -0.10719286650419235, 0.056972719728946686, 0.9276148676872253, 0.6240860819816589, -1.3360183238983154, 0.03610870987176895, -0.6654154658317566, -0.6288145780563354, 1.5953994989395142, 2.072697877883911, -0.05424822121858597, -0.21048134565353394, -0.7239492535591125, -1.2813793420791626, 0.8106994032859802, 0.00868255365639925, 0.12335904687643051, 0.6869494318962097, -0.5889163017272949, 1.1125962734222412, 0.9599683284759521, 0.9556946158409119, 0.2636529207229614, 0.13209988176822662, 0.29384133219718933, -0.2891007959842682, -1.167614221572876, -0.18800410628318787, -0.9201235175132751, -2.5389747619628906, 0.48343658447265625, -0.22917769849300385, -1.4447602033615112, 0.05905378609895706, -1.0320438146591187, 0.9623512029647827, -0.583782970905304, -1.0211386680603027, -1.6000169515609741, 0.17566268146038055, -0.10249858349561691, 0.8885719180107117, -1.5729129314422607, -0.14458255469799042, 1.2348443269729614, 0.9668039083480835, -0.6138671636581421, 1.074989914894104, 0.2620464861392975, 0.9734634160995483, 0.8666058778762817, -0.3543837368488312, 0.566505491733551, 0.19261862337589264, -1.3848826885223389, 0.4335272014141083, 1.231414794921875, 0.24509117007255554, 1.434924602508545, -0.6308727264404297, -0.05936989560723305, 0.388020396232605, -0.5324720144271851, -0.43507277965545654, -0.5533284544944763, 0.7121579647064209, 0.053071361035108566, -0.9364273548126221, -0.0571536049246788, -0.1444915384054184, -0.1932801902294159, 0.19487015902996063, -1.4612406492233276, -0.12194735556840897, -0.3479398488998413, -0.6914840340614319, -1.213871717453003, -0.10985798388719559, 1.4689843654632568, -0.9228270649909973, -0.17539232969284058, 0.48977863788604736, 0.31545308232307434, 0.6013416051864624, 0.6862906217575073, -0.6491111516952515, -0.27988335490226746, -0.22669748961925507, -0.3414764106273651, 0.29520753026008606, 1.399740219116211, -0.0716983899474144, -1.0067228078842163, 0.7392705082893372, -0.31657740473747253, 0.09088288247585297, 1.8730462789535522, 0.07312612235546112, -0.8127350211143494, 0.2719995975494385, -0.7079902291297913, 1.9241036176681519, 1.7116843461990356, 1.408799409866333, -0.08769898861646652, -0.9478188753128052, 0.5759764313697815, -0.27941638231277466, -0.38397595286369324, 0.8785936236381531, 0.4204449951648712, -0.18170398473739624, -1.3961127996444702, 0.6883975267410278, 1.2264318466186523, -0.9326883554458618, -0.791926383972168, 0.14964818954467773, -0.811272144317627, 1.137455940246582, 0.6888537406921387, 0.3484784960746765, 0.21555964648723602, 1.6192731857299805, 0.8031874895095825, -0.44291242957115173, 0.5046722888946533, 0.5254244208335876, -0.18591620028018951, -2.114124298095703, -1.084120512008667, 0.4012439250946045, -0.4874054491519928, -1.518459677696228, 1.3783621788024902, -1.1097376346588135, -0.9027901291847229, 0.5731238126754761, 0.0555252730846405, 1.431566834449768, 0.3643924593925476, 1.5640026330947876, 2.0609090328216553, 0.9354887008666992, 0.3408054709434509, 1.2730672359466553, -0.2189575433731079, -0.3422549366950989, 1.732918381690979, -0.39522114396095276, 0.5174709558486938, 1.0655514001846313, -0.36760932207107544, -1.0021491050720215, -0.723997950553894, -1.2699172496795654, -0.6944802403450012, 1.1318254470825195, 0.10800261050462723, -1.14450204372406, 0.26147836446762085, 1.5578886270523071, 0.1068359985947609, -0.24761483073234558, 0.6042559146881104, 0.3903144598007202, -0.7833815813064575, -0.05913599580526352, -0.9766468405723572, 0.4898183047771454, -0.27929815649986267, -0.36675530672073364, 0.27508068084716797, 0.4351533055305481, 1.332645297050476, 0.03977204114198685, 0.095848448574543, 1.207922101020813, -1.3550890684127808, 1.4642343521118164, -0.7427443861961365, 0.19992782175540924, -2.304471254348755, 1.3499789237976074, -0.8336087465286255, 1.9059146642684937, -2.6701438426971436, 0.49961498379707336, -0.542292058467865, -0.4259638786315918, 0.27729925513267517, -0.38379064202308655, 0.15148650109767914, -0.1816169023513794, -1.1850666999816895, -0.12855197489261627, -0.6886755228042603, 0.5920326113700867, 1.04445481300354, 1.3790919780731201, -1.1375799179077148, -0.40189608931541443, -1.706976294517517, -0.15684539079666138, -0.6842718124389648, 0.25310468673706055, -1.880504846572876, -0.16011051833629608, -1.8660807609558105, -2.4723961353302, -1.2400869131088257, -0.7631176710128784, 1.2174876928329468, 0.10281390696763992, -0.850152850151062, 1.1854206323623657, -0.3988443911075592, -1.9254294633865356, 1.1656044721603394, -2.300077438354492 ]
https://github.com/huggingface/datasets/issues/5908
Unbearably slow sorting on big mapped datasets
I understand the issue doesn't exist with non-mapped datasets, but if flattening is so much more efficient than sorting the indices, that's an issue in itself. There are plenty of issues people posted for which the root cause turns out to be the same. It seems like mapped datasets are terribly inefficient. I think I saw some issue like that somewhere (about the mapped datasets in general), but can't find it now. Maybe indices should be flattened before any additional processing, then.
### Describe the bug For me, with ~40k lines, sorting took 3.5 seconds on a flattened dataset (including the flatten operation) and 22.7 seconds on a mapped dataset (right after sharding), which is about x5 slowdown. Moreover, it seems like it slows down exponentially with bigger datasets (wasn't able to sort 700k lines at all, with flattening takes about a minute). ### Steps to reproduce the bug ```Python from datasets import load_dataset import time dataset = load_dataset("xnli", "en", split="train") dataset = dataset.shard(10, 0) print(len(dataset)) t = time.time() # dataset = dataset.flatten_indices() # uncomment this line and it's fast dataset = dataset.sort("label", reverse=True, load_from_cache_file=False) print(f"finished in {time.time() - t:.4f} seconds") ``` ### Expected behavior Expect sorting to take the same or less time than flattening and then sorting. ### Environment info - `datasets` version: 2.12.1.dev0 (same with 2.12.0 too) - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.10.10 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1
118
82
Unbearably slow sorting on big mapped datasets ### Describe the bug For me, with ~40k lines, sorting took 3.5 seconds on a flattened dataset (including the flatten operation) and 22.7 seconds on a mapped dataset (right after sharding), which is about x5 slowdown. Moreover, it seems like it slows down exponentially with bigger datasets (wasn't able to sort 700k lines at all, with flattening takes about a minute). ### Steps to reproduce the bug ```Python from datasets import load_dataset import time dataset = load_dataset("xnli", "en", split="train") dataset = dataset.shard(10, 0) print(len(dataset)) t = time.time() # dataset = dataset.flatten_indices() # uncomment this line and it's fast dataset = dataset.sort("label", reverse=True, load_from_cache_file=False) print(f"finished in {time.time() - t:.4f} seconds") ``` ### Expected behavior Expect sorting to take the same or less time than flattening and then sorting. ### Environment info - `datasets` version: 2.12.1.dev0 (same with 2.12.0 too) - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.10.10 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 I understand the issue doesn't exist with non-mapped datasets, but if flattening is so much more efficient than sorting the indices, that's an issue in itself. There are plenty of issues people posted for which the root cause turns out to be the same. It seems like mapped datasets are terribly inefficient. I think I saw some issue like that somewhere (about the mapped datasets in general), but can't find it now. Maybe indices should be flattened before any additional processing, then.
[ -1.3209213018417358, -0.9818063974380493, -0.6587813496589661, 1.3790735006332397, -0.17233943939208984, -1.179924488067627, 0.13706029951572418, -1.0327045917510986, 1.676734447479248, -0.8421252369880676, 0.261873722076416, -1.6699179410934448, 0.03741684928536415, -0.5520199537277222, -0.6824787259101868, -0.8484331965446472, -0.4451620280742645, -0.7780194878578186, 1.0989062786102295, 2.501216411590576, 1.194046974182129, -1.373513102531433, 2.7735366821289062, 0.7328823804855347, -0.16900190711021423, -0.966442346572876, 0.5601851940155029, 0.049423761665821075, -1.4451746940612793, -0.39571401476860046, -0.9714017510414124, -0.029686324298381805, -0.5375370979309082, -0.5155417323112488, 0.04396534711122513, 0.32570990920066833, -0.2839759290218353, -0.44451552629470825, -0.4972399175167084, -0.737973690032959, 0.41941866278648376, -0.38045182824134827, 0.9593789577484131, -0.34941366314888, 1.7901784181594849, -0.564088761806488, 0.4965338110923767, 0.6808456182479858, 1.3293898105621338, 0.2361086905002594, -0.023295678198337555, 0.3631637394428253, 0.4187937080860138, 0.021461717784404755, 0.5647961497306824, 1.1691023111343384, 0.6606271266937256, 0.4266345500946045, 0.6631256341934204, -2.23905611038208, 1.3297454118728638, -1.0452133417129517, 0.3320854604244232, 1.3617384433746338, -0.9508016109466553, 0.46015724539756775, -1.7173759937286377, -0.1137690544128418, 0.5161186456680298, -2.304626703262329, 0.21128615736961365, -1.3163893222808838, -0.4886196255683899, 0.9929384589195251, 0.4022046625614166, -1.1915711164474487, 0.09002234041690826, -0.488371342420578, 0.973533570766449, 0.44231683015823364, 1.191827654838562, -1.6419709920883179, -0.0668531209230423, -0.2913382947444916, 0.12208845466375351, -1.2632434368133545, -1.5095349550247192, 0.5508816838264465, 0.6885222792625427, 0.5193314552307129, -0.1257319450378418, 1.0428003072738647, -1.075350046157837, 0.6745631694793701, -1.0083833932876587, -1.73501718044281, -1.448170781135559, -2.323455810546875, -2.3311073780059814, 0.799680769443512, -0.4478103816509247, -0.534098207950592, 2.070087432861328, -1.1127212047576904, -1.7764887809753418, 1.146865963935852, 0.24115733802318573, -0.12037906050682068, 2.4095094203948975, 0.20134545862674713, -0.7436447143554688, 0.5360077619552612, -0.7875630259513855, 0.7240369915962219, -0.37437984347343445, 1.3459875583648682, 0.412853866815567, -1.039629340171814, 1.4933078289031982, -0.3727908134460449, 0.5471829175949097, -0.5767081379890442, -0.48714926838874817, -0.7505497336387634, 0.26798126101493835, 1.933647632598877, -0.3265323340892792, 1.591731309890747, -0.31630343198776245, -1.6102590560913086, -1.550597906112671, 0.8593446016311646, 0.458763062953949, -0.734708309173584, 0.07001009583473206, -0.37914326786994934, 0.13515955209732056, -0.0008664615452289581, 1.0978987216949463, 1.2777820825576782, 0.741419792175293, -0.351017028093338, -0.8825648427009583, 0.27041906118392944, -0.1045544221997261, -0.6873130202293396, -1.7679587602615356, -0.363255113363266, 0.09309878945350647, 0.6187821626663208, -1.2348076105117798, 1.7012872695922852, 0.948744535446167, 1.843542218208313, 1.0932605266571045, -0.3189666271209717, 1.494755506515503, 0.14240148663520813, 1.7758419513702393, -0.46670347452163696, 0.7153525352478027, -0.33893367648124695, -1.1585350036621094, 0.7681571245193481, -0.3503461480140686, -2.0410959720611572, -0.6919978857040405, -0.7935822606086731, -0.18437616527080536, -0.7935560941696167, 1.017524003982544, -0.2698836624622345, -1.401626467704773, 0.2569737434387207, -0.741685152053833, 0.16961662471294403, -1.2261115312576294, 0.3315970301628113, 0.7497345209121704, -0.6072837710380554, 0.09663300216197968, -0.22859486937522888, -1.2696962356567383, -0.3596976399421692, 0.23606601357460022, 1.7733736038208008, -0.8777374625205994, 0.944683313369751, 1.0472716093063354, -0.7733023166656494, 0.010152365081012249, 0.36905747652053833, -0.3006832003593445, 0.9227113723754883, -0.974822998046875, -0.39719629287719727, 1.2236605882644653, -0.2113310694694519, -0.5068419575691223, 1.4629557132720947, 0.6963672041893005, -0.9881492257118225, -0.2119327038526535, -0.05810417979955673, -0.8609423041343689, 0.057603370398283005, -1.5928605794906616, -0.10095170140266418, 0.39961060881614685, -1.5862404108047485, -0.42537033557891846, -0.24410715699195862, 1.2658101320266724, -0.07820644229650497, 1.4422025680541992, -0.34104058146476746, -0.17686718702316284, -0.3988584280014038, -0.3871453106403351, 0.161051407456398, -0.18313734233379364, -0.5455575585365295, 0.2789747416973114, -0.811034619808197, 0.3365694582462311, 1.443005919456482, 0.36905667185783386, -0.01827634871006012, 0.584758460521698, 1.005972146987915, 0.4428423345088959, -0.2002062350511551, -0.8171340823173523, -1.6004825830459595, 2.075801134109497, -1.4352885484695435, 1.96078622341156, 0.7069241404533386, -0.03842644393444061, -1.8366395235061646, -1.9589135646820068, 1.3381792306900024, 1.1196203231811523, 2.418886423110962, 0.46951717138290405, 0.47881773114204407, -0.7854716181755066, -0.7281027436256409, 0.3263598680496216, -1.0393625497817993, -0.7452576160430908, 0.19498687982559204, 2.362597703933716, 1.7559188604354858, -0.4403679370880127, -0.15226440131664276, -1.119744896888733, 1.3800814151763916, -0.15817350149154663, 0.2156163603067398, 1.958059549331665, -0.2563248574733734, -1.077201008796692, 1.3589078187942505, -2.3398139476776123, 0.09986790269613266, 1.9299964904785156, 0.2632381021976471, 0.0254799984395504, -1.3763173818588257, -0.6547541618347168, -0.319653183221817, -0.39360591769218445, -1.2531282901763916, 0.5609403252601624, -0.19181741774082184, -0.8286300301551819, -1.4566166400909424, 0.12792639434337616, -1.1263391971588135, -1.652871012687683, 0.2494780272245407, 1.8378026485443115, 2.0419516563415527, -0.7736894488334656, 1.4578856229782104, -0.2682287395000458, 0.1879175454378128, 1.1758248805999756, 1.1186003684997559, 3.1596367359161377, 1.9479812383651733, -1.337949275970459, 0.6835013628005981, -0.13588520884513855, -0.434100478887558, 1.160436749458313, -1.2450412511825562, 1.3367174863815308, -0.1383277177810669, -1.2896963357925415, -1.144227385520935, 0.9547285437583923, 0.4442492425441742, 0.021894320845603943, -0.46603888273239136, 1.1872930526733398, 0.023168426007032394, 1.365429401397705, 0.533035159111023, -0.3037108778953552, 0.6830283403396606, -0.44440266489982605, -0.5255826115608215, 1.4992523193359375, 0.18343310058116913, -1.4640213251113892, -2.2458364963531494, -0.26055315136909485, -0.8349312543869019, 0.06968814879655838, -0.617087721824646, -0.9249794483184814, 1.573529839515686, 0.41418150067329407, -1.2065919637680054, -0.25373995304107666, -0.3136619031429291, -0.5693491697311401, 2.732883930206299, -1.4373483657836914, -0.20843859016895294, -0.9910608530044556, -0.654228925704956, 1.6044063568115234, -1.1991164684295654, -0.22870784997940063, -0.9775699377059937, -0.5655785799026489, -1.308876633644104, -0.5882770419120789, -0.0888691246509552, -0.9229702949523926, 0.7660529017448425, 0.16507412493228912, -1.1035493612289429, -0.30864718556404114, -0.9160156846046448, 0.8673862814903259, -0.08367279917001724, 0.20600011944770813, 1.8649441003799438, 0.34102335572242737, -0.34416648745536804, 0.714049756526947, 1.1432502269744873, 0.6828402280807495, -0.6835049390792847, 0.17524152994155884, -0.7680817246437073, 0.28849977254867554, -1.296598196029663, 0.25315114855766296, -2.8486311435699463, 0.6283360719680786, -0.08930729329586029, -0.06433285027742386, -0.022882109507918358, -1.2775344848632812, 1.101176142692566, 2.4935922622680664, -1.1902493238449097, 0.4452706277370453, 0.2830905318260193, 1.1176773309707642, -1.5346745252609253, 0.3376258611679077, -0.45008307695388794, 2.1264286041259766, 0.26074787974357605, 1.1782758235931396, -0.40836483240127563, -2.2923800945281982, 0.6680415272712708, -1.3095765113830566, -1.16702401638031, 0.7752683758735657, -0.8907573223114014, 0.05532774701714516, -1.3783540725708008, -0.22699496150016785, -0.7563156485557556, -1.1930196285247803, 0.6159812808036804, 0.06890181452035904, 0.49118584394454956, -0.5417273640632629, 0.38781267404556274, -2.229933023452759, -1.313401222229004, -0.24439504742622375, -0.9948675632476807, 0.4470987617969513, -0.36723512411117554, 0.6980035901069641, -0.23392589390277863, -0.08449883759021759, 0.41327136754989624, 1.321675181388855, 3.394231081008911, 0.17388375103473663, 0.3329348564147949, -0.10127811878919601, -0.9995811581611633, 1.4263027906417847, 0.9753950834274292, -0.17489509284496307, -0.5657913684844971, -1.0258381366729736, 1.306950330734253, 1.9003745317459106, 1.0406575202941895, 0.0031426697969436646, -0.8126391172409058, -0.7557805180549622, -0.010828300379216671, 0.1302594244480133, 0.4594932198524475, 0.9383611679077148, 0.06547554582357407, 0.16216936707496643, 1.5704765319824219, 1.1905250549316406, -0.34677180647850037, 0.3468858599662781, -0.8135709762573242, -0.522577702999115, 0.5633055567741394, 0.2837977111339569, -0.057607002556324005, 0.3530750274658203, -1.0538889169692993, -0.21840663254261017, -0.4183904230594635, -0.9758197069168091, -0.7045555710792542, -0.38535740971565247, -0.33716949820518494, 1.6428487300872803, 0.11019330471754074, -0.49242082238197327, -0.07529245316982269, -0.8035682439804077, -0.09350317716598511, -1.0342086553573608, 0.40134355425834656, -0.09732794761657715, -0.11856949329376221, -0.15408319234848022, 1.7328317165374756, -0.9132983088493347, -2.029332399368286, 0.21757398545742035, 0.14347968995571136, -0.27815011143684387, 0.1263265162706375, 1.6356898546218872, 0.5659363269805908, 1.5062479972839355, 1.352970838546753, 0.9489218592643738, -0.5880563259124756, -1.329772710800171, 0.7140241861343384, 0.9600331783294678, -1.3968396186828613, 0.7889228463172913, -0.006675990764051676, -0.5745933651924133, 0.6244599223136902, 1.2392207384109497, 0.4920300841331482, -2.0093395709991455, 0.8310947418212891, -0.9853198528289795, 0.711001992225647, 0.7109137177467346, 0.7906362414360046, 0.1745494157075882, 0.7983569502830505, -1.2901701927185059, -1.113698959350586, -0.6802891492843628, -0.6113340854644775, 1.9570757150650024, -0.2713624835014343, 0.6146572828292847, -0.2748939096927643, -1.3462177515029907, -0.07174451649188995, 0.6520581245422363, 0.26602959632873535, -0.5157827734947205, 0.8161939978599548, -0.6222358345985413, -1.2031025886535645, -1.4374206066131592, -0.38240084052085876, -1.0846072435379028, -0.8904840350151062, 1.0541287660598755, 0.73073810338974, 0.3259945511817932, 1.8121572732925415, 0.6312376856803894, 0.26129111647605896, -2.7087154388427734, 0.9196563959121704, 0.20976072549819946, -0.04596802219748497, 0.8866044878959656, 0.2680548429489136, 0.9933362603187561, -0.06500895321369171, 0.5370046496391296, -2.3915014266967773, 2.26950740814209, -0.23435939848423004, 0.7292435169219971, 0.01738426834344864, -0.05775417387485504, 1.101773977279663, 0.6364890933036804, 0.614870011806488, -1.0333462953567505, 0.7677499651908875, -0.5743697285652161, 1.233655333518982, 0.926638126373291, -0.8367491364479065, -0.087383933365345, 1.2518094778060913, 0.4490291178226471, -0.4288160800933838, -0.8994309902191162, -1.0261114835739136, 0.9802576899528503, 1.7996774911880493, -0.07187674194574356, 0.02804860845208168, 0.8900772929191589, 0.6361186504364014, -1.3536534309387207, 0.04481733217835426, -0.7055224776268005, -0.6560868620872498, 1.6159156560897827, 2.049579620361328, -0.057445675134658813, -0.19364406168460846, -0.6896221041679382, -1.2877510786056519, 0.7894173860549927, 0.048112958669662476, 0.1419665366411209, 0.7339741587638855, -0.5927875638008118, 1.0727665424346924, 0.9156219363212585, 0.935234785079956, 0.2575441002845764, 0.15484799444675446, 0.28075361251831055, -0.2771368622779846, -1.1826934814453125, -0.2091781347990036, -0.9473655819892883, -2.533003568649292, 0.4570959806442261, -0.2515222132205963, -1.4998472929000854, 0.09212427586317062, -0.9962933659553528, 0.9174908399581909, -0.5648159980773926, -1.0482380390167236, -1.580649733543396, 0.20636725425720215, -0.11247812956571579, 0.9066668152809143, -1.549942135810852, -0.10714851319789886, 1.2719677686691284, 0.9744806885719299, -0.5640307664871216, 1.0802909135818481, 0.2802349328994751, 1.0241867303848267, 0.8527908325195312, -0.3426774740219116, 0.530010998249054, 0.16431459784507751, -1.3805651664733887, 0.47795966267585754, 1.2289270162582397, 0.22825221717357635, 1.4289450645446777, -0.6552085280418396, -0.020364176481962204, 0.408326655626297, -0.5699939727783203, -0.38894763588905334, -0.5223759412765503, 0.7192986011505127, 0.030359290540218353, -0.8749685287475586, -0.07928072661161423, -0.13905516266822815, -0.17665311694145203, 0.16120286285877228, -1.4471596479415894, -0.12800554931163788, -0.37713879346847534, -0.669586181640625, -1.23928701877594, -0.1067667230963707, 1.4332491159439087, -0.8984684348106384, -0.20455142855644226, 0.4779721796512604, 0.3310181200504303, 0.5779457092285156, 0.6934627294540405, -0.6296415328979492, -0.2992798388004303, -0.20375576615333557, -0.3730904757976532, 0.294908732175827, 1.3801169395446777, -0.06145361810922623, -0.9958264827728271, 0.73347008228302, -0.34000757336616516, 0.09309376776218414, 1.9127757549285889, 0.04247019812464714, -0.8119500279426575, 0.3061752915382385, -0.7125898599624634, 1.9637688398361206, 1.7190500497817993, 1.3575448989868164, -0.09293076395988464, -0.9516969919204712, 0.5720922350883484, -0.26507851481437683, -0.3919457197189331, 0.8760667443275452, 0.44823527336120605, -0.1753840148448944, -1.3962440490722656, 0.6882034540176392, 1.2033660411834717, -0.9099786281585693, -0.7544391751289368, 0.1384611427783966, -0.8123614192008972, 1.1286778450012207, 0.7097024917602539, 0.3738960921764374, 0.22453774511814117, 1.6156378984451294, 0.7890001535415649, -0.47701725363731384, 0.4862576425075531, 0.5043860077857971, -0.18470586836338043, -2.130389451980591, -1.0809593200683594, 0.3922205865383148, -0.512495219707489, -1.5416239500045776, 1.3849120140075684, -1.1134651899337769, -0.8757845759391785, 0.5526736378669739, 0.07576406747102737, 1.3874866962432861, 0.3706991672515869, 1.560346007347107, 2.0696041584014893, 0.9594917297363281, 0.34486863017082214, 1.2841951847076416, -0.2181902974843979, -0.35819119215011597, 1.7372151613235474, -0.4277883470058441, 0.5259441137313843, 1.1150704622268677, -0.37780725955963135, -0.9791980385780334, -0.7199919819831848, -1.1990716457366943, -0.6546167731285095, 1.1334396600723267, 0.10900414735078812, -1.1190301179885864, 0.21676503121852875, 1.5415714979171753, 0.09703164547681808, -0.25730979442596436, 0.622742235660553, 0.37522274255752563, -0.7395941615104675, -0.06860720366239548, -0.9448632597923279, 0.5054503083229065, -0.31964999437332153, -0.3806173503398895, 0.2763172388076782, 0.41457876563072205, 1.3248878717422485, 0.0543070025742054, 0.12406442314386368, 1.2373379468917847, -1.3676573038101196, 1.4922966957092285, -0.7363867163658142, 0.22887614369392395, -2.3254802227020264, 1.3765385150909424, -0.8379505276679993, 1.944136619567871, -2.6702756881713867, 0.49622470140457153, -0.5426279902458191, -0.4242454171180725, 0.27389952540397644, -0.39024025201797485, 0.1375170350074768, -0.15432290732860565, -1.1959563493728638, -0.09419558197259903, -0.7040507793426514, 0.5661522150039673, 1.0489336252212524, 1.3802127838134766, -1.1440892219543457, -0.37700021266937256, -1.7141965627670288, -0.1716986745595932, -0.7334770560264587, 0.2796843349933624, -1.907509207725525, -0.15971027314662933, -1.8765844106674194, -2.4769203662872314, -1.2799832820892334, -0.8087518215179443, 1.2065908908843994, 0.13622134923934937, -0.8668825626373291, 1.1994391679763794, -0.3769417703151703, -1.922441005706787, 1.1458064317703247, -2.287137031555176 ]
https://github.com/huggingface/datasets/issues/5905
Offer an alternative to Iterable Dataset that allows lazy loading and processing while skipping batches efficiently
We plan to improve this eventually (see https://github.com/huggingface/datasets/issues/5454 and https://github.com/huggingface/datasets/issues/5380). > Is it possible to lazily load samples of a mapped dataset ? I'm used to [dataset scripts](https://huggingface.co/docs/datasets/dataset_script), maybe something can be done there. If not, I could do it using a plain Pytorch dataset. Then I would need to convert it to a datasets' dataset to get all the features of datasets. Is it something possible ? Yes, by creating a mapped dataset that stores audio URLs. Indexing a dataset in such format only downloads and decodes the bytes of the accessed samples (without storing them on disk). You can do the following to create this dataset: ```python def gen(): # Generator that yields (audio URL, text) pairs as dict ... yield {"audio": "audio_url", "text": "some text"} features = Features({"audio": datasets.Audio(), "text": datasets.Value("string")}) ds = Dataset.from_generator(gen, features=features) ds[2:5] # downloads and decodes the samples each time they are accessed ```
### Feature request I would like a way to resume training from a checkpoint without waiting for a very long time when using an iterable dataset. ### Motivation I am training models on the speech-recognition task. I have very large datasets that I can't comfortably store on a disk and also quite computationally intensive audio processing to do. As a result I want to load data from my remote when it is needed and perform all processing on the fly. I am currently using the iterable dataset feature of _datasets_. It does everything I need with one exception. My issue is that when resuming training at a step n, we have to download all the data and perform the processing of steps < n, just to get the iterable at the right step. In my case it takes almost as long as training for the same steps, which make resuming training from a checkpoint useless in practice. I understand that the nature of iterators make it probably nearly impossible to quickly resume training. I thought about a possible solution nonetheless : I could in fact index my large dataset and make it a mapped dataset. Then I could use set_transform to perform the processing on the fly. Finally, if I'm not mistaken, the _accelerate_ package allows to [skip steps efficiently](https://github.com/huggingface/accelerate/blob/a73898027a211c3f6dc4460351b0ec246aa824aa/src/accelerate/data_loader.py#L827) for a mapped dataset. Is it possible to lazily load samples of a mapped dataset ? I'm used to [dataset scripts](https://huggingface.co/docs/datasets/dataset_script), maybe something can be done there. If not, I could do it using a plain _Pytorch_ dataset. Then I would need to convert it to a _datasets_' dataset to get all the features of _datasets_. Is it something possible ? ### Your contribution I could provide a PR to allow lazy loading of mapped dataset or the conversion of a mapped _Pytorch_ dataset into a _Datasets_ dataset if you think it is an useful new feature.
119
151
Offer an alternative to Iterable Dataset that allows lazy loading and processing while skipping batches efficiently ### Feature request I would like a way to resume training from a checkpoint without waiting for a very long time when using an iterable dataset. ### Motivation I am training models on the speech-recognition task. I have very large datasets that I can't comfortably store on a disk and also quite computationally intensive audio processing to do. As a result I want to load data from my remote when it is needed and perform all processing on the fly. I am currently using the iterable dataset feature of _datasets_. It does everything I need with one exception. My issue is that when resuming training at a step n, we have to download all the data and perform the processing of steps < n, just to get the iterable at the right step. In my case it takes almost as long as training for the same steps, which make resuming training from a checkpoint useless in practice. I understand that the nature of iterators make it probably nearly impossible to quickly resume training. I thought about a possible solution nonetheless : I could in fact index my large dataset and make it a mapped dataset. Then I could use set_transform to perform the processing on the fly. Finally, if I'm not mistaken, the _accelerate_ package allows to [skip steps efficiently](https://github.com/huggingface/accelerate/blob/a73898027a211c3f6dc4460351b0ec246aa824aa/src/accelerate/data_loader.py#L827) for a mapped dataset. Is it possible to lazily load samples of a mapped dataset ? I'm used to [dataset scripts](https://huggingface.co/docs/datasets/dataset_script), maybe something can be done there. If not, I could do it using a plain _Pytorch_ dataset. Then I would need to convert it to a _datasets_' dataset to get all the features of _datasets_. Is it something possible ? ### Your contribution I could provide a PR to allow lazy loading of mapped dataset or the conversion of a mapped _Pytorch_ dataset into a _Datasets_ dataset if you think it is an useful new feature. We plan to improve this eventually (see https://github.com/huggingface/datasets/issues/5454 and https://github.com/huggingface/datasets/issues/5380). > Is it possible to lazily load samples of a mapped dataset ? I'm used to [dataset scripts](https://huggingface.co/docs/datasets/dataset_script), maybe something can be done there. If not, I could do it using a plain Pytorch dataset. Then I would need to convert it to a datasets' dataset to get all the features of datasets. Is it something possible ? Yes, by creating a mapped dataset that stores audio URLs. Indexing a dataset in such format only downloads and decodes the bytes of the accessed samples (without storing them on disk). You can do the following to create this dataset: ```python def gen(): # Generator that yields (audio URL, text) pairs as dict ... yield {"audio": "audio_url", "text": "some text"} features = Features({"audio": datasets.Audio(), "text": datasets.Value("string")}) ds = Dataset.from_generator(gen, features=features) ds[2:5] # downloads and decodes the samples each time they are accessed ```
[ -1.3023881912231445, -0.971327543258667, -0.7936956286430359, 1.3595514297485352, -0.10414958745241165, -1.2680957317352295, 0.10471782833337784, -1.1378859281539917, 1.689953088760376, -0.8094672560691833, 0.2486770749092102, -1.6685872077941895, 0.05559813976287842, -0.5430470108985901, -0.762940526008606, -0.9065973162651062, -0.3681589663028717, -0.8614609837532043, 1.020042896270752, 2.531034469604492, 1.140550971031189, -1.4253677129745483, 2.7434778213500977, 0.6533154249191284, -0.175027996301651, -1.0392627716064453, 0.4913150370121002, 0.055413760244846344, -1.2301490306854248, -0.4652438163757324, -0.9285827279090881, -0.034695327281951904, -0.5425541400909424, -0.4727360010147095, 0.008140308782458305, 0.387785941362381, -0.18293914198875427, -0.41198137402534485, -0.5813713669776917, -0.696929395198822, 0.4667362570762634, -0.35256561636924744, 1.0650010108947754, -0.33530402183532715, 1.8646068572998047, -0.5151439905166626, 0.4063597619533539, 0.7221046090126038, 1.4294239282608032, 0.192789226770401, 0.06050433963537216, 0.23180493712425232, 0.3945242464542389, -0.08466774970293045, 0.4067118763923645, 1.0933889150619507, 0.6013404726982117, 0.5666776895523071, 0.7192507386207581, -2.1696603298187256, 1.372672438621521, -0.9454262852668762, 0.3998486399650574, 1.356014609336853, -0.8799406886100769, 0.39609163999557495, -1.7796390056610107, -0.09514851123094559, 0.60962975025177, -2.272977590560913, 0.15362966060638428, -1.2923684120178223, -0.5867777466773987, 0.943067729473114, 0.2419363260269165, -1.1817526817321777, 0.28435394167900085, -0.5290296077728271, 1.0224218368530273, 0.5971363186836243, 1.2396912574768066, -1.726210117340088, -0.039396949112415314, -0.22492650151252747, 0.17573821544647217, -1.3424863815307617, -1.5968027114868164, 0.5779623985290527, 0.6188814640045166, 0.6021344065666199, -0.06804904341697693, 0.9732691049575806, -0.9959301948547363, 0.840832531452179, -0.9828906655311584, -1.6338932514190674, -1.4051562547683716, -2.297619104385376, -2.4221465587615967, 0.8143700361251831, -0.46838000416755676, -0.46113601326942444, 2.0628764629364014, -1.0336837768554688, -1.740342378616333, 1.134699821472168, 0.20994076132774353, 0.03416966274380684, 2.407848834991455, 0.12899866700172424, -0.6914551854133606, 0.481626957654953, -0.6613261103630066, 0.8540006279945374, -0.3876519501209259, 1.3314378261566162, 0.498263418674469, -0.933294415473938, 1.5570062398910522, -0.4478738605976105, 0.5646501183509827, -0.6907712817192078, -0.5359768271446228, -0.882936418056488, 0.3804360032081604, 1.8644980192184448, -0.27504441142082214, 1.7014797925949097, -0.4002261459827423, -1.6451576948165894, -1.6532056331634521, 0.8465411067008972, 0.4358271658420563, -0.8760596513748169, 0.09643763303756714, -0.468217670917511, 0.11270745098590851, -0.030888274312019348, 1.1002002954483032, 1.2117983102798462, 0.7035306096076965, -0.36224958300590515, -0.8838135600090027, 0.21186548471450806, -0.09959913045167923, -0.7191623449325562, -1.7810348272323608, -0.35873153805732727, 0.19488105177879333, 0.6074309349060059, -1.2011393308639526, 1.7279372215270996, 0.9227412343025208, 1.9659044742584229, 1.0248332023620605, -0.31836774945259094, 1.5129125118255615, 0.03832082077860832, 1.792539358139038, -0.4377695322036743, 0.62195885181427, -0.349875271320343, -1.1289259195327759, 0.7147088050842285, -0.38122645020484924, -2.022958278656006, -0.782914936542511, -0.7790985107421875, -0.17211240530014038, -0.7411971092224121, 0.8861333727836609, -0.3117218613624573, -1.3880358934402466, 0.25255563855171204, -0.5979149341583252, 0.17985406517982483, -1.1435655355453491, 0.28169089555740356, 0.7400959730148315, -0.6873257160186768, 0.02507568523287773, -0.21019431948661804, -1.3953553438186646, -0.44414159655570984, 0.39864566922187805, 1.8818721771240234, -0.675028920173645, 0.8228394389152527, 0.9960454106330872, -0.6078866720199585, 0.04301737993955612, 0.27956706285476685, -0.2441081702709198, 0.7740460634231567, -1.0416195392608643, -0.3462892770767212, 1.1892311573028564, -0.3067407011985779, -0.5903272032737732, 1.4780216217041016, 0.7523896098136902, -1.0204620361328125, -0.1646655797958374, -0.18699201941490173, -0.8477988243103027, -0.0667954534292221, -1.577428936958313, -0.10974103212356567, 0.2811915874481201, -1.5114372968673706, -0.4388723075389862, -0.23929646611213684, 1.1651414632797241, -0.15994998812675476, 1.417122483253479, -0.36991599202156067, -0.20231765508651733, -0.40236201882362366, -0.43124517798423767, 0.18120014667510986, -0.28630906343460083, -0.6189782619476318, 0.17442047595977783, -0.8101106286048889, 0.34603825211524963, 1.4522924423217773, 0.4082198739051819, 0.0910443514585495, 0.41664615273475647, 1.0746140480041504, 0.3320651352405548, -0.06875760853290558, -0.8307228684425354, -1.5328445434570312, 2.0083582401275635, -1.417088508605957, 1.915205955505371, 0.80242520570755, -0.09627360850572586, -1.8427114486694336, -1.786862850189209, 1.2900784015655518, 1.1740738153457642, 2.3610105514526367, 0.51191246509552, 0.2892129123210907, -0.8003170490264893, -0.6256746053695679, 0.32399097084999084, -0.9686910510063171, -0.7446420192718506, 0.09851764142513275, 2.2897894382476807, 1.7955288887023926, -0.508089542388916, -0.20891770720481873, -0.940088152885437, 1.3714065551757812, -0.2277163863182068, 0.21105602383613586, 2.0517630577087402, -0.29964369535446167, -1.0556012392044067, 1.3465449810028076, -2.3644020557403564, 0.15761500597000122, 1.9902931451797485, 0.2692795395851135, 0.09049094468355179, -1.4314216375350952, -0.5983423590660095, -0.3744634687900543, -0.3831782042980194, -1.246882438659668, 0.5428839921951294, -0.32082992792129517, -0.759408712387085, -1.4874898195266724, 0.18685269355773926, -1.1489317417144775, -1.6395740509033203, 0.32113030552864075, 1.8651690483093262, 2.0473639965057373, -0.7155641913414001, 1.403066635131836, -0.28223559260368347, 0.14280477166175842, 1.2519184350967407, 1.1796679496765137, 3.18874192237854, 1.871907353401184, -1.212918996810913, 0.6551753878593445, -0.21849092841148376, -0.508944034576416, 1.128645420074463, -1.0950952768325806, 1.2982807159423828, -0.16594532132148743, -1.2017079591751099, -1.2413902282714844, 1.023201584815979, 0.4847300350666046, 0.09618277102708817, -0.5389649868011475, 1.2501705884933472, 0.026461873203516006, 1.297440767288208, 0.5548880696296692, -0.4259020984172821, 0.5545656681060791, -0.3756410777568817, -0.6616153717041016, 1.5694776773452759, 0.15711063146591187, -1.5372247695922852, -2.2598416805267334, -0.3115716874599457, -0.7754649519920349, -0.0005521485581994057, -0.6225398778915405, -1.0109944343566895, 1.603010892868042, 0.3870040476322174, -1.2684258222579956, -0.3337653875350952, -0.4083894193172455, -0.619015634059906, 2.6680715084075928, -1.3586499691009521, -0.2691769301891327, -0.9515393376350403, -0.5713219046592712, 1.6185328960418701, -1.2568635940551758, -0.19141626358032227, -1.0007075071334839, -0.6474394798278809, -1.3193941116333008, -0.4806762635707855, -0.011789442971348763, -0.8606535196304321, 0.7544057965278625, 0.22862562537193298, -1.0441118478775024, -0.25518983602523804, -0.8747910261154175, 0.9271649718284607, -0.10785108804702759, 0.3129936754703522, 1.8851567506790161, 0.4004179835319519, -0.37986552715301514, 0.6964014768600464, 1.196666955947876, 0.5957646369934082, -0.7164101004600525, 0.05057710036635399, -0.753737211227417, 0.3119196891784668, -1.3031587600708008, 0.2909536361694336, -2.8439228534698486, 0.6754084825515747, -0.060819175094366074, -0.196321040391922, 0.026572663336992264, -1.3015565872192383, 1.059443712234497, 2.6696560382843018, -1.2151108980178833, 0.49872076511383057, 0.35486069321632385, 1.2168738842010498, -1.5481786727905273, 0.37515944242477417, -0.4056483805179596, 2.049271583557129, 0.24277332425117493, 1.236011266708374, -0.5406085848808289, -2.2939131259918213, 0.593714714050293, -1.2420068979263306, -1.1695266962051392, 0.8021460771560669, -0.9680361747741699, 0.06775735318660736, -1.4165071249008179, -0.18121284246444702, -0.8324404954910278, -1.2622708082199097, 0.7418617010116577, 0.168716698884964, 0.5005648732185364, -0.6395347714424133, 0.3263821303844452, -2.2627224922180176, -1.397912621498108, -0.24558770656585693, -1.0015029907226562, 0.4626075029373169, -0.40947139263153076, 0.6168369650840759, -0.13082116842269897, 0.04443515092134476, 0.31067779660224915, 1.4733409881591797, 3.3933396339416504, 0.2616002857685089, 0.39084622263908386, -0.14473679661750793, -0.9193491339683533, 1.4135669469833374, 0.909820020198822, -0.10923881828784943, -0.541330099105835, -0.9699106812477112, 1.2714937925338745, 2.0122694969177246, 1.0422319173812866, 0.012600209563970566, -0.7703522443771362, -0.6664596796035767, -0.04975423216819763, 0.24063584208488464, 0.53695148229599, 0.9751638174057007, -0.049469877034425735, 0.1381039023399353, 1.5045663118362427, 1.2191267013549805, -0.40689951181411743, 0.41821444034576416, -0.861579418182373, -0.49106624722480774, 0.43948572874069214, 0.30222633481025696, -0.019325193017721176, 0.4865577518939972, -0.9865915179252625, -0.16953042149543762, -0.492623895406723, -0.9477033615112305, -0.6552428603172302, -0.44521740078926086, -0.32056277990341187, 1.623900055885315, 0.12115814536809921, -0.5392293930053711, 0.009798096492886543, -0.7517233490943909, -0.19704553484916687, -1.0138919353485107, 0.2627783417701721, -0.04623441770672798, -0.09675184637308121, -0.050042927265167236, 1.7830833196640015, -0.9794374108314514, -2.07942271232605, 0.22446110844612122, 0.20460641384124756, -0.3573879599571228, 0.20688584446907043, 1.5979667901992798, 0.4169280230998993, 1.4180814027786255, 1.3643622398376465, 0.9587253332138062, -0.6376751065254211, -1.3343690633773804, 0.7435934543609619, 0.8838501572608948, -1.3325879573822021, 0.894470751285553, -0.07598070055246353, -0.5826571583747864, 0.7506080269813538, 1.231087327003479, 0.41662099957466125, -2.003720283508301, 0.8843057751655579, -0.9835925698280334, 0.7903079986572266, 0.6921586394309998, 0.7594520449638367, 0.21066206693649292, 0.8650394678115845, -1.1922169923782349, -1.1397751569747925, -0.8071158528327942, -0.7046520113945007, 1.993630051612854, -0.21335166692733765, 0.6340888738632202, -0.13497531414031982, -1.3066071271896362, -0.04260920360684395, 0.7291175127029419, 0.4107782244682312, -0.3758566975593567, 0.8543995022773743, -0.7385184168815613, -1.0809797048568726, -1.3992468118667603, -0.4471029043197632, -0.9898461699485779, -0.9253190159797668, 1.0789655447006226, 0.7501174807548523, 0.23042064905166626, 1.8322898149490356, 0.6285016536712646, 0.3410038948059082, -2.6582367420196533, 0.8427746295928955, 0.24721920490264893, -0.042307861149311066, 0.8699700832366943, 0.31544193625450134, 0.9966245293617249, 0.12283851951360703, 0.48390910029411316, -2.348729133605957, 2.2596182823181152, -0.2993597686290741, 0.74217689037323, -0.11367359012365341, -0.19124853610992432, 1.152916669845581, 0.6451196074485779, 0.5697106719017029, -1.1486328840255737, 0.7053340673446655, -0.55018150806427, 1.1857008934020996, 0.8840181231498718, -0.8025516271591187, -0.03701264411211014, 1.3869255781173706, 0.47826138138771057, -0.49996140599250793, -1.0059133768081665, -0.9230868220329285, 0.9778503775596619, 1.7657546997070312, -0.04255394637584686, -0.006145044229924679, 0.8223223090171814, 0.6536763906478882, -1.307129144668579, 0.15119868516921997, -0.7794119715690613, -0.8226020932197571, 1.5835440158843994, 2.057738780975342, -0.09700532257556915, -0.13044223189353943, -0.6571605205535889, -1.2103168964385986, 0.719319760799408, -0.004274957813322544, 0.07229101657867432, 0.6305577754974365, -0.695391058921814, 1.1101497411727905, 0.8507401347160339, 0.9066817760467529, 0.1209215298295021, 0.27212339639663696, 0.38432690501213074, -0.3256152272224426, -1.1553387641906738, -0.3253493010997772, -1.0823519229888916, -2.400735855102539, 0.41406622529029846, -0.2066604495048523, -1.578843593597412, 0.06074737757444382, -0.9917129874229431, 0.9439345598220825, -0.5436557531356812, -1.039998173713684, -1.5864686965942383, 0.24518099427223206, -0.14475354552268982, 0.9137787222862244, -1.5810472965240479, -0.14433282613754272, 1.189512014389038, 0.9127436876296997, -0.5811824798583984, 0.9920563101768494, 0.254550576210022, 0.9440325498580933, 0.7918734550476074, -0.4848564863204956, 0.42849162220954895, 0.1279607117176056, -1.3367136716842651, 0.4886709749698639, 1.1341865062713623, 0.18328768014907837, 1.3660932779312134, -0.5670291185379028, 0.01504632830619812, 0.38383808732032776, -0.5587353110313416, -0.39713814854621887, -0.5142685174942017, 0.7784712314605713, 0.04983001947402954, -0.844032883644104, 0.030950505286455154, -0.17490911483764648, -0.28229251503944397, 0.25524085760116577, -1.5132044553756714, -0.26385748386383057, -0.47946029901504517, -0.52451092004776, -1.298120141029358, 0.08250993490219116, 1.448784351348877, -0.8529533743858337, -0.21124443411827087, 0.447526752948761, 0.5790264010429382, 0.5621206164360046, 0.6136633157730103, -0.7229670882225037, -0.2441403865814209, -0.29677703976631165, -0.31991156935691833, 0.2131788432598114, 1.2774537801742554, -0.17891860008239746, -0.9580195546150208, 0.7265539169311523, -0.3554757833480835, 0.073833167552948, 1.9966682195663452, 0.18389499187469482, -0.7514265179634094, 0.2938721776008606, -0.8142591714859009, 1.9075216054916382, 1.7238116264343262, 1.3789379596710205, -0.1197766661643982, -0.8957833647727966, 0.5759546756744385, -0.29490992426872253, -0.32070010900497437, 0.9348880052566528, 0.4743713140487671, -0.1990017294883728, -1.4733388423919678, 0.5912951827049255, 1.1640191078186035, -0.8475918173789978, -0.7660244107246399, 0.0020802682265639305, -0.8192490339279175, 1.1507655382156372, 0.6965731978416443, 0.41236454248428345, 0.20543867349624634, 1.7071278095245361, 0.71406090259552, -0.47402724623680115, 0.5355178117752075, 0.482168585062027, -0.13677504658699036, -2.134836196899414, -1.0918958187103271, 0.23922130465507507, -0.42095232009887695, -1.5349791049957275, 1.3618865013122559, -1.1302005052566528, -0.9281076788902283, 0.5554062724113464, 0.009440304711461067, 1.4497531652450562, 0.33668550848960876, 1.5981467962265015, 2.156252384185791, 0.9433072805404663, 0.3865158259868622, 1.2876583337783813, -0.07546164840459824, -0.4019624590873718, 1.853622555732727, -0.3582908809185028, 0.46711188554763794, 1.0794659852981567, -0.39348217844963074, -1.0197993516921997, -0.7403293251991272, -1.1048915386199951, -0.5892153978347778, 1.0870121717453003, 0.0899098664522171, -1.0991909503936768, 0.24937212467193604, 1.6408041715621948, 0.1515612006187439, -0.2824361026287079, 0.5641114711761475, 0.4386361837387085, -0.7550746202468872, -0.09094853699207306, -0.93662428855896, 0.49525976181030273, -0.2564299702644348, -0.3939230144023895, 0.3456288278102875, 0.4632408618927002, 1.2939409017562866, -0.007559079676866531, 0.0865994244813919, 1.2769490480422974, -1.4320895671844482, 1.419135332107544, -0.6252559423446655, 0.23782512545585632, -2.3568124771118164, 1.4433865547180176, -0.6839624047279358, 1.9859130382537842, -2.6286213397979736, 0.4241972863674164, -0.7299768924713135, -0.5037339925765991, 0.3701038360595703, -0.3398963212966919, 0.1718575358390808, -0.14741423726081848, -1.0721503496170044, -0.06761129200458527, -0.7509987950325012, 0.6022474765777588, 1.1190266609191895, 1.3254456520080566, -1.0710946321487427, -0.2918115258216858, -1.6375678777694702, -0.2498728334903717, -0.7643603086471558, 0.3179536759853363, -1.957628846168518, -0.1730850636959076, -1.970176100730896, -2.361384868621826, -1.4021443128585815, -0.7812091708183289, 1.1172810792922974, 0.189559668302536, -0.9590921998023987, 1.2488067150115967, -0.3761918544769287, -1.7592185735702515, 1.1495627164840698, -2.1474761962890625 ]
https://github.com/huggingface/datasets/issues/5895
The dir name and split strings are confused when loading ArmelR/stack-exchange-instruction dataset
Thanks for reporting, @DongHande. I think the issue is caused by the metadata in the dataset card: in the header of the `README.md`, they state that the dataset has 4 splits ("finetune", "reward", "rl", "evaluation"). ```yaml splits: - name: finetune num_bytes: 6674567576 num_examples: 3000000 - name: reward num_bytes: 6674341521 num_examples: 3000000 - name: rl num_bytes: 6679279968 num_examples: 3000000 - name: evaluation num_bytes: 4022714493 num_examples: 1807695 ``` I guess the user wanted to define these as configs, instead of splits. This is not yet supported for no-script datasets, but will be soon supported. See: - #5331 I think we should contact the dataset author to inform about the issue with the split names, as you already did: https://huggingface.co/datasets/ArmelR/stack-exchange-instruction/discussions/1 Let's continue the discussion there!
### Describe the bug When I load the ArmelR/stack-exchange-instruction dataset, I encounter a bug that may be raised by confusing the dir name string and the split string about the dataset. When I use the script "datasets.load_dataset('ArmelR/stack-exchange-instruction', data_dir="data/finetune", split="train", use_auth_token=True)", it fails. But it succeeds when I add the "streaming = True" parameter. The website of the dataset is https://huggingface.co/datasets/ArmelR/stack-exchange-instruction/ . The traceback logs are as below: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/load.py", line 1797, in load_dataset builder_instance.download_and_prepare( File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/builder.py", line 890, in download_and_prepare self._download_and_prepare( File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/builder.py", line 985, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/builder.py", line 1706, in _prepare_split split_info = self.info.splits[split_generator.name] File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/splits.py", line 530, in __getitem__ instructions = make_file_instructions( File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/arrow_reader.py", line 112, in make_file_instructions name2filenames = { File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/arrow_reader.py", line 113, in <dictcomp> info.name: filenames_for_dataset_split( File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/naming.py", line 70, in filenames_for_dataset_split prefix = filename_prefix_for_split(dataset_name, split) File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/naming.py", line 54, in filename_prefix_for_split if os.path.basename(name) != name: File "/home/xxx/miniconda3/envs/code/lib/python3.9/posixpath.py", line 142, in basename p = os.fspath(p) TypeError: expected str, bytes or os.PathLike object, not NoneType ### Steps to reproduce the bug 1. import datasets library function: ```from datasets import load_dataset``` 2. load dataset: ```ds=load_dataset('ArmelR/stack-exchange-instruction', data_dir="data/finetune", split="train", use_auth_token=True)``` ### Expected behavior The dataset can be loaded successfully without the streaming setting. ### Environment info Linux, python=3.9 datasets=2.12.0
121
122
The dir name and split strings are confused when loading ArmelR/stack-exchange-instruction dataset ### Describe the bug When I load the ArmelR/stack-exchange-instruction dataset, I encounter a bug that may be raised by confusing the dir name string and the split string about the dataset. When I use the script "datasets.load_dataset('ArmelR/stack-exchange-instruction', data_dir="data/finetune", split="train", use_auth_token=True)", it fails. But it succeeds when I add the "streaming = True" parameter. The website of the dataset is https://huggingface.co/datasets/ArmelR/stack-exchange-instruction/ . The traceback logs are as below: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/load.py", line 1797, in load_dataset builder_instance.download_and_prepare( File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/builder.py", line 890, in download_and_prepare self._download_and_prepare( File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/builder.py", line 985, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/builder.py", line 1706, in _prepare_split split_info = self.info.splits[split_generator.name] File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/splits.py", line 530, in __getitem__ instructions = make_file_instructions( File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/arrow_reader.py", line 112, in make_file_instructions name2filenames = { File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/arrow_reader.py", line 113, in <dictcomp> info.name: filenames_for_dataset_split( File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/naming.py", line 70, in filenames_for_dataset_split prefix = filename_prefix_for_split(dataset_name, split) File "/home/xxx/miniconda3/envs/code/lib/python3.9/site-packages/datasets/naming.py", line 54, in filename_prefix_for_split if os.path.basename(name) != name: File "/home/xxx/miniconda3/envs/code/lib/python3.9/posixpath.py", line 142, in basename p = os.fspath(p) TypeError: expected str, bytes or os.PathLike object, not NoneType ### Steps to reproduce the bug 1. import datasets library function: ```from datasets import load_dataset``` 2. load dataset: ```ds=load_dataset('ArmelR/stack-exchange-instruction', data_dir="data/finetune", split="train", use_auth_token=True)``` ### Expected behavior The dataset can be loaded successfully without the streaming setting. ### Environment info Linux, python=3.9 datasets=2.12.0 Thanks for reporting, @DongHande. I think the issue is caused by the metadata in the dataset card: in the header of the `README.md`, they state that the dataset has 4 splits ("finetune", "reward", "rl", "evaluation"). ```yaml splits: - name: finetune num_bytes: 6674567576 num_examples: 3000000 - name: reward num_bytes: 6674341521 num_examples: 3000000 - name: rl num_bytes: 6679279968 num_examples: 3000000 - name: evaluation num_bytes: 4022714493 num_examples: 1807695 ``` I guess the user wanted to define these as configs, instead of splits. This is not yet supported for no-script datasets, but will be soon supported. See: - #5331 I think we should contact the dataset author to inform about the issue with the split names, as you already did: https://huggingface.co/datasets/ArmelR/stack-exchange-instruction/discussions/1 Let's continue the discussion there!
[ -1.2114895582199097, -0.9616886973381042, -0.63692307472229, 1.3751533031463623, -0.09605517238378525, -1.258323073387146, 0.11854894459247589, -1.0515915155410767, 1.505510926246643, -0.7343907952308655, 0.20670625567436218, -1.7175835371017456, -0.13693691790103912, -0.4112592935562134, -0.6681795716285706, -0.9613121747970581, -0.35088256001472473, -0.9476878046989441, 1.0688838958740234, 2.458326578140259, 1.3290475606918335, -1.3484981060028076, 2.784745454788208, 0.6140046715736389, -0.21545089781284332, -0.9912874102592468, 0.5694801807403564, -0.042983267456293106, -1.194360375404358, -0.45136675238609314, -0.9502859115600586, -0.009257360361516476, -0.5285423398017883, -0.30522778630256653, 0.07539507746696472, 0.4451811909675598, -0.30229297280311584, -0.23574694991111755, -0.6224750876426697, -0.7399066686630249, 0.5327284336090088, -0.3188144564628601, 0.9265637993812561, -0.33447039127349854, 1.7927695512771606, -0.5745050311088562, 0.4772797226905823, 0.7003248929977417, 1.2257249355316162, 0.20076559484004974, 0.09650850296020508, 0.1688578724861145, 0.31939584016799927, 0.01437223982065916, 0.6259027123451233, 1.2837876081466675, 0.5685358643531799, 0.5760924220085144, 0.6317364573478699, -2.18961501121521, 1.297088623046875, -0.8373103737831116, 0.2595641016960144, 1.3752882480621338, -0.7769811749458313, 0.3504881262779236, -1.8293763399124146, -0.06671473383903503, 0.6117233037948608, -2.325329065322876, 0.23024988174438477, -1.2739895582199097, -0.5291308760643005, 0.8543450832366943, 0.3241344690322876, -1.2135790586471558, 0.24091951549053192, -0.4942019283771515, 1.1621479988098145, 0.5431838631629944, 1.1283103227615356, -1.6256659030914307, -0.07760454714298248, -0.07022823393344879, 0.0797651931643486, -1.320986270904541, -1.6917082071304321, 0.5919035077095032, 0.5485436916351318, 0.7414150834083557, -0.0655980259180069, 1.0240554809570312, -1.068258285522461, 0.8645663261413574, -0.9342566728591919, -1.5704939365386963, -1.3214234113693237, -2.466064929962158, -2.3233087062835693, 0.8605601191520691, -0.5531876683235168, -0.492927610874176, 2.0379419326782227, -0.981468915939331, -1.7427253723144531, 1.0901671648025513, 0.2740881145000458, 0.13965708017349243, 2.428760528564453, 0.22934633493423462, -0.829682469367981, 0.49346280097961426, -0.7336206436157227, 0.852489173412323, -0.27028974890708923, 1.2786740064620972, 0.544655978679657, -0.9317288994789124, 1.6668976545333862, -0.48126551508903503, 0.5730041861534119, -0.6382029056549072, -0.5740923881530762, -0.7685735821723938, 0.2435593158006668, 1.8616777658462524, -0.34853315353393555, 1.6145248413085938, -0.31010767817497253, -1.5455092191696167, -1.5623135566711426, 0.8486042022705078, 0.4431183934211731, -0.9403229355812073, 0.03681870922446251, -0.4305669963359833, 0.17256157100200653, 0.02764255180954933, 1.0911659002304077, 1.2402387857437134, 0.7169488668441772, -0.31956246495246887, -0.8216754198074341, 0.24531038105487823, -0.22894015908241272, -0.5855273008346558, -1.760345458984375, -0.30332303047180176, 0.2719510495662689, 0.6186617016792297, -1.2290470600128174, 1.8301124572753906, 0.8954125642776489, 2.0340614318847656, 0.9272748231887817, -0.4063095450401306, 1.4565019607543945, -0.019736409187316895, 1.8759076595306396, -0.45286691188812256, 0.550101101398468, -0.39136436581611633, -1.1635105609893799, 0.8830589056015015, -0.37104254961013794, -1.9167031049728394, -0.8152037858963013, -0.7972710132598877, -0.19723232090473175, -0.7668257355690002, 0.8562635183334351, -0.37008363008499146, -1.5005282163619995, 0.06134677678346634, -0.6748599410057068, 0.15571045875549316, -1.3282184600830078, 0.19394947588443756, 0.7787042260169983, -0.7600401639938354, -0.09515607357025146, -0.2690452039241791, -1.260890007019043, -0.6143743395805359, 0.3393978476524353, 1.9883220195770264, -0.48904380202293396, 0.8868421316146851, 1.01817786693573, -0.7790424227714539, 0.10227891802787781, 0.18812866508960724, -0.2915104627609253, 0.7726253867149353, -1.0473419427871704, -0.44142213463783264, 1.144222378730774, -0.30525439977645874, -0.7484866976737976, 1.4241138696670532, 0.7975659966468811, -1.1284959316253662, -0.2718353867530823, -0.2020345777273178, -0.8687543869018555, -0.043776944279670715, -1.4574592113494873, -0.22374090552330017, 0.3161737620830536, -1.5015828609466553, -0.36818572878837585, -0.1676240712404251, 1.3524303436279297, -0.230776846408844, 1.4623605012893677, -0.36010053753852844, -0.12072259187698364, -0.24731391668319702, -0.559374988079071, 0.18887929618358612, -0.19997669756412506, -0.5934130549430847, 0.20802584290504456, -0.869965672492981, 0.15578709542751312, 1.5283843278884888, 0.36414507031440735, 0.10450456291437149, 0.4751141667366028, 1.1139135360717773, 0.4535350501537323, -0.058522894978523254, -0.8498474359512329, -1.4833221435546875, 1.9589873552322388, -1.4528006315231323, 1.880131483078003, 0.7422389388084412, -0.17422905564308167, -1.8108017444610596, -1.827081561088562, 1.2301605939865112, 1.1145331859588623, 2.384526491165161, 0.4832324981689453, 0.467664510011673, -0.7131314873695374, -0.7913722395896912, 0.3261323571205139, -0.9640579223632812, -0.686343252658844, 0.13222694396972656, 2.28755259513855, 1.8310964107513428, -0.6322861313819885, -0.22233781218528748, -0.8303177356719971, 1.268710732460022, -0.29428723454475403, 0.3033897876739502, 2.0207602977752686, -0.322165846824646, -0.975662350654602, 1.35899817943573, -2.3774008750915527, 0.2873840034008026, 2.11258864402771, 0.29050225019454956, 0.13416655361652374, -1.3689074516296387, -0.6613699793815613, -0.27089735865592957, -0.5057812929153442, -1.2287681102752686, 0.5119191408157349, -0.3402818441390991, -0.8641334772109985, -1.4001234769821167, -0.03091401234269142, -1.1153613328933716, -1.798784852027893, 0.32461339235305786, 1.9712016582489014, 2.1220741271972656, -0.7858927249908447, 1.381089210510254, -0.2869572043418884, 0.02594171091914177, 1.2375636100769043, 1.3453983068466187, 3.0951550006866455, 1.8774709701538086, -1.233607530593872, 0.717939019203186, -0.22589227557182312, -0.45956602692604065, 1.079161286354065, -1.093953251838684, 1.1028679609298706, -0.22604113817214966, -1.2825372219085693, -1.2346311807632446, 1.0933895111083984, 0.47360390424728394, -0.014240758493542671, -0.5449101328849792, 1.3039028644561768, 0.1262281984090805, 1.3677802085876465, 0.6104447245597839, -0.45851975679397583, 0.5004213452339172, -0.29854220151901245, -0.6582667231559753, 1.6985944509506226, 0.1371026486158371, -1.5801541805267334, -2.320142984390259, -0.29440534114837646, -0.9701749682426453, -0.021725552156567574, -0.5986209511756897, -1.0273716449737549, 1.5723398923873901, 0.4558361768722534, -1.1349226236343384, -0.3234699070453644, -0.35548892617225647, -0.5652484893798828, 2.673882246017456, -1.2619582414627075, -0.10733999311923981, -0.9362014532089233, -0.5324844717979431, 1.6377792358398438, -1.2821283340454102, -0.23633700609207153, -0.9480280876159668, -0.6771329641342163, -1.3061445951461792, -0.3338509500026703, 0.015029891394078732, -1.030249834060669, 0.7200137376785278, 0.1872706562280655, -1.0637537240982056, -0.21683858335018158, -0.8345740437507629, 1.0584044456481934, -0.14878703653812408, 0.2193598449230194, 1.8794183731079102, 0.30217140913009644, -0.4430308938026428, 0.7349860072135925, 1.2254865169525146, 0.6064467430114746, -0.6472505331039429, 0.0015118084847927094, -0.6730559468269348, 0.38551411032676697, -1.3636934757232666, 0.1588331162929535, -2.946535110473633, 0.7887048125267029, -0.21818381547927856, -0.14536893367767334, -0.12938205897808075, -1.274674415588379, 1.0598134994506836, 2.5423824787139893, -1.1988359689712524, 0.46368271112442017, 0.46581244468688965, 1.2031646966934204, -1.613978385925293, 0.2647572159767151, -0.4959973096847534, 2.033588171005249, 0.1288967728614807, 1.1942477226257324, -0.5252633690834045, -2.181337833404541, 0.625718355178833, -1.1601386070251465, -0.9884984493255615, 0.8351889848709106, -0.9238324761390686, 0.3733757734298706, -1.3964442014694214, -0.07104545086622238, -0.9423240423202515, -1.2417967319488525, 0.7486188411712646, 0.08814361691474915, 0.3517102301120758, -0.5112720727920532, 0.3842724561691284, -2.218482255935669, -1.483259677886963, -0.21942363679409027, -0.9952033758163452, 0.5455702543258667, -0.4736051857471466, 0.5912566781044006, -0.11276961863040924, 0.12309442460536957, 0.25036752223968506, 1.4558367729187012, 3.3717799186706543, 0.12651419639587402, 0.17080934345722198, -0.10352395474910736, -1.0757883787155151, 1.583753228187561, 0.841143786907196, -0.14703558385372162, -0.5747261047363281, -0.9970597624778748, 1.3359259366989136, 2.025266170501709, 1.1685320138931274, 0.1590396612882614, -0.8444969654083252, -0.6737545728683472, 0.05334124714136124, 0.22214439511299133, 0.5952751040458679, 1.0339456796646118, -0.07966674119234085, 0.11818626523017883, 1.3270727396011353, 1.1571859121322632, -0.28288382291793823, 0.4221706986427307, -0.957063615322113, -0.417987585067749, 0.3876436948776245, 0.15612129867076874, 0.021100174635648727, 0.535601019859314, -1.0531502962112427, -0.3049872815608978, -0.2534162402153015, -0.8392875790596008, -0.7201548218727112, -0.3679083287715912, -0.42218953371047974, 1.561626672744751, 0.08366967737674713, -0.5223957896232605, 0.16283577680587769, -0.7133797407150269, -0.14843787252902985, -1.1849178075790405, 0.14583854377269745, -0.06316644698381424, -0.08151809126138687, -0.1974724382162094, 1.6448909044265747, -0.917776882648468, -2.197356939315796, 0.1705397367477417, 0.337228387594223, -0.3026825487613678, 0.1601986438035965, 1.6922107934951782, 0.4193550646305084, 1.371179461479187, 1.3029780387878418, 0.9968181252479553, -0.6145666241645813, -1.253799557685852, 0.7475441694259644, 0.9110588431358337, -1.3125216960906982, 0.9785712361335754, -0.2299872636795044, -0.5539907217025757, 0.6250634789466858, 1.3330310583114624, 0.388168066740036, -2.0053248405456543, 1.016947865486145, -0.959476113319397, 0.7859250903129578, 0.6837878823280334, 0.8330424427986145, 0.23845510184764862, 0.914172351360321, -1.2367340326309204, -1.1949121952056885, -0.6872973442077637, -0.5996368527412415, 1.8504990339279175, -0.2049507349729538, 0.5832078456878662, -0.16112633049488068, -1.1260648965835571, -0.09535516798496246, 0.772343099117279, 0.39739495515823364, -0.34605672955513, 0.9176187515258789, -0.6416917443275452, -0.9261714816093445, -1.319542407989502, -0.35709312558174133, -1.0603606700897217, -0.8820455074310303, 1.0183238983154297, 0.7187238931655884, 0.4547272324562073, 1.9116235971450806, 0.6121050715446472, 0.3583222031593323, -2.5952513217926025, 0.8632182478904724, 0.3142399191856384, -0.04706406965851784, 0.8773422241210938, 0.24492277204990387, 1.162190556526184, -0.01548672839999199, 0.5683289766311646, -2.319628953933716, 2.201401472091675, -0.18771877884864807, 0.6322491765022278, 0.015050205402076244, -0.1459391713142395, 1.0976386070251465, 0.6861516833305359, 0.5214349031448364, -1.1248300075531006, 0.7528668642044067, -0.552110493183136, 1.0645066499710083, 0.9452275037765503, -0.9234258532524109, 0.13516083359718323, 1.5002810955047607, 0.4913454055786133, -0.4749297797679901, -0.9994030594825745, -0.7874042987823486, 0.9269643425941467, 1.660071611404419, -0.07004127651453018, 0.017297323793172836, 0.8519732356071472, 0.630221962928772, -1.2692363262176514, -0.0033042742870748043, -0.6403099298477173, -0.6770481467247009, 1.7267931699752808, 2.0045318603515625, -0.06630761921405792, -0.2216355800628662, -0.7034873366355896, -1.335222840309143, 0.7733677625656128, -0.1608058661222458, 0.11090108007192612, 0.7328901886940002, -0.6924178004264832, 1.0425776243209839, 0.5311111211776733, 0.9961417317390442, 0.01836627721786499, 0.21268001198768616, 0.39854082465171814, -0.3356442451477051, -1.1279314756393433, -0.27312198281288147, -1.1138039827346802, -2.6346170902252197, 0.3387744128704071, -0.3211650848388672, -1.4822510480880737, 0.06074787676334381, -1.0255175828933716, 0.9058675169944763, -0.6500240564346313, -1.1639049053192139, -1.3997411727905273, 0.32804808020591736, -0.14251600205898285, 0.9002240300178528, -1.6411306858062744, -0.26732033491134644, 1.277945637702942, 0.8645514249801636, -0.573412299156189, 0.9866490364074707, 0.2791348695755005, 0.9617581367492676, 0.6472362279891968, -0.4379029870033264, 0.6544205546379089, -0.026683717966079712, -1.4185360670089722, 0.37203261256217957, 1.2194887399673462, 0.19959169626235962, 1.3658562898635864, -0.4910857081413269, 0.1407330483198166, 0.4533988833427429, -0.6564577221870422, -0.5808228254318237, -0.4462165832519531, 0.6684944033622742, -0.05995386093854904, -1.0579859018325806, -0.15740767121315002, -0.18785792589187622, -0.30011582374572754, 0.2096346765756607, -1.4383020401000977, -0.33834487199783325, -0.4778340458869934, -0.4460543096065521, -1.4073253870010376, 0.06894958764314651, 1.325898289680481, -0.8305564522743225, -0.1970849186182022, 0.36973950266838074, 0.40736907720565796, 0.5397289991378784, 0.5485706925392151, -0.8054385781288147, -0.19856832921504974, -0.4103609025478363, -0.27479928731918335, 0.2528539299964905, 1.2252808809280396, -0.11267995089292526, -0.9865838289260864, 0.6268844604492188, -0.2803939878940582, 0.18137963116168976, 2.030560255050659, 0.01466242503374815, -0.6895361542701721, 0.3226671516895294, -0.7287579774856567, 1.6963180303573608, 1.6865782737731934, 1.3501007556915283, -0.17226287722587585, -0.7315810918807983, 0.5194182991981506, -0.23065106570720673, -0.31698766350746155, 0.9088736772537231, 0.42100784182548523, -0.24605916440486908, -1.5056880712509155, 0.6692109704017639, 1.2253754138946533, -0.7139817476272583, -0.70147705078125, 0.03654935956001282, -0.8817234039306641, 1.2570396661758423, 0.5180633664131165, 0.3079162538051605, 0.27101126313209534, 1.591067910194397, 0.7679482698440552, -0.5236188173294067, 0.44826164841651917, 0.567976176738739, -0.1707865446805954, -2.10959792137146, -0.9937115907669067, 0.3011728525161743, -0.3966253399848938, -1.5361411571502686, 1.403860330581665, -1.1129050254821777, -1.051040530204773, 0.5598050355911255, 0.1291058212518692, 1.3240396976470947, 0.36745700240135193, 1.7363624572753906, 2.1397030353546143, 0.9073794484138489, 0.3772760331630707, 1.2314262390136719, -0.12104936689138412, -0.3855496048927307, 1.8229382038116455, -0.41497036814689636, 0.504918098449707, 1.006865382194519, -0.4256373643875122, -1.112525224685669, -0.7815269827842712, -1.1819032430648804, -0.575972318649292, 1.1908526420593262, 0.09332150965929031, -1.006701946258545, 0.22382503747940063, 1.5598682165145874, 0.16170145571231842, -0.22964271903038025, 0.7071222066879272, 0.4134036898612976, -0.7011048793792725, -0.08465297520160675, -0.8876678943634033, 0.5149794220924377, -0.0881776511669159, -0.33014795184135437, 0.2570464015007019, 0.5609171390533447, 1.323723554611206, -0.06405913829803467, 0.2004397213459015, 1.1927602291107178, -1.3689289093017578, 1.4919527769088745, -0.627276599407196, 0.2661043405532837, -2.4361045360565186, 1.4073631763458252, -0.8148877620697021, 1.9993559122085571, -2.5282018184661865, 0.44667571783065796, -0.5037845373153687, -0.49881279468536377, 0.2816825211048126, -0.4862222671508789, 0.04006286337971687, -0.11055850982666016, -0.9107096791267395, -0.0569174624979496, -0.713323712348938, 0.6145775318145752, 1.222656488418579, 1.4803037643432617, -1.1292742490768433, -0.2785378098487854, -1.721753716468811, -0.17954538762569427, -0.832452654838562, 0.33501842617988586, -1.9554473161697388, -0.22457899153232574, -2.060331344604492, -2.3435847759246826, -1.3470287322998047, -0.8597363829612732, 1.0842550992965698, 0.21413441002368927, -0.9615489840507507, 1.2448710203170776, -0.33660465478897095, -1.784956455230713, 1.1380329132080078, -2.1793150901794434 ]
https://github.com/huggingface/datasets/issues/5892
User access requests with manual review do not notify the dataset owner
I think this has been addressed. Please open a new issue if you are still not getting notified.
### Describe the bug When a user access requests are enabled, and new requests are set to Manual Review, the dataset owner should be notified of the pending requests. However, instead, currently nothing happens, and so the dataset request can go unanswered for quite some time until the owner happens to check that particular dataset's Settings pane. ### Steps to reproduce the bug 1. Enable a dataset's user access requests 2. Set to Manual Review 3. Ask another HF user to request access to the dataset 4. Dataset owner is not notified ### Expected behavior The dataset owner should receive some kind of notification, perhaps in their HF site inbox, or by email, when a dataset access request is made and manual review is enabled. ### Environment info n/a
122
18
User access requests with manual review do not notify the dataset owner ### Describe the bug When a user access requests are enabled, and new requests are set to Manual Review, the dataset owner should be notified of the pending requests. However, instead, currently nothing happens, and so the dataset request can go unanswered for quite some time until the owner happens to check that particular dataset's Settings pane. ### Steps to reproduce the bug 1. Enable a dataset's user access requests 2. Set to Manual Review 3. Ask another HF user to request access to the dataset 4. Dataset owner is not notified ### Expected behavior The dataset owner should receive some kind of notification, perhaps in their HF site inbox, or by email, when a dataset access request is made and manual review is enabled. ### Environment info n/a I think this has been addressed. Please open a new issue if you are still not getting notified.
[ -1.118501901626587, -1.001804232597351, -0.7942990064620972, 1.3394150733947754, -0.30414506793022156, -1.3488606214523315, 0.11862565577030182, -1.2009221315383911, 1.6613527536392212, -0.8484539985656738, 0.16991223394870758, -1.6423394680023193, -0.022839628159999847, -0.6318493485450745, -0.6578467488288879, -0.9425670504570007, -0.35606899857521057, -0.7827549576759338, 1.011053442955017, 2.6935012340545654, 1.0875847339630127, -1.2202261686325073, 2.7391128540039062, 0.6730102300643921, -0.16021262109279633, -0.9927394390106201, 0.6631442904472351, 0.03317997604608536, -1.2998687028884888, -0.4737589359283447, -0.8830009698867798, -0.07618813216686249, -0.539564311504364, -0.4482611417770386, 0.06682755798101425, 0.35655564069747925, -0.2978126108646393, -0.31260693073272705, -0.5460351705551147, -0.8308648467063904, 0.45258763432502747, -0.4087267220020294, 0.9797599911689758, -0.5101528167724609, 1.8348253965377808, -0.47008809447288513, 0.3809738755226135, 0.7837167382240295, 1.3273521661758423, 0.15332549810409546, -0.0026556518860161304, 0.22049014270305634, 0.3898332417011261, -0.04526109993457794, 0.27356958389282227, 1.0561165809631348, 0.5845275521278381, 0.5012176632881165, 0.6372766494750977, -2.2502400875091553, 1.328936219215393, -0.9410485625267029, 0.4425021708011627, 1.3585699796676636, -1.008663296699524, 0.42185142636299133, -1.6348685026168823, -0.14813658595085144, 0.6079768538475037, -2.2703299522399902, 0.19574454426765442, -1.1906818151474, -0.4883149266242981, 0.8925712704658508, 0.38805845379829407, -1.2686256170272827, 0.12385201454162598, -0.5851466655731201, 1.0359364748001099, 0.5543596744537354, 1.217371940612793, -1.7130298614501953, -0.028417188674211502, -0.25478890538215637, -0.05675528198480606, -1.4666221141815186, -1.4951168298721313, 0.5729854702949524, 0.6327835917472839, 0.6466459631919861, -0.012599793262779713, 0.8384286165237427, -0.9474613070487976, 0.7186639904975891, -0.945672869682312, -1.6691464185714722, -1.3409180641174316, -2.3779850006103516, -2.3079376220703125, 0.8220406174659729, -0.3326202929019928, -0.6053924560546875, 2.087841272354126, -1.0670247077941895, -1.7962760925292969, 1.3359010219573975, 0.09777192771434784, 0.00016038771718740463, 2.458186149597168, 0.268172025680542, -0.619728684425354, 0.4779711067676544, -0.6988620758056641, 0.8161560297012329, -0.6115707159042358, 1.346177577972412, 0.43333539366722107, -1.069638967514038, 1.5758748054504395, -0.5198674201965332, 0.5754734873771667, -0.5699354410171509, -0.5418099164962769, -0.9094477295875549, 0.3611622452735901, 1.774659514427185, -0.2757549285888672, 1.568053960800171, -0.43157151341438293, -1.5474004745483398, -1.6131587028503418, 1.004690408706665, 0.4487466812133789, -0.7657709717750549, 0.07794542610645294, -0.37330394983291626, 0.11994774639606476, -0.045224033296108246, 1.0774345397949219, 1.2771978378295898, 0.5879934430122375, -0.31095173954963684, -0.9001201391220093, 0.31734389066696167, -0.15485434234142303, -0.7434316277503967, -1.8531615734100342, -0.24429652094841003, 0.011463196016848087, 0.6905180215835571, -1.1977075338363647, 1.6528185606002808, 0.8622868657112122, 1.937479853630066, 1.0224003791809082, -0.31407132744789124, 1.3848471641540527, 0.0728987604379654, 1.885633945465088, -0.5700922608375549, 0.7763086557388306, -0.3240881860256195, -1.0121482610702515, 0.8224294185638428, -0.4120754301548004, -1.9401061534881592, -0.7836242318153381, -0.8450396060943604, -0.20860740542411804, -0.7049497365951538, 0.9935302734375, -0.3036442995071411, -1.2504756450653076, 0.31168702244758606, -0.8162667751312256, 0.1265065222978592, -1.2249515056610107, 0.3874754309654236, 0.8025814294815063, -0.49296876788139343, 0.04499427229166031, -0.23969899117946625, -1.307106852531433, -0.49912282824516296, 0.1827746033668518, 1.8293310403823853, -0.8229095339775085, 0.9462413191795349, 0.8801667094230652, -0.7488717436790466, -0.0874786302447319, 0.35091912746429443, -0.2949116826057434, 0.8774328827857971, -1.0484086275100708, -0.3301909863948822, 1.2155991792678833, -0.27445101737976074, -0.6102074980735779, 1.4962631464004517, 0.6957846879959106, -0.9359123110771179, -0.08852443844079971, -0.23496629297733307, -0.9531033039093018, -0.01607588678598404, -1.7387925386428833, -0.1218794733285904, 0.27539435029029846, -1.4831770658493042, -0.6080759167671204, -0.23735645413398743, 1.3195676803588867, 0.009359979070723057, 1.3246910572052002, -0.3512965440750122, -0.3122974634170532, -0.40874576568603516, -0.4350772500038147, 0.18597029149532318, -0.22728689014911652, -0.42738422751426697, 0.2079315334558487, -0.83146733045578, 0.30991774797439575, 1.427764892578125, 0.4009395241737366, 0.07138252258300781, 0.5864402055740356, 0.9999024868011475, 0.29710131883621216, -0.16609026491641998, -0.8412498831748962, -1.473143458366394, 2.0471253395080566, -1.4620667695999146, 1.9740402698516846, 0.8503694534301758, -0.07362353056669235, -1.859392523765564, -1.9430580139160156, 1.3524070978164673, 1.143183946609497, 2.1417391300201416, 0.5166072249412537, 0.4965701401233673, -0.7684034109115601, -0.7101706862449646, 0.12877193093299866, -1.0236859321594238, -0.7571774125099182, 0.05918791890144348, 2.3815970420837402, 1.77622652053833, -0.5771051645278931, -0.14604999125003815, -1.1781225204467773, 1.2765190601348877, -0.056702032685279846, 0.14773514866828918, 2.0357446670532227, -0.3372403085231781, -1.052670955657959, 1.194366455078125, -2.223060369491577, 0.00006586778908967972, 1.9906150102615356, 0.18795587122440338, 0.012267098762094975, -1.4489564895629883, -0.6543880105018616, -0.2710094153881073, -0.30723699927330017, -1.2437915802001953, 0.7474644184112549, -0.4094986617565155, -0.6483778953552246, -1.520555853843689, 0.11961594223976135, -1.1388059854507446, -1.592457890510559, 0.27019041776657104, 1.8398264646530151, 1.9959194660186768, -0.7273897528648376, 1.56397545337677, -0.07886360585689545, 0.12688758969306946, 1.2283750772476196, 1.128324270248413, 3.2148807048797607, 2.038760185241699, -1.370348572731018, 0.6537578701972961, -0.014150031842291355, -0.4406289756298065, 1.1370142698287964, -1.0907584428787231, 1.3557571172714233, -0.1694386750459671, -1.296059489250183, -1.2809277772903442, 0.9397409558296204, 0.4946758449077606, 0.05193376913666725, -0.4026661515235901, 1.276136875152588, -0.11184841394424438, 1.3620030879974365, 0.5834700465202332, -0.3986944556236267, 0.6429776549339294, -0.48694315552711487, -0.5178805589675903, 1.6382694244384766, 0.36133497953414917, -1.5073390007019043, -2.27909255027771, -0.33670952916145325, -0.8266997337341309, 0.047942422330379486, -0.6574066281318665, -0.9814147353172302, 1.5687249898910522, 0.42568689584732056, -1.2155570983886719, -0.382561057806015, -0.2811722755432129, -0.6778701543807983, 2.6190803050994873, -1.543476939201355, -0.2598417103290558, -0.8766271471977234, -0.5936229825019836, 1.597822904586792, -1.3834288120269775, -0.16511577367782593, -1.0404479503631592, -0.5508485436439514, -1.18069326877594, -0.4874560832977295, -0.11580716818571091, -1.0111258029937744, 0.8776416778564453, 0.13314825296401978, -1.1262282133102417, -0.213008850812912, -0.9169959425926208, 0.8469986319541931, -0.03528618440032005, 0.3221033811569214, 1.8593757152557373, 0.4890076220035553, -0.44112256169319153, 0.6734579205513, 1.2065072059631348, 0.6276208162307739, -0.8779443502426147, 0.11167265474796295, -0.7338345646858215, 0.2822951674461365, -1.2559423446655273, 0.23745867609977722, -2.8986728191375732, 0.5784359574317932, -0.1730525940656662, -0.14384905993938446, 0.13395802676677704, -1.2366002798080444, 1.0378025770187378, 2.4591524600982666, -1.2147200107574463, 0.5058147311210632, 0.22392158210277557, 1.2416088581085205, -1.5616260766983032, 0.42349204421043396, -0.48647794127464294, 2.093296527862549, 0.2220231592655182, 1.1158032417297363, -0.5108633041381836, -2.1136155128479004, 0.5571504235267639, -1.3073890209197998, -1.1667460203170776, 0.7403841614723206, -0.7541943788528442, 0.0011784890666604042, -1.4496535062789917, -0.12816734611988068, -0.791307806968689, -1.268240213394165, 0.7680118680000305, 0.17275196313858032, 0.5318224430084229, -0.5302479863166809, 0.24021504819393158, -2.1511943340301514, -1.352250576019287, -0.31875234842300415, -0.8266429901123047, 0.38744020462036133, -0.260883629322052, 0.7296316623687744, -0.36728352308273315, 0.023892734199762344, 0.3106931447982788, 1.31658136844635, 3.529172897338867, 0.15726879239082336, 0.430909663438797, -0.09651298075914383, -1.0298906564712524, 1.3931260108947754, 1.0339151620864868, -0.04167373850941658, -0.6234338283538818, -1.1218112707138062, 1.2375648021697998, 1.8531068563461304, 1.0438847541809082, 0.1280740201473236, -0.6347072124481201, -0.4128475785255432, -0.050369199365377426, 0.20735006034374237, 0.5206477046012878, 0.8674387335777283, -0.03199413791298866, 0.09326527267694473, 1.4784916639328003, 1.4054063558578491, -0.3879550099372864, 0.4604300856590271, -0.730030357837677, -0.4438823461532593, 0.5445601344108582, 0.3379392623901367, 0.0066348472610116005, 0.2682652771472931, -0.9132402539253235, -0.27171388268470764, -0.4447425901889801, -1.109824776649475, -0.6265521049499512, -0.46903932094573975, -0.3598770499229431, 1.6699472665786743, 0.1995607614517212, -0.5034080147743225, -0.0998944565653801, -0.7080329060554504, -0.1349799484014511, -1.1086773872375488, 0.3489376902580261, -0.16925059258937836, -0.17910365760326385, -0.03236517310142517, 1.852868676185608, -1.0515919923782349, -2.285677671432495, 0.3059708774089813, 0.16821183264255524, -0.33397769927978516, 0.2120155692100525, 1.4903514385223389, 0.472837895154953, 1.5229016542434692, 1.3768094778060913, 1.0203204154968262, -0.7798894643783569, -1.3274556398391724, 0.6652898788452148, 0.9604265689849854, -1.5126066207885742, 0.7556902170181274, 0.025242947041988373, -0.6320955753326416, 0.9018294215202332, 1.2188687324523926, 0.4682713449001312, -1.9777774810791016, 0.8501896262168884, -0.92275071144104, 0.7644147276878357, 0.7215531468391418, 0.7601947784423828, 0.27021491527557373, 0.7540585398674011, -1.2079508304595947, -1.2371007204055786, -0.7302097678184509, -0.6278284788131714, 1.9405076503753662, -0.18480275571346283, 0.6803120374679565, -0.10925641655921936, -1.2923835515975952, -0.11137986183166504, 0.6661593317985535, 0.37324464321136475, -0.3690955340862274, 0.7438107132911682, -0.7308332324028015, -1.264717936515808, -1.4004935026168823, -0.32670536637306213, -1.1084121465682983, -0.8629820346832275, 1.109033465385437, 0.8171594142913818, 0.30326321721076965, 1.8225773572921753, 0.5549077987670898, 0.30359530448913574, -2.606086015701294, 0.8839933276176453, 0.30400747060775757, 0.000742821954190731, 0.8145858645439148, 0.3242626190185547, 1.0741161108016968, 0.08089467883110046, 0.4478634297847748, -2.3942983150482178, 2.2395682334899902, -0.3805127739906311, 0.6330944299697876, -0.11287087202072144, 0.02916552871465683, 1.1320353746414185, 0.5482535362243652, 0.5868056416511536, -0.9526349902153015, 0.738655686378479, -0.48072493076324463, 1.2090338468551636, 1.1648741960525513, -0.8148942589759827, 0.0568397119641304, 1.3301938772201538, 0.5645807385444641, -0.4589194059371948, -0.8472999334335327, -0.8759697675704956, 0.9079998135566711, 1.8595119714736938, -0.13809435069561005, 0.06282420456409454, 0.8444108366966248, 0.579391360282898, -1.3209413290023804, 0.10799363255500793, -0.7365015149116516, -0.6882331967353821, 1.5952057838439941, 1.9621696472167969, -0.003708111122250557, -0.030420206487178802, -0.6954500079154968, -1.2248159646987915, 0.792565643787384, -0.0706922635436058, 0.0970340222120285, 0.6950485706329346, -0.5912625193595886, 0.9903069734573364, 0.8955556154251099, 1.0011906623840332, 0.2675541043281555, 0.22252754867076874, 0.41171035170555115, -0.2558833360671997, -1.1018989086151123, -0.1082744374871254, -1.083704948425293, -2.444117307662964, 0.439538836479187, -0.4390997886657715, -1.4845722913742065, 0.0242685005068779, -0.990803062915802, 0.9848484992980957, -0.44159650802612305, -1.0628888607025146, -1.6521079540252686, 0.12773403525352478, -0.13228332996368408, 0.8926896452903748, -1.6152453422546387, -0.11855074018239975, 1.2053602933883667, 0.8355215787887573, -0.6196956634521484, 1.1253411769866943, 0.28185299038887024, 0.9899723529815674, 0.7338964939117432, -0.38164427876472473, 0.3941480219364166, 0.06431534141302109, -1.3990525007247925, 0.6199938058853149, 1.1228938102722168, 0.16133557260036469, 1.345454454421997, -0.5725659728050232, -0.07246332615613937, 0.4292772710323334, -0.2907729744911194, -0.3843318223953247, -0.4395539462566376, 0.7650328278541565, 0.06735745817422867, -0.7625558972358704, -0.019920647144317627, -0.16876477003097534, -0.36045199632644653, 0.16829432547092438, -1.4778664112091064, -0.20708432793617249, -0.5124661922454834, -0.49660226702690125, -1.2688134908676147, -0.029419586062431335, 1.3990408182144165, -0.7018998861312866, -0.35539379715919495, 0.6289372444152832, 0.5581210255622864, 0.5814827680587769, 0.6447778344154358, -0.5414003133773804, -0.3019388020038605, -0.28616946935653687, -0.24462184309959412, 0.26058661937713623, 1.402642011642456, -0.2073628306388855, -0.9821585416793823, 0.7357747554779053, -0.3278670310974121, 0.07464431971311569, 1.9412367343902588, 0.1230209469795227, -0.7723232507705688, 0.20015834271907806, -0.7039347887039185, 2.006082534790039, 1.6904255151748657, 1.342358112335205, -0.04193636029958725, -0.9729388356208801, 0.5149235129356384, -0.09757031500339508, -0.3058147132396698, 0.9083729386329651, 0.5672380328178406, -0.13045929372310638, -1.3699723482131958, 0.5635454058647156, 1.1525719165802002, -0.7872916460037231, -0.7622737884521484, -0.0049324072897434235, -0.8394051194190979, 1.0615891218185425, 0.7554929256439209, 0.5224700570106506, 0.19182400405406952, 1.6124649047851562, 0.6917849779129028, -0.6447712182998657, 0.5312193632125854, 0.4667445123195648, -0.08579351007938385, -2.1377241611480713, -1.1681448221206665, 0.33341559767723083, -0.41073891520500183, -1.640167474746704, 1.3433139324188232, -1.179240107536316, -0.8638548851013184, 0.46409234404563904, 0.09699613600969315, 1.379041075706482, 0.2308637797832489, 1.4771629571914673, 2.0779037475585938, 0.8895038366317749, 0.348690003156662, 1.5372645854949951, -0.1290571689605713, -0.37912243604660034, 1.7969603538513184, -0.42381495237350464, 0.3667111098766327, 1.118319034576416, -0.41006356477737427, -1.01861572265625, -0.6504160165786743, -1.0400373935699463, -0.5498628616333008, 1.1125487089157104, 0.04737110435962677, -1.0707671642303467, 0.1733492761850357, 1.47024667263031, 0.09884504228830338, -0.39482322335243225, 0.5758733153343201, 0.4984069764614105, -0.7429332137107849, -0.008953090757131577, -0.992723822593689, 0.5286281108856201, -0.24001553654670715, -0.3322336971759796, 0.527700662612915, 0.40005096793174744, 1.2856369018554688, -0.0780884325504303, 0.2850644588470459, 1.2921732664108276, -1.3319779634475708, 1.3728588819503784, -0.6004825830459595, 0.02345651388168335, -2.3632254600524902, 1.518122673034668, -0.6370912194252014, 1.8508923053741455, -2.625561237335205, 0.36114293336868286, -0.6656696796417236, -0.3754347562789917, 0.31762582063674927, -0.2754085659980774, 0.11602236330509186, -0.28409549593925476, -1.095630168914795, 0.03340209648013115, -0.7158618569374084, 0.560724675655365, 1.2586112022399902, 1.310938835144043, -1.1286118030548096, -0.24455410242080688, -1.6582359075546265, -0.18822091817855835, -0.7628059983253479, 0.23754377663135529, -2.027580976486206, -0.11246998608112335, -1.8576422929763794, -2.50285267829895, -1.3445461988449097, -0.8702911138534546, 1.1750715970993042, 0.243499755859375, -0.9899789094924927, 1.2981276512145996, -0.37957659363746643, -1.8876819610595703, 1.045788288116455, -2.2065927982330322 ]
https://github.com/huggingface/datasets/issues/5887
HuggingsFace dataset example give error
Nice catch @donhuvy, that's because some models don't need the `token_type_ids`, as in this case, as the example is using `distilbert-base-cased`, and according to the DistilBert documentation at https://huggingface.co/transformers/v3.0.2/model_doc/distilbert.html, `DistilBert doesn’t have token_type_ids, you don’t need to indicate which token belongs to which segment. Just separate your segments with the separation token tokenizer.sep_token (or [SEP])`. `token_type_ids` are neither required in some other well known models such as RoBERTa. Here the issue comes due to a mismatch between the tokenizer and the model, as the Colab is using a BERT tokenizer (`bert-base-cased`), while the model is a DistilBERT (`distilbert-base-cased`), so aligning the tokenizer and the model solves it!
### Describe the bug ![image](https://github.com/huggingface/datasets/assets/1328316/1f4f0086-3db9-4c79-906b-05a375357cce) ![image](https://github.com/huggingface/datasets/assets/1328316/733ebd3d-89b9-4ece-b80a-00ab5b0a4122) ### Steps to reproduce the bug Use link as reference document written https://colab.research.google.com/github/huggingface/datasets/blob/main/notebooks/Overview.ipynb#scrollTo=biqDH9vpvSVz ```python # Now let's train our model device = 'cuda' if torch.cuda.is_available() else 'cpu' model.train().to(device) for i, batch in enumerate(dataloader): batch.to(device) outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() model.zero_grad() print(f'Step {i} - loss: {loss:.3}') if i > 5: break ``` Error ```python --------------------------------------------------------------------------- TypeError Traceback (most recent call last) [<ipython-input-44-7040b885f382>](https://localhost:8080/#) in <cell line: 5>() 5 for i, batch in enumerate(dataloader): 6 batch.to(device) ----> 7 outputs = model(**batch) 8 loss = outputs.loss 9 loss.backward() [/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *args, **kwargs) 1499 or _global_backward_pre_hooks or _global_backward_hooks 1500 or _global_forward_hooks or _global_forward_pre_hooks): -> 1501 return forward_call(*args, **kwargs) 1502 # Do not call functions when jit is used 1503 full_backward_hooks, non_full_backward_hooks = [], [] TypeError: DistilBertForQuestionAnswering.forward() got an unexpected keyword argument 'token_type_ids' ``` https://github.com/huggingface/datasets/assets/1328316/5d8b1d61-9337-4d59-8423-4f37f834c156 ### Expected behavior Run success on Google Colab (free) ### Environment info Windows 11 x64, Google Colab free (my Google Drive just empty about 200 MB, but I don't think it cause problem)
123
107
HuggingsFace dataset example give error ### Describe the bug ![image](https://github.com/huggingface/datasets/assets/1328316/1f4f0086-3db9-4c79-906b-05a375357cce) ![image](https://github.com/huggingface/datasets/assets/1328316/733ebd3d-89b9-4ece-b80a-00ab5b0a4122) ### Steps to reproduce the bug Use link as reference document written https://colab.research.google.com/github/huggingface/datasets/blob/main/notebooks/Overview.ipynb#scrollTo=biqDH9vpvSVz ```python # Now let's train our model device = 'cuda' if torch.cuda.is_available() else 'cpu' model.train().to(device) for i, batch in enumerate(dataloader): batch.to(device) outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() model.zero_grad() print(f'Step {i} - loss: {loss:.3}') if i > 5: break ``` Error ```python --------------------------------------------------------------------------- TypeError Traceback (most recent call last) [<ipython-input-44-7040b885f382>](https://localhost:8080/#) in <cell line: 5>() 5 for i, batch in enumerate(dataloader): 6 batch.to(device) ----> 7 outputs = model(**batch) 8 loss = outputs.loss 9 loss.backward() [/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *args, **kwargs) 1499 or _global_backward_pre_hooks or _global_backward_hooks 1500 or _global_forward_hooks or _global_forward_pre_hooks): -> 1501 return forward_call(*args, **kwargs) 1502 # Do not call functions when jit is used 1503 full_backward_hooks, non_full_backward_hooks = [], [] TypeError: DistilBertForQuestionAnswering.forward() got an unexpected keyword argument 'token_type_ids' ``` https://github.com/huggingface/datasets/assets/1328316/5d8b1d61-9337-4d59-8423-4f37f834c156 ### Expected behavior Run success on Google Colab (free) ### Environment info Windows 11 x64, Google Colab free (my Google Drive just empty about 200 MB, but I don't think it cause problem) Nice catch @donhuvy, that's because some models don't need the `token_type_ids`, as in this case, as the example is using `distilbert-base-cased`, and according to the DistilBert documentation at https://huggingface.co/transformers/v3.0.2/model_doc/distilbert.html, `DistilBert doesn’t have token_type_ids, you don’t need to indicate which token belongs to which segment. Just separate your segments with the separation token tokenizer.sep_token (or [SEP])`. `token_type_ids` are neither required in some other well known models such as RoBERTa. Here the issue comes due to a mismatch between the tokenizer and the model, as the Colab is using a BERT tokenizer (`bert-base-cased`), while the model is a DistilBERT (`distilbert-base-cased`), so aligning the tokenizer and the model solves it!
[ -1.1684259176254272, -0.842433750629425, -0.6315768361091614, 1.451823115348816, 0.020447390154004097, -1.3680942058563232, 0.029484890401363373, -0.8418459296226501, 1.626806616783142, -0.7200851440429688, 0.42705410718917847, -1.6848303079605103, 0.03695901483297348, -0.6166642904281616, -0.709105372428894, -0.6292856335639954, -0.3267625868320465, -0.6866938471794128, 1.1710319519042969, 2.517864942550659, 1.2326017618179321, -1.3735511302947998, 2.8540313243865967, 0.6375352144241333, -0.2564147710800171, -0.86986243724823, 0.42620113492012024, -0.008338266983628273, -1.5024088621139526, -0.31000784039497375, -1.0188817977905273, -0.009427904151380062, -0.6360117197036743, -0.6399559378623962, 0.14373177289962769, 0.43699488043785095, -0.07229767739772797, -0.4211234152317047, -0.38683098554611206, -0.7175368070602417, 0.6138838529586792, -0.29077044129371643, 0.8021708130836487, -0.22336402535438538, 1.7292356491088867, -0.6863328814506531, 0.46280044317245483, 0.4710713326931, 1.3215378522872925, 0.22175484895706177, -0.08537809550762177, 0.5599282383918762, 0.24192246794700623, 0.0512201227247715, 0.5494118928909302, 1.3199673891067505, 0.6225427985191345, 0.41629496216773987, 0.7485904693603516, -2.1834328174591064, 1.3451818227767944, -0.7820103168487549, 0.2070567011833191, 1.2470793724060059, -1.168055772781372, 0.4877050518989563, -1.8513201475143433, -0.18435123562812805, 0.38496896624565125, -2.256181240081787, 0.07783365994691849, -1.2896525859832764, -0.5611469149589539, 0.9906681180000305, 0.2989944517612457, -1.316348671913147, 0.006731249392032623, -0.5281545519828796, 0.9315518736839294, 0.309772789478302, 1.203123927116394, -1.7066432237625122, 0.02018803358078003, -0.20467925071716309, 0.3387816250324249, -1.1264809370040894, -1.648099660873413, 0.5861005783081055, 0.7268521785736084, 0.6451234221458435, -0.1839018166065216, 0.8144654631614685, -1.091664433479309, 0.877392590045929, -0.881543755531311, -1.9023503065109253, -1.4118812084197998, -2.3666696548461914, -2.3504345417022705, 0.8059566020965576, -0.4114534258842468, -0.3428014814853668, 2.1117656230926514, -1.1038751602172852, -1.7666399478912354, 1.045359492301941, 0.3577571213245392, -0.15665319561958313, 2.3706095218658447, 0.25749462842941284, -0.9346753358840942, 0.7118045687675476, -0.8679484724998474, 0.5970338582992554, -0.3670687675476074, 1.3037666082382202, 0.4415973126888275, -1.00763738155365, 1.6182711124420166, -0.4791083335876465, 0.4646015167236328, -0.7226529717445374, -0.31016799807548523, -0.5742166638374329, 0.23382970690727234, 2.046541929244995, -0.22942763566970825, 1.5533967018127441, -0.1836525797843933, -1.5000989437103271, -1.3205336332321167, 0.6979482173919678, 0.6005648374557495, -0.8609649538993835, 0.2948541045188904, -0.45171162486076355, 0.1469854712486267, 0.24260038137435913, 1.0689831972122192, 1.2676013708114624, 0.7724116444587708, -0.17125192284584045, -0.9946508407592773, 0.13710945844650269, -0.037320151925086975, -0.48264065384864807, -1.7633030414581299, -0.29954397678375244, 0.20330974459648132, 0.647794783115387, -1.2421331405639648, 1.8878600597381592, 0.8816748857498169, 2.0335047245025635, 1.0109361410140991, -0.3278249502182007, 1.5969769954681396, 0.09284014254808426, 1.9554216861724854, -0.35731402039527893, 0.7153277397155762, -0.49909546971321106, -1.2427293062210083, 0.6262879967689514, -0.37969475984573364, -1.9644882678985596, -0.3108857274055481, -0.8944523930549622, -0.09623728692531586, -0.9152113199234009, 1.0220122337341309, -0.15704992413520813, -1.3978067636489868, 0.23395609855651855, -0.7744157910346985, 0.1275801658630371, -1.4518550634384155, 0.2354561686515808, 0.7744058966636658, -0.7065242528915405, 0.12798747420310974, -0.4728896915912628, -1.414799690246582, -0.6215094923973083, 0.4424971342086792, 1.7578895092010498, -0.7208820581436157, 1.0966548919677734, 1.0608587265014648, -0.5413959622383118, -0.03379625827074051, 0.5927489995956421, -0.40769118070602417, 0.9350940585136414, -1.0561789274215698, -0.39941737055778503, 1.0771689414978027, -0.24578779935836792, -0.4682941138744354, 1.2550824880599976, 0.7710607647895813, -1.0042729377746582, -0.40295419096946716, -0.12172608822584152, -0.865808367729187, 0.13974890112876892, -1.693681240081787, -0.1710948944091797, 0.26404279470443726, -1.484579086303711, -0.48825976252555847, -0.06381511688232422, 1.3028225898742676, 0.026884838938713074, 1.3873622417449951, -0.17035728693008423, -0.08303724229335785, -0.5469486117362976, -0.5590806007385254, 0.16780924797058105, -0.1213344857096672, -0.7077176570892334, 0.35866454243659973, -0.742770791053772, 0.1977798044681549, 1.5016368627548218, 0.2539244294166565, 0.14119726419448853, 0.5749974250793457, 1.2093933820724487, 0.2487993836402893, -0.26759037375450134, -0.8685042858123779, -1.7754054069519043, 2.116013288497925, -1.5637950897216797, 1.9654101133346558, 0.9122065901756287, -0.08186782896518707, -1.8290518522262573, -1.8464733362197876, 1.5442637205123901, 1.2075039148330688, 2.5825319290161133, 0.5816365480422974, 0.46423158049583435, -0.7715062499046326, -0.608252227306366, 0.42241668701171875, -0.7726796269416809, -0.9662818908691406, 0.14320960640907288, 2.36140775680542, 1.7333403825759888, -0.37535011768341064, -0.18226584792137146, -1.013775110244751, 1.2933751344680786, -0.2973119020462036, 0.2595227062702179, 1.834023118019104, -0.3718283474445343, -1.001584529876709, 1.3138591051101685, -2.3503198623657227, 0.28921937942504883, 1.971867322921753, 0.3531036376953125, 0.03739033639431, -1.182059407234192, -0.7252506613731384, -0.1023344025015831, -0.44164860248565674, -1.2165496349334717, 0.3919665515422821, -0.22967946529388428, -0.9217336773872375, -1.4259276390075684, -0.03365980088710785, -1.2045304775238037, -1.75386643409729, 0.2725784182548523, 1.7603341341018677, 2.1579525470733643, -0.8550564050674438, 1.357028841972351, -0.306630939245224, 0.36472341418266296, 1.1547191143035889, 1.2094242572784424, 3.2238547801971436, 1.9208149909973145, -1.2230039834976196, 0.7549001574516296, -0.17380470037460327, -0.567944347858429, 1.226823091506958, -1.047972321510315, 1.139771819114685, -0.2691936194896698, -1.4071297645568848, -1.150227665901184, 0.9646415114402771, 0.4594132900238037, -0.14739054441452026, -0.43870803713798523, 1.0420106649398804, 0.23140105605125427, 1.2364524602890015, 0.6251581311225891, -0.24968460202217102, 0.5867058038711548, -0.305020809173584, -0.4655672013759613, 1.577602505683899, 0.014886649325489998, -1.535339593887329, -2.338198184967041, -0.09939560294151306, -1.044946551322937, -0.0391564816236496, -0.9542670249938965, -1.0167109966278076, 1.4493227005004883, 0.5080366730690002, -0.9699568152427673, -0.11663514375686646, -0.3866303563117981, -0.6007049083709717, 2.5315985679626465, -1.3573793172836304, -0.2942774295806885, -0.9305039644241333, -0.5689571499824524, 1.4686766862869263, -1.1261829137802124, -0.2920961380004883, -1.025519609451294, -0.5043370723724365, -1.2251330614089966, -0.5121787190437317, -0.13499662280082703, -0.673550009727478, 0.6392759680747986, -0.08948776870965958, -1.2573121786117554, -0.19661736488342285, -1.0762604475021362, 0.8171103596687317, -0.2878541052341461, -0.007385145872831345, 1.7211259603500366, 0.3421371281147003, -0.43288442492485046, 0.7981460690498352, 1.2524571418762207, 0.6059620976448059, -0.523615300655365, 0.22026917338371277, -0.7059271335601807, 0.42254438996315, -1.2468456029891968, 0.3925727307796478, -2.8993051052093506, 0.6741074919700623, 0.11230979859828949, -0.0043564122170209885, -0.12379970401525497, -1.4339897632598877, 0.9508386850357056, 2.454561233520508, -1.1322989463806152, 0.627454400062561, 0.2649186849594116, 1.1898976564407349, -1.651528000831604, -0.015857603400945663, -0.6013732552528381, 2.082768440246582, 0.08475008606910706, 1.0778495073318481, -0.5397453904151917, -2.250530242919922, 0.5917055606842041, -1.2488818168640137, -0.9203405380249023, 0.7090242505073547, -0.8962507843971252, 0.2073603868484497, -1.1738944053649902, -0.07775059342384338, -0.8593966364860535, -1.0591715574264526, 0.4785081148147583, -0.01942269504070282, 0.6380025148391724, -0.582107663154602, 0.2622796297073364, -2.1758217811584473, -1.3349168300628662, -0.10433004051446915, -0.9448856711387634, 0.4555113911628723, -0.331999272108078, 0.7003363370895386, -0.0800149217247963, -0.02671286277472973, 0.2745118737220764, 1.3669112920761108, 3.150010585784912, 0.03137098625302315, 0.37438279390335083, -0.19532188773155212, -1.0409224033355713, 1.5254700183868408, 0.8927713632583618, -0.39106833934783936, -0.6392824053764343, -0.9516022205352783, 1.4411344528198242, 1.870642900466919, 1.070615291595459, 0.14125558733940125, -0.9049556255340576, -0.8935660123825073, 0.15511134266853333, 0.12995150685310364, 0.43527352809906006, 0.9542598128318787, 0.12765207886695862, 0.18113410472869873, 1.3993192911148071, 1.0789268016815186, -0.3962375521659851, 0.5540331602096558, -0.8728519082069397, -0.3564140498638153, 0.49335619807243347, 0.3591616749763489, 0.046882808208465576, 0.19999009370803833, -1.1135566234588623, -0.258108526468277, -0.16904941201210022, -0.8368258476257324, -0.7748315930366516, -0.3829711377620697, -0.3656060993671417, 1.7961089611053467, -0.1028703898191452, -0.4907558858394623, -0.04995051026344299, -0.8525203466415405, -0.048289794474840164, -0.9047329425811768, 0.30805298686027527, -0.10961918532848358, 0.09727199375629425, -0.17897796630859375, 1.6705667972564697, -0.9554925560951233, -2.3312182426452637, 0.1902291178703308, 0.17040318250656128, -0.4486571252346039, -0.10611733794212341, 1.8434354066848755, 0.5552077889442444, 1.346026062965393, 1.6019504070281982, 1.1132632493972778, -0.6199321150779724, -1.253402829170227, 0.7629650831222534, 0.9342779517173767, -1.3057976961135864, 0.9060313105583191, -0.2035139799118042, -0.5449162125587463, 0.5098730325698853, 1.3105812072753906, 0.46607619524002075, -1.9069501161575317, 0.8932881951332092, -1.076377272605896, 0.8864169716835022, 0.7464494109153748, 0.8147843480110168, 0.11918964236974716, 0.8456045985221863, -1.3515424728393555, -1.0324355363845825, -0.6811860203742981, -0.6320191025733948, 1.8547255992889404, -0.16131019592285156, 0.22186538577079773, -0.3038085699081421, -1.345197319984436, 0.06732480227947235, 0.649977445602417, 0.25960245728492737, -0.35800138115882874, 0.795194149017334, -0.7016664147377014, -1.1718463897705078, -1.3476229906082153, -0.5047518014907837, -0.8965860605239868, -0.81374192237854, 0.958644688129425, 0.7082019448280334, 0.5449503064155579, 1.9859297275543213, 0.6687409281730652, 0.11809469014406204, -2.576308012008667, 0.8221953511238098, 0.3389333486557007, -0.06485679745674133, 0.8729402422904968, 0.22824594378471375, 1.2173751592636108, -0.2320881187915802, 0.5856658816337585, -2.238027572631836, 2.1351318359375, -0.23178768157958984, 0.822001576423645, 0.14528733491897583, 0.014039680361747742, 0.9403493404388428, 0.47873589396476746, 0.5963486433029175, -1.1503468751907349, 0.8925941586494446, -0.6488744616508484, 1.1340914964675903, 0.8209046721458435, -0.9169496893882751, 0.16932201385498047, 1.118595838546753, 0.3146440088748932, -0.531316339969635, -1.0082381963729858, -0.8562415242195129, 0.96901535987854, 1.7976181507110596, 0.013800255954265594, 0.13529041409492493, 0.800999641418457, 0.7341893911361694, -1.3374440670013428, -0.04490857198834419, -0.5904611349105835, -0.6128639578819275, 1.8525952100753784, 2.060373544692993, -0.014228304848074913, -0.10964574664831161, -0.6550070643424988, -1.4840381145477295, 0.8447951674461365, 0.12981683015823364, -0.033404525369405746, 0.8767802119255066, -0.6812270283699036, 1.250332236289978, 0.864398181438446, 0.8729604482650757, 0.24470892548561096, -0.0018863910809159279, 0.21528196334838867, -0.24116206169128418, -1.145086407661438, -0.3799673318862915, -1.0205048322677612, -2.5704805850982666, 0.4160933196544647, -0.20901095867156982, -1.4493414163589478, 0.18566849827766418, -0.9475185871124268, 0.7009031176567078, -0.5234344601631165, -1.093308925628662, -1.3141419887542725, 0.28521907329559326, -0.23393651843070984, 0.7145190834999084, -1.6239289045333862, -0.13904422521591187, 1.1625877618789673, 0.9979591965675354, -0.5943517088890076, 0.8730592727661133, 0.306881844997406, 0.9627755880355835, 1.0230200290679932, -0.34731248021125793, 0.4283943176269531, 0.34894463419914246, -1.3345791101455688, 0.3650505542755127, 1.386086344718933, 0.2029891014099121, 1.372674822807312, -0.42438003420829773, -0.05344777926802635, 0.41794148087501526, -0.2776952385902405, -0.5786689519882202, -0.7464673519134521, 0.6424619555473328, -0.10143322497606277, -1.0431417226791382, -0.1023511067032814, 0.011611787602305412, -0.06787840276956558, 0.332969605922699, -1.5524722337722778, -0.03501284867525101, -0.2876656949520111, -0.6495081186294556, -1.341623306274414, -0.09752370417118073, 1.3067415952682495, -0.9931086897850037, -0.14684030413627625, 0.5700907111167908, 0.20371311902999878, 0.540992796421051, 0.6646806597709656, -0.7324512004852295, -0.2922349274158478, -0.07475009560585022, -0.45471298694610596, 0.23173463344573975, 1.2418452501296997, -0.09073320776224136, -0.9510771632194519, 0.5016228556632996, -0.3061463236808777, 0.19626012444496155, 1.835871934890747, -0.005679384805262089, -0.9199896454811096, 0.2946878671646118, -0.6959825754165649, 1.9014075994491577, 1.5569223165512085, 1.357859492301941, -0.07693313807249069, -0.8893557190895081, 0.6245066523551941, -0.2452385425567627, -0.3240525424480438, 0.9084193110466003, 0.3879927396774292, -0.2567617893218994, -1.4012912511825562, 0.6667008996009827, 1.3191735744476318, -0.8652689456939697, -0.7478939294815063, 0.05666748434305191, -0.8440077304840088, 1.2341229915618896, 0.8037337064743042, 0.29206207394599915, 0.23995134234428406, 1.6655094623565674, 0.6857314705848694, -0.5701606273651123, 0.4729292094707489, 0.46359094977378845, -0.19204416871070862, -2.0160841941833496, -1.0308881998062134, 0.21856477856636047, -0.343928724527359, -1.4776928424835205, 1.346985936164856, -1.2524999380111694, -0.9551354646682739, 0.5452987551689148, 0.1528278887271881, 1.3400968313217163, 0.248904287815094, 1.774918794631958, 2.015364408493042, 0.9257977604866028, 0.4148111641407013, 1.110556960105896, -0.17772653698921204, -0.22003597021102905, 1.6490060091018677, -0.41522276401519775, 0.7050008177757263, 0.9822487235069275, -0.4796556830406189, -1.2718231678009033, -0.8083881139755249, -1.1969971656799316, -0.8153380155563354, 1.0311615467071533, 0.17127814888954163, -1.1752289533615112, 0.3137401044368744, 1.6221709251403809, 0.053808338940143585, -0.12580335140228271, 0.6729600429534912, 0.3752211332321167, -0.587224006652832, -0.035265758633613586, -1.063883900642395, 0.5812642574310303, -0.3094370663166046, -0.4064789414405823, 0.12331878393888474, 0.5737394094467163, 1.1624796390533447, 0.2447836697101593, 0.0827733725309372, 1.393705129623413, -1.3490114212036133, 1.208201289176941, -1.0448849201202393, 0.3566651940345764, -2.307063579559326, 1.49053156375885, -1.0301319360733032, 1.9325370788574219, -2.712214469909668, 0.5158910751342773, -0.4882473349571228, -0.5701335668563843, 0.1474834680557251, -0.14898616075515747, 0.09403279423713684, -0.04766030237078667, -1.0594451427459717, -0.19719406962394714, -0.8243464827537537, 0.47444242238998413, 1.290421724319458, 1.3249479532241821, -0.9454653263092041, -0.22533485293388367, -1.6861670017242432, -0.11190215498209, -0.4195900559425354, 0.12610343098640442, -1.7325667142868042, -0.1668628752231598, -1.996630072593689, -2.4796082973480225, -1.3299843072891235, -1.0353411436080933, 1.258865475654602, 0.16402462124824524, -0.9136318564414978, 1.0799294710159302, -0.49594151973724365, -1.6977219581604004, 1.1931514739990234, -2.2765469551086426 ]
https://github.com/huggingface/datasets/issues/5887
HuggingsFace dataset example give error
This has been addressed in #5902. The Quicktour notebook is deprecated now - please use the notebook version of the [Quickstart doc page](https://huggingface.co/docs/datasets/main/en/quickstart) instead ("Open in Colab" button).
### Describe the bug ![image](https://github.com/huggingface/datasets/assets/1328316/1f4f0086-3db9-4c79-906b-05a375357cce) ![image](https://github.com/huggingface/datasets/assets/1328316/733ebd3d-89b9-4ece-b80a-00ab5b0a4122) ### Steps to reproduce the bug Use link as reference document written https://colab.research.google.com/github/huggingface/datasets/blob/main/notebooks/Overview.ipynb#scrollTo=biqDH9vpvSVz ```python # Now let's train our model device = 'cuda' if torch.cuda.is_available() else 'cpu' model.train().to(device) for i, batch in enumerate(dataloader): batch.to(device) outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() model.zero_grad() print(f'Step {i} - loss: {loss:.3}') if i > 5: break ``` Error ```python --------------------------------------------------------------------------- TypeError Traceback (most recent call last) [<ipython-input-44-7040b885f382>](https://localhost:8080/#) in <cell line: 5>() 5 for i, batch in enumerate(dataloader): 6 batch.to(device) ----> 7 outputs = model(**batch) 8 loss = outputs.loss 9 loss.backward() [/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *args, **kwargs) 1499 or _global_backward_pre_hooks or _global_backward_hooks 1500 or _global_forward_hooks or _global_forward_pre_hooks): -> 1501 return forward_call(*args, **kwargs) 1502 # Do not call functions when jit is used 1503 full_backward_hooks, non_full_backward_hooks = [], [] TypeError: DistilBertForQuestionAnswering.forward() got an unexpected keyword argument 'token_type_ids' ``` https://github.com/huggingface/datasets/assets/1328316/5d8b1d61-9337-4d59-8423-4f37f834c156 ### Expected behavior Run success on Google Colab (free) ### Environment info Windows 11 x64, Google Colab free (my Google Drive just empty about 200 MB, but I don't think it cause problem)
123
28
HuggingsFace dataset example give error ### Describe the bug ![image](https://github.com/huggingface/datasets/assets/1328316/1f4f0086-3db9-4c79-906b-05a375357cce) ![image](https://github.com/huggingface/datasets/assets/1328316/733ebd3d-89b9-4ece-b80a-00ab5b0a4122) ### Steps to reproduce the bug Use link as reference document written https://colab.research.google.com/github/huggingface/datasets/blob/main/notebooks/Overview.ipynb#scrollTo=biqDH9vpvSVz ```python # Now let's train our model device = 'cuda' if torch.cuda.is_available() else 'cpu' model.train().to(device) for i, batch in enumerate(dataloader): batch.to(device) outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() model.zero_grad() print(f'Step {i} - loss: {loss:.3}') if i > 5: break ``` Error ```python --------------------------------------------------------------------------- TypeError Traceback (most recent call last) [<ipython-input-44-7040b885f382>](https://localhost:8080/#) in <cell line: 5>() 5 for i, batch in enumerate(dataloader): 6 batch.to(device) ----> 7 outputs = model(**batch) 8 loss = outputs.loss 9 loss.backward() [/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *args, **kwargs) 1499 or _global_backward_pre_hooks or _global_backward_hooks 1500 or _global_forward_hooks or _global_forward_pre_hooks): -> 1501 return forward_call(*args, **kwargs) 1502 # Do not call functions when jit is used 1503 full_backward_hooks, non_full_backward_hooks = [], [] TypeError: DistilBertForQuestionAnswering.forward() got an unexpected keyword argument 'token_type_ids' ``` https://github.com/huggingface/datasets/assets/1328316/5d8b1d61-9337-4d59-8423-4f37f834c156 ### Expected behavior Run success on Google Colab (free) ### Environment info Windows 11 x64, Google Colab free (my Google Drive just empty about 200 MB, but I don't think it cause problem) This has been addressed in #5902. The Quicktour notebook is deprecated now - please use the notebook version of the [Quickstart doc page](https://huggingface.co/docs/datasets/main/en/quickstart) instead ("Open in Colab" button).
[ -1.1684259176254272, -0.842433750629425, -0.6315768361091614, 1.451823115348816, 0.020447390154004097, -1.3680942058563232, 0.029484890401363373, -0.8418459296226501, 1.626806616783142, -0.7200851440429688, 0.42705410718917847, -1.6848303079605103, 0.03695901483297348, -0.6166642904281616, -0.709105372428894, -0.6292856335639954, -0.3267625868320465, -0.6866938471794128, 1.1710319519042969, 2.517864942550659, 1.2326017618179321, -1.3735511302947998, 2.8540313243865967, 0.6375352144241333, -0.2564147710800171, -0.86986243724823, 0.42620113492012024, -0.008338266983628273, -1.5024088621139526, -0.31000784039497375, -1.0188817977905273, -0.009427904151380062, -0.6360117197036743, -0.6399559378623962, 0.14373177289962769, 0.43699488043785095, -0.07229767739772797, -0.4211234152317047, -0.38683098554611206, -0.7175368070602417, 0.6138838529586792, -0.29077044129371643, 0.8021708130836487, -0.22336402535438538, 1.7292356491088867, -0.6863328814506531, 0.46280044317245483, 0.4710713326931, 1.3215378522872925, 0.22175484895706177, -0.08537809550762177, 0.5599282383918762, 0.24192246794700623, 0.0512201227247715, 0.5494118928909302, 1.3199673891067505, 0.6225427985191345, 0.41629496216773987, 0.7485904693603516, -2.1834328174591064, 1.3451818227767944, -0.7820103168487549, 0.2070567011833191, 1.2470793724060059, -1.168055772781372, 0.4877050518989563, -1.8513201475143433, -0.18435123562812805, 0.38496896624565125, -2.256181240081787, 0.07783365994691849, -1.2896525859832764, -0.5611469149589539, 0.9906681180000305, 0.2989944517612457, -1.316348671913147, 0.006731249392032623, -0.5281545519828796, 0.9315518736839294, 0.309772789478302, 1.203123927116394, -1.7066432237625122, 0.02018803358078003, -0.20467925071716309, 0.3387816250324249, -1.1264809370040894, -1.648099660873413, 0.5861005783081055, 0.7268521785736084, 0.6451234221458435, -0.1839018166065216, 0.8144654631614685, -1.091664433479309, 0.877392590045929, -0.881543755531311, -1.9023503065109253, -1.4118812084197998, -2.3666696548461914, -2.3504345417022705, 0.8059566020965576, -0.4114534258842468, -0.3428014814853668, 2.1117656230926514, -1.1038751602172852, -1.7666399478912354, 1.045359492301941, 0.3577571213245392, -0.15665319561958313, 2.3706095218658447, 0.25749462842941284, -0.9346753358840942, 0.7118045687675476, -0.8679484724998474, 0.5970338582992554, -0.3670687675476074, 1.3037666082382202, 0.4415973126888275, -1.00763738155365, 1.6182711124420166, -0.4791083335876465, 0.4646015167236328, -0.7226529717445374, -0.31016799807548523, -0.5742166638374329, 0.23382970690727234, 2.046541929244995, -0.22942763566970825, 1.5533967018127441, -0.1836525797843933, -1.5000989437103271, -1.3205336332321167, 0.6979482173919678, 0.6005648374557495, -0.8609649538993835, 0.2948541045188904, -0.45171162486076355, 0.1469854712486267, 0.24260038137435913, 1.0689831972122192, 1.2676013708114624, 0.7724116444587708, -0.17125192284584045, -0.9946508407592773, 0.13710945844650269, -0.037320151925086975, -0.48264065384864807, -1.7633030414581299, -0.29954397678375244, 0.20330974459648132, 0.647794783115387, -1.2421331405639648, 1.8878600597381592, 0.8816748857498169, 2.0335047245025635, 1.0109361410140991, -0.3278249502182007, 1.5969769954681396, 0.09284014254808426, 1.9554216861724854, -0.35731402039527893, 0.7153277397155762, -0.49909546971321106, -1.2427293062210083, 0.6262879967689514, -0.37969475984573364, -1.9644882678985596, -0.3108857274055481, -0.8944523930549622, -0.09623728692531586, -0.9152113199234009, 1.0220122337341309, -0.15704992413520813, -1.3978067636489868, 0.23395609855651855, -0.7744157910346985, 0.1275801658630371, -1.4518550634384155, 0.2354561686515808, 0.7744058966636658, -0.7065242528915405, 0.12798747420310974, -0.4728896915912628, -1.414799690246582, -0.6215094923973083, 0.4424971342086792, 1.7578895092010498, -0.7208820581436157, 1.0966548919677734, 1.0608587265014648, -0.5413959622383118, -0.03379625827074051, 0.5927489995956421, -0.40769118070602417, 0.9350940585136414, -1.0561789274215698, -0.39941737055778503, 1.0771689414978027, -0.24578779935836792, -0.4682941138744354, 1.2550824880599976, 0.7710607647895813, -1.0042729377746582, -0.40295419096946716, -0.12172608822584152, -0.865808367729187, 0.13974890112876892, -1.693681240081787, -0.1710948944091797, 0.26404279470443726, -1.484579086303711, -0.48825976252555847, -0.06381511688232422, 1.3028225898742676, 0.026884838938713074, 1.3873622417449951, -0.17035728693008423, -0.08303724229335785, -0.5469486117362976, -0.5590806007385254, 0.16780924797058105, -0.1213344857096672, -0.7077176570892334, 0.35866454243659973, -0.742770791053772, 0.1977798044681549, 1.5016368627548218, 0.2539244294166565, 0.14119726419448853, 0.5749974250793457, 1.2093933820724487, 0.2487993836402893, -0.26759037375450134, -0.8685042858123779, -1.7754054069519043, 2.116013288497925, -1.5637950897216797, 1.9654101133346558, 0.9122065901756287, -0.08186782896518707, -1.8290518522262573, -1.8464733362197876, 1.5442637205123901, 1.2075039148330688, 2.5825319290161133, 0.5816365480422974, 0.46423158049583435, -0.7715062499046326, -0.608252227306366, 0.42241668701171875, -0.7726796269416809, -0.9662818908691406, 0.14320960640907288, 2.36140775680542, 1.7333403825759888, -0.37535011768341064, -0.18226584792137146, -1.013775110244751, 1.2933751344680786, -0.2973119020462036, 0.2595227062702179, 1.834023118019104, -0.3718283474445343, -1.001584529876709, 1.3138591051101685, -2.3503198623657227, 0.28921937942504883, 1.971867322921753, 0.3531036376953125, 0.03739033639431, -1.182059407234192, -0.7252506613731384, -0.1023344025015831, -0.44164860248565674, -1.2165496349334717, 0.3919665515422821, -0.22967946529388428, -0.9217336773872375, -1.4259276390075684, -0.03365980088710785, -1.2045304775238037, -1.75386643409729, 0.2725784182548523, 1.7603341341018677, 2.1579525470733643, -0.8550564050674438, 1.357028841972351, -0.306630939245224, 0.36472341418266296, 1.1547191143035889, 1.2094242572784424, 3.2238547801971436, 1.9208149909973145, -1.2230039834976196, 0.7549001574516296, -0.17380470037460327, -0.567944347858429, 1.226823091506958, -1.047972321510315, 1.139771819114685, -0.2691936194896698, -1.4071297645568848, -1.150227665901184, 0.9646415114402771, 0.4594132900238037, -0.14739054441452026, -0.43870803713798523, 1.0420106649398804, 0.23140105605125427, 1.2364524602890015, 0.6251581311225891, -0.24968460202217102, 0.5867058038711548, -0.305020809173584, -0.4655672013759613, 1.577602505683899, 0.014886649325489998, -1.535339593887329, -2.338198184967041, -0.09939560294151306, -1.044946551322937, -0.0391564816236496, -0.9542670249938965, -1.0167109966278076, 1.4493227005004883, 0.5080366730690002, -0.9699568152427673, -0.11663514375686646, -0.3866303563117981, -0.6007049083709717, 2.5315985679626465, -1.3573793172836304, -0.2942774295806885, -0.9305039644241333, -0.5689571499824524, 1.4686766862869263, -1.1261829137802124, -0.2920961380004883, -1.025519609451294, -0.5043370723724365, -1.2251330614089966, -0.5121787190437317, -0.13499662280082703, -0.673550009727478, 0.6392759680747986, -0.08948776870965958, -1.2573121786117554, -0.19661736488342285, -1.0762604475021362, 0.8171103596687317, -0.2878541052341461, -0.007385145872831345, 1.7211259603500366, 0.3421371281147003, -0.43288442492485046, 0.7981460690498352, 1.2524571418762207, 0.6059620976448059, -0.523615300655365, 0.22026917338371277, -0.7059271335601807, 0.42254438996315, -1.2468456029891968, 0.3925727307796478, -2.8993051052093506, 0.6741074919700623, 0.11230979859828949, -0.0043564122170209885, -0.12379970401525497, -1.4339897632598877, 0.9508386850357056, 2.454561233520508, -1.1322989463806152, 0.627454400062561, 0.2649186849594116, 1.1898976564407349, -1.651528000831604, -0.015857603400945663, -0.6013732552528381, 2.082768440246582, 0.08475008606910706, 1.0778495073318481, -0.5397453904151917, -2.250530242919922, 0.5917055606842041, -1.2488818168640137, -0.9203405380249023, 0.7090242505073547, -0.8962507843971252, 0.2073603868484497, -1.1738944053649902, -0.07775059342384338, -0.8593966364860535, -1.0591715574264526, 0.4785081148147583, -0.01942269504070282, 0.6380025148391724, -0.582107663154602, 0.2622796297073364, -2.1758217811584473, -1.3349168300628662, -0.10433004051446915, -0.9448856711387634, 0.4555113911628723, -0.331999272108078, 0.7003363370895386, -0.0800149217247963, -0.02671286277472973, 0.2745118737220764, 1.3669112920761108, 3.150010585784912, 0.03137098625302315, 0.37438279390335083, -0.19532188773155212, -1.0409224033355713, 1.5254700183868408, 0.8927713632583618, -0.39106833934783936, -0.6392824053764343, -0.9516022205352783, 1.4411344528198242, 1.870642900466919, 1.070615291595459, 0.14125558733940125, -0.9049556255340576, -0.8935660123825073, 0.15511134266853333, 0.12995150685310364, 0.43527352809906006, 0.9542598128318787, 0.12765207886695862, 0.18113410472869873, 1.3993192911148071, 1.0789268016815186, -0.3962375521659851, 0.5540331602096558, -0.8728519082069397, -0.3564140498638153, 0.49335619807243347, 0.3591616749763489, 0.046882808208465576, 0.19999009370803833, -1.1135566234588623, -0.258108526468277, -0.16904941201210022, -0.8368258476257324, -0.7748315930366516, -0.3829711377620697, -0.3656060993671417, 1.7961089611053467, -0.1028703898191452, -0.4907558858394623, -0.04995051026344299, -0.8525203466415405, -0.048289794474840164, -0.9047329425811768, 0.30805298686027527, -0.10961918532848358, 0.09727199375629425, -0.17897796630859375, 1.6705667972564697, -0.9554925560951233, -2.3312182426452637, 0.1902291178703308, 0.17040318250656128, -0.4486571252346039, -0.10611733794212341, 1.8434354066848755, 0.5552077889442444, 1.346026062965393, 1.6019504070281982, 1.1132632493972778, -0.6199321150779724, -1.253402829170227, 0.7629650831222534, 0.9342779517173767, -1.3057976961135864, 0.9060313105583191, -0.2035139799118042, -0.5449162125587463, 0.5098730325698853, 1.3105812072753906, 0.46607619524002075, -1.9069501161575317, 0.8932881951332092, -1.076377272605896, 0.8864169716835022, 0.7464494109153748, 0.8147843480110168, 0.11918964236974716, 0.8456045985221863, -1.3515424728393555, -1.0324355363845825, -0.6811860203742981, -0.6320191025733948, 1.8547255992889404, -0.16131019592285156, 0.22186538577079773, -0.3038085699081421, -1.345197319984436, 0.06732480227947235, 0.649977445602417, 0.25960245728492737, -0.35800138115882874, 0.795194149017334, -0.7016664147377014, -1.1718463897705078, -1.3476229906082153, -0.5047518014907837, -0.8965860605239868, -0.81374192237854, 0.958644688129425, 0.7082019448280334, 0.5449503064155579, 1.9859297275543213, 0.6687409281730652, 0.11809469014406204, -2.576308012008667, 0.8221953511238098, 0.3389333486557007, -0.06485679745674133, 0.8729402422904968, 0.22824594378471375, 1.2173751592636108, -0.2320881187915802, 0.5856658816337585, -2.238027572631836, 2.1351318359375, -0.23178768157958984, 0.822001576423645, 0.14528733491897583, 0.014039680361747742, 0.9403493404388428, 0.47873589396476746, 0.5963486433029175, -1.1503468751907349, 0.8925941586494446, -0.6488744616508484, 1.1340914964675903, 0.8209046721458435, -0.9169496893882751, 0.16932201385498047, 1.118595838546753, 0.3146440088748932, -0.531316339969635, -1.0082381963729858, -0.8562415242195129, 0.96901535987854, 1.7976181507110596, 0.013800255954265594, 0.13529041409492493, 0.800999641418457, 0.7341893911361694, -1.3374440670013428, -0.04490857198834419, -0.5904611349105835, -0.6128639578819275, 1.8525952100753784, 2.060373544692993, -0.014228304848074913, -0.10964574664831161, -0.6550070643424988, -1.4840381145477295, 0.8447951674461365, 0.12981683015823364, -0.033404525369405746, 0.8767802119255066, -0.6812270283699036, 1.250332236289978, 0.864398181438446, 0.8729604482650757, 0.24470892548561096, -0.0018863910809159279, 0.21528196334838867, -0.24116206169128418, -1.145086407661438, -0.3799673318862915, -1.0205048322677612, -2.5704805850982666, 0.4160933196544647, -0.20901095867156982, -1.4493414163589478, 0.18566849827766418, -0.9475185871124268, 0.7009031176567078, -0.5234344601631165, -1.093308925628662, -1.3141419887542725, 0.28521907329559326, -0.23393651843070984, 0.7145190834999084, -1.6239289045333862, -0.13904422521591187, 1.1625877618789673, 0.9979591965675354, -0.5943517088890076, 0.8730592727661133, 0.306881844997406, 0.9627755880355835, 1.0230200290679932, -0.34731248021125793, 0.4283943176269531, 0.34894463419914246, -1.3345791101455688, 0.3650505542755127, 1.386086344718933, 0.2029891014099121, 1.372674822807312, -0.42438003420829773, -0.05344777926802635, 0.41794148087501526, -0.2776952385902405, -0.5786689519882202, -0.7464673519134521, 0.6424619555473328, -0.10143322497606277, -1.0431417226791382, -0.1023511067032814, 0.011611787602305412, -0.06787840276956558, 0.332969605922699, -1.5524722337722778, -0.03501284867525101, -0.2876656949520111, -0.6495081186294556, -1.341623306274414, -0.09752370417118073, 1.3067415952682495, -0.9931086897850037, -0.14684030413627625, 0.5700907111167908, 0.20371311902999878, 0.540992796421051, 0.6646806597709656, -0.7324512004852295, -0.2922349274158478, -0.07475009560585022, -0.45471298694610596, 0.23173463344573975, 1.2418452501296997, -0.09073320776224136, -0.9510771632194519, 0.5016228556632996, -0.3061463236808777, 0.19626012444496155, 1.835871934890747, -0.005679384805262089, -0.9199896454811096, 0.2946878671646118, -0.6959825754165649, 1.9014075994491577, 1.5569223165512085, 1.357859492301941, -0.07693313807249069, -0.8893557190895081, 0.6245066523551941, -0.2452385425567627, -0.3240525424480438, 0.9084193110466003, 0.3879927396774292, -0.2567617893218994, -1.4012912511825562, 0.6667008996009827, 1.3191735744476318, -0.8652689456939697, -0.7478939294815063, 0.05666748434305191, -0.8440077304840088, 1.2341229915618896, 0.8037337064743042, 0.29206207394599915, 0.23995134234428406, 1.6655094623565674, 0.6857314705848694, -0.5701606273651123, 0.4729292094707489, 0.46359094977378845, -0.19204416871070862, -2.0160841941833496, -1.0308881998062134, 0.21856477856636047, -0.343928724527359, -1.4776928424835205, 1.346985936164856, -1.2524999380111694, -0.9551354646682739, 0.5452987551689148, 0.1528278887271881, 1.3400968313217163, 0.248904287815094, 1.774918794631958, 2.015364408493042, 0.9257977604866028, 0.4148111641407013, 1.110556960105896, -0.17772653698921204, -0.22003597021102905, 1.6490060091018677, -0.41522276401519775, 0.7050008177757263, 0.9822487235069275, -0.4796556830406189, -1.2718231678009033, -0.8083881139755249, -1.1969971656799316, -0.8153380155563354, 1.0311615467071533, 0.17127814888954163, -1.1752289533615112, 0.3137401044368744, 1.6221709251403809, 0.053808338940143585, -0.12580335140228271, 0.6729600429534912, 0.3752211332321167, -0.587224006652832, -0.035265758633613586, -1.063883900642395, 0.5812642574310303, -0.3094370663166046, -0.4064789414405823, 0.12331878393888474, 0.5737394094467163, 1.1624796390533447, 0.2447836697101593, 0.0827733725309372, 1.393705129623413, -1.3490114212036133, 1.208201289176941, -1.0448849201202393, 0.3566651940345764, -2.307063579559326, 1.49053156375885, -1.0301319360733032, 1.9325370788574219, -2.712214469909668, 0.5158910751342773, -0.4882473349571228, -0.5701335668563843, 0.1474834680557251, -0.14898616075515747, 0.09403279423713684, -0.04766030237078667, -1.0594451427459717, -0.19719406962394714, -0.8243464827537537, 0.47444242238998413, 1.290421724319458, 1.3249479532241821, -0.9454653263092041, -0.22533485293388367, -1.6861670017242432, -0.11190215498209, -0.4195900559425354, 0.12610343098640442, -1.7325667142868042, -0.1668628752231598, -1.996630072593689, -2.4796082973480225, -1.3299843072891235, -1.0353411436080933, 1.258865475654602, 0.16402462124824524, -0.9136318564414978, 1.0799294710159302, -0.49594151973724365, -1.6977219581604004, 1.1931514739990234, -2.2765469551086426 ]
https://github.com/huggingface/datasets/issues/5886
Use work-stealing algorithm when parallel computing
Alternatively we could set the number of shards to be a factor than the number of processes (current they're equal) - this way it will be less likely to end up with a shard that is significantly slower than all the other ones.
### Feature request when i used Dataset.map api to process data concurrently, i found that it gets slower and slower as it gets closer to completion. Then i read the source code of arrow_dataset.py and found that it shard the dataset and use multiprocessing pool to execute each shard.It may cause the slowest task to drag out the entire program's execution time,especially when processing huge dataset. ### Motivation using work-stealing algorithm instead of sharding and parallel computing to optimize performance. ### Your contribution just an idea.
124
43
Use work-stealing algorithm when parallel computing ### Feature request when i used Dataset.map api to process data concurrently, i found that it gets slower and slower as it gets closer to completion. Then i read the source code of arrow_dataset.py and found that it shard the dataset and use multiprocessing pool to execute each shard.It may cause the slowest task to drag out the entire program's execution time,especially when processing huge dataset. ### Motivation using work-stealing algorithm instead of sharding and parallel computing to optimize performance. ### Your contribution just an idea. Alternatively we could set the number of shards to be a factor than the number of processes (current they're equal) - this way it will be less likely to end up with a shard that is significantly slower than all the other ones.
[ -1.2769761085510254, -0.9355425238609314, -0.8471792936325073, 1.4541683197021484, -0.21887382864952087, -1.245620608329773, -0.015779860317707062, -1.0054731369018555, 1.5822786092758179, -0.8470134139060974, 0.2823987305164337, -1.642230749130249, 0.1284533441066742, -0.5047372579574585, -0.615000307559967, -0.9037853479385376, -0.4253445863723755, -0.7610414624214172, 1.0901026725769043, 2.4699501991271973, 1.173243522644043, -1.373793363571167, 2.709521770477295, 0.7646350264549255, -0.2023700475692749, -1.116499900817871, 0.63829505443573, 0.06641858071088791, -1.3924919366836548, -0.42188116908073425, -0.8937399387359619, -0.0236929040402174, -0.5516961812973022, -0.5140591859817505, -0.014253177680075169, 0.3334602415561676, -0.13248981535434723, -0.4358172118663788, -0.5301077365875244, -0.7913787961006165, 0.4754575490951538, -0.42291590571403503, 0.9165279865264893, -0.3493024408817291, 1.8709607124328613, -0.47716647386550903, 0.3993828296661377, 0.6902786493301392, 1.4615280628204346, 0.09243544936180115, -0.12946978211402893, 0.27445632219314575, 0.3573450446128845, -0.06115179508924484, 0.4200757145881653, 1.0515192747116089, 0.598065972328186, 0.523617148399353, 0.6821076273918152, -2.1628026962280273, 1.4284815788269043, -0.9997733235359192, 0.38326945900917053, 1.3747248649597168, -1.0743483304977417, 0.39359918236732483, -1.7691320180892944, -0.08944393694400787, 0.46684959530830383, -2.271002769470215, 0.13168489933013916, -1.1775115728378296, -0.4598528742790222, 0.8818295001983643, 0.29322490096092224, -1.3175863027572632, -0.0024319281801581383, -0.5653879642486572, 0.9928485751152039, 0.5733747482299805, 1.1073213815689087, -1.6374304294586182, 0.0287158340215683, -0.32328519225120544, -0.009952318854629993, -1.3696919679641724, -1.3898104429244995, 0.49135369062423706, 0.8023741841316223, 0.6165881156921387, 0.11669118702411652, 0.9278063178062439, -0.9249278903007507, 0.8215236663818359, -0.8119754195213318, -1.5734741687774658, -1.3066227436065674, -2.259125232696533, -2.255101203918457, 0.8543317317962646, -0.5119581818580627, -0.6104406118392944, 2.0096688270568848, -1.1066423654556274, -1.8120068311691284, 1.200199007987976, 0.16772086918354034, 0.008338258601725101, 2.557917594909668, 0.1093723475933075, -0.6755102872848511, 0.4434027075767517, -0.6419156789779663, 0.8701726198196411, -0.7029615044593811, 1.4238300323486328, 0.3741477131843567, -1.0388725996017456, 1.6835790872573853, -0.33930352330207825, 0.5320481657981873, -0.7073364853858948, -0.5157618522644043, -0.9818158149719238, 0.356393963098526, 1.8250391483306885, -0.2906201481819153, 1.6694437265396118, -0.3431415855884552, -1.5978277921676636, -1.5869998931884766, 0.9253509044647217, 0.4845430850982666, -0.7829160690307617, 0.03497607633471489, -0.3339206576347351, 0.13059101998806, 0.0008924668654799461, 1.0093448162078857, 1.2476969957351685, 0.6133295893669128, -0.21294841170310974, -0.9774959087371826, 0.23886632919311523, -0.17311307787895203, -0.6131047010421753, -1.8396159410476685, -0.35542210936546326, 0.04433845728635788, 0.663844108581543, -1.212823510169983, 1.6839889287948608, 0.9916282296180725, 1.9643657207489014, 1.0421839952468872, -0.27584031224250793, 1.4623326063156128, 0.07038237899541855, 1.86652410030365, -0.46638038754463196, 0.7770243883132935, -0.3341989517211914, -1.0583274364471436, 0.8363420963287354, -0.33481836318969727, -1.8756543397903442, -0.8307744860649109, -0.9296465516090393, -0.1999894231557846, -0.7140836119651794, 1.1365166902542114, -0.45628470182418823, -1.1992919445037842, 0.26253175735473633, -0.676077663898468, 0.2279689460992813, -1.183134913444519, 0.3694141209125519, 0.7096725106239319, -0.626939058303833, 0.16876357793807983, -0.3126542866230011, -1.2242815494537354, -0.4342947006225586, 0.3107875883579254, 1.8906587362289429, -0.8516744375228882, 0.9347221851348877, 0.9039415717124939, -0.6857720017433167, -0.10576869547367096, 0.3016422390937805, -0.2132660299539566, 0.9110161662101746, -1.0193488597869873, -0.3137994110584259, 1.2330049276351929, -0.29988205432891846, -0.6527920961380005, 1.5551382303237915, 0.7269208431243896, -0.9768085479736328, -0.17645324766635895, -0.16369718313217163, -0.886909008026123, 0.01208528783172369, -1.7413783073425293, -0.05090612918138504, 0.29929253458976746, -1.5532375574111938, -0.4778193533420563, -0.17688259482383728, 1.231611967086792, -0.06503524631261826, 1.4145615100860596, -0.4327767789363861, -0.3241479992866516, -0.36078983545303345, -0.4469732344150543, 0.1401887983083725, -0.14771954715251923, -0.6296390891075134, 0.3252718150615692, -0.8476040363311768, 0.38708531856536865, 1.409348964691162, 0.4858384430408478, 0.1554459184408188, 0.6119674444198608, 1.0483535528182983, 0.4192265272140503, -0.09875046461820602, -0.8269909024238586, -1.5355405807495117, 2.132291078567505, -1.5371347665786743, 1.8800500631332397, 0.8209114074707031, -0.09362570941448212, -1.7766389846801758, -1.7656031847000122, 1.3016548156738281, 1.2076925039291382, 2.25823712348938, 0.7736049294471741, 0.43942901492118835, -0.8715642094612122, -0.6206953525543213, 0.2755219340324402, -1.164507508277893, -0.8066510558128357, 0.10571634024381638, 2.3124423027038574, 1.7908774614334106, -0.4148426353931427, -0.11215212196111679, -1.0766100883483887, 1.291189193725586, -0.10350340604782104, 0.27231672406196594, 1.909090518951416, -0.3331120014190674, -1.042683720588684, 1.0587573051452637, -2.281280517578125, 0.1330200731754303, 1.962813138961792, 0.2902367115020752, 0.10444378852844238, -1.449884295463562, -0.6692225933074951, -0.26901358366012573, -0.20964360237121582, -1.2766319513320923, 0.6515985727310181, -0.3548440635204315, -0.7258174419403076, -1.5011552572250366, 0.1408998817205429, -1.072399377822876, -1.5890365839004517, 0.3732057511806488, 1.9257428646087646, 2.094818592071533, -0.5945191979408264, 1.4982315301895142, -0.21558187901973724, 0.10960134863853455, 1.2071309089660645, 1.1446436643600464, 3.099855899810791, 2.010556221008301, -1.2063015699386597, 0.5494358539581299, -0.07296343147754669, -0.45719990134239197, 1.0742396116256714, -1.1708884239196777, 1.3080878257751465, -0.1797473281621933, -1.265121340751648, -1.2138826847076416, 0.8923691511154175, 0.3882315456867218, 0.04485531523823738, -0.4962915778160095, 1.470211386680603, -0.007693973835557699, 1.3161797523498535, 0.45802608132362366, -0.3558310568332672, 0.5713374614715576, -0.3909634053707123, -0.5495393872261047, 1.5562169551849365, 0.12344959378242493, -1.5674927234649658, -2.324772357940674, -0.22616858780384064, -0.6980318427085876, 0.022310428321361542, -0.5931230187416077, -1.0012626647949219, 1.7175345420837402, 0.3754116892814636, -1.231389045715332, -0.35271456837654114, -0.3272440433502197, -0.678932249546051, 2.676121711730957, -1.4308992624282837, -0.40864744782447815, -0.8867771625518799, -0.5334120392799377, 1.7230722904205322, -1.3285633325576782, -0.1690972000360489, -1.0090535879135132, -0.47548964619636536, -1.2071298360824585, -0.6386138796806335, -0.06092751771211624, -1.0226478576660156, 0.7785869836807251, 0.16060666739940643, -0.9402415156364441, -0.19641166925430298, -0.9360427260398865, 0.7027207612991333, -0.08080890774726868, 0.3328777849674225, 1.8598484992980957, 0.5003892779350281, -0.42276066541671753, 0.7959306240081787, 1.2042341232299805, 0.5958907604217529, -0.7266609072685242, 0.20035254955291748, -0.6654451489448547, 0.3649548292160034, -1.1345616579055786, 0.31916457414627075, -2.901832342147827, 0.5624524354934692, -0.08286630362272263, -0.08079519122838974, 0.02410079911351204, -1.2747979164123535, 1.1187057495117188, 2.495391607284546, -1.20974862575531, 0.5232282876968384, 0.16695821285247803, 1.2801415920257568, -1.5986602306365967, 0.5374298095703125, -0.4277835786342621, 2.1039557456970215, 0.3143227696418762, 1.169071912765503, -0.49575960636138916, -2.3462772369384766, 0.6310228705406189, -1.2515991926193237, -1.2388193607330322, 0.7007390856742859, -0.9549117684364319, 0.05251692980527878, -1.4013302326202393, -0.16227641701698303, -0.7721752524375916, -1.3027645349502563, 0.6764608025550842, 0.24617038667201996, 0.5059230327606201, -0.5469578504562378, 0.2931029200553894, -2.2534027099609375, -1.4740996360778809, -0.29675912857055664, -0.9653058648109436, 0.45173779129981995, -0.4557024836540222, 0.7538612484931946, -0.28259649872779846, 0.02447376772761345, 0.2792370617389679, 1.3739111423492432, 3.417263984680176, 0.30529657006263733, 0.4701671600341797, -0.16138097643852234, -0.9496369361877441, 1.562205195426941, 0.9977485537528992, -0.16666042804718018, -0.5903134346008301, -0.9005604982376099, 1.2564564943313599, 1.9183686971664429, 0.9223992824554443, 0.007752261124551296, -0.7475177049636841, -0.6093599796295166, -0.10118518769741058, 0.22806352376937866, 0.45497605204582214, 0.87892746925354, 0.06457134336233139, 0.20039023458957672, 1.40755033493042, 1.3136831521987915, -0.528606653213501, 0.3664444088935852, -0.7888544201850891, -0.43021637201309204, 0.574708878993988, 0.40196532011032104, -0.060035210102796555, 0.33160147070884705, -0.9270538687705994, -0.11157746613025665, -0.42157432436943054, -1.032148003578186, -0.7053748369216919, -0.32768523693084717, -0.2899281084537506, 1.6686960458755493, 0.08001795411109924, -0.5916250348091125, -0.06142500415444374, -0.8031068444252014, -0.11909022927284241, -1.1046077013015747, 0.30999529361724854, -0.0627702847123146, -0.12929923832416534, 0.012542049400508404, 1.9287970066070557, -1.0509862899780273, -2.2183725833892822, 0.33818891644477844, 0.20337842404842377, -0.30449989438056946, 0.15638920664787292, 1.568554162979126, 0.4679202735424042, 1.3389776945114136, 1.548972249031067, 0.9037980437278748, -0.8159496188163757, -1.3433805704116821, 0.7300122976303101, 0.9563661217689514, -1.4614646434783936, 0.7273157238960266, -0.0180923193693161, -0.6013199090957642, 0.7001903057098389, 1.2033993005752563, 0.558442234992981, -2.0409014225006104, 0.8310127854347229, -0.9476356506347656, 0.859789252281189, 0.841895341873169, 0.7152264714241028, 0.32333388924598694, 0.769401490688324, -1.3121923208236694, -1.2002986669540405, -0.8588110208511353, -0.6682284474372864, 1.8770204782485962, -0.24330969154834747, 0.6537202000617981, -0.051064617931842804, -1.3395397663116455, -0.13830843567848206, 0.6386147737503052, 0.24383948743343353, -0.28819578886032104, 0.7558584809303284, -0.7348071932792664, -1.256629467010498, -1.5249311923980713, -0.48415127396583557, -0.9936298727989197, -0.9684337377548218, 1.149186611175537, 0.7343432307243347, 0.1930672973394394, 1.850954532623291, 0.6238005757331848, 0.22926275432109833, -2.680574417114258, 0.9560208320617676, 0.36773091554641724, -0.0009971102699637413, 0.8410126566886902, 0.33952638506889343, 1.0301673412322998, 0.06845692545175552, 0.3922853469848633, -2.453990936279297, 2.2887279987335205, -0.4442341923713684, 0.763987123966217, -0.007628286723047495, -0.026131462305784225, 1.0767678022384644, 0.5783615112304688, 0.6008561253547668, -1.0252976417541504, 0.8376562595367432, -0.5908191204071045, 1.1944538354873657, 0.905910313129425, -0.7525762915611267, 0.0203220434486866, 1.3438318967819214, 0.5542787909507751, -0.5738070011138916, -0.8945772051811218, -0.8980465531349182, 0.883176326751709, 1.830693244934082, -0.1023913323879242, 0.049686629325151443, 0.712855339050293, 0.503703236579895, -1.311531662940979, -0.04096107557415962, -0.7105070352554321, -0.6707688570022583, 1.6363862752914429, 1.9398211240768433, -0.13259990513324738, -0.12280330061912537, -0.6882660984992981, -1.2867556810379028, 0.7293307781219482, -0.0445057637989521, 0.10759352147579193, 0.6364003419876099, -0.6324113607406616, 1.1128665208816528, 0.8324723243713379, 0.8840121030807495, 0.10633201897144318, 0.12738291919231415, 0.38383960723876953, -0.196217879652977, -1.0950162410736084, -0.20641279220581055, -1.1326274871826172, -2.522291898727417, 0.36469870805740356, -0.39949938654899597, -1.4157891273498535, -0.04260668158531189, -1.0189359188079834, 1.0182057619094849, -0.5386837124824524, -0.9625900983810425, -1.5830090045928955, 0.10985806584358215, -0.20191626250743866, 0.7787172794342041, -1.5957252979278564, -0.20051716268062592, 1.1272788047790527, 0.9097644090652466, -0.7593041062355042, 1.243639588356018, 0.30047351121902466, 1.0589561462402344, 0.7889264225959778, -0.4682914614677429, 0.45592790842056274, 0.08417875319719315, -1.411574363708496, 0.5010364651679993, 1.058478593826294, 0.028888482600450516, 1.4462320804595947, -0.5943548679351807, -0.03697846084833145, 0.42521172761917114, -0.448087215423584, -0.43805748224258423, -0.5140005350112915, 0.7671515345573425, 0.009789989329874516, -0.7963767051696777, 0.034450069069862366, -0.22900836169719696, -0.2972523868083954, 0.18216343224048615, -1.5612337589263916, -0.2474222630262375, -0.517966091632843, -0.6886928081512451, -1.2584707736968994, 0.013313758186995983, 1.4133654832839966, -0.7256907224655151, -0.19389721751213074, 0.4992225766181946, 0.45768916606903076, 0.495582640171051, 0.7486364841461182, -0.6400150060653687, -0.3664196729660034, -0.11032095551490784, -0.24457259476184845, 0.4217061996459961, 1.2950282096862793, -0.16081510484218597, -0.9689624309539795, 0.7327468395233154, -0.218507781624794, 0.050100453197956085, 1.9772250652313232, 0.1948307603597641, -0.8685253858566284, 0.2089012712240219, -0.7636604309082031, 1.9483264684677124, 1.5848023891448975, 1.407130241394043, -0.12150698900222778, -0.9511150121688843, 0.6276101469993591, -0.09563551098108292, -0.3662855327129364, 0.7309988737106323, 0.5621951818466187, -0.1821305751800537, -1.3293591737747192, 0.604114294052124, 1.0423985719680786, -0.7446885704994202, -0.7177056074142456, 0.017206743359565735, -0.804925262928009, 1.0230885744094849, 0.704969048500061, 0.513237476348877, 0.23044349253177643, 1.6547328233718872, 0.6867460012435913, -0.594713568687439, 0.4897165596485138, 0.3987152576446533, -0.08821944147348404, -2.04253888130188, -1.078935146331787, 0.3912805914878845, -0.3544643521308899, -1.5606249570846558, 1.3629672527313232, -1.2356168031692505, -0.7919959425926208, 0.5275100469589233, 0.18078838288784027, 1.5430727005004883, 0.29547858238220215, 1.564461588859558, 2.1019577980041504, 0.9911547303199768, 0.4032110273838043, 1.4058455228805542, -0.23571282625198364, -0.42799776792526245, 1.8718786239624023, -0.3857344388961792, 0.3862449824810028, 1.100337266921997, -0.41387754678726196, -0.970031201839447, -0.6236535906791687, -1.1681947708129883, -0.5612148642539978, 1.113206148147583, 0.1380201280117035, -1.2108253240585327, 0.18553946912288666, 1.3811947107315063, 0.12442478537559509, -0.2368019074201584, 0.45180830359458923, 0.5235032439231873, -0.7909762859344482, -0.06624148041009903, -0.9501090049743652, 0.5069106221199036, -0.2619740664958954, -0.4067293405532837, 0.4064590632915497, 0.3970758020877838, 1.1817153692245483, -0.0403282456099987, 0.21053338050842285, 1.2558786869049072, -1.360325813293457, 1.369130253791809, -0.6066492795944214, 0.12413004040718079, -2.2369937896728516, 1.4583837985992432, -0.7127153873443604, 1.9293209314346313, -2.6659374237060547, 0.2944309711456299, -0.7222653031349182, -0.36662212014198303, 0.412232905626297, -0.29613423347473145, 0.10031210631132126, -0.2977510690689087, -1.0278410911560059, -0.05555657297372818, -0.6839953660964966, 0.5380356907844543, 1.1133755445480347, 1.148288369178772, -1.0817744731903076, -0.283346951007843, -1.7210904359817505, -0.19745664298534393, -0.7544347047805786, 0.388826459646225, -2.102360725402832, -0.2525826394557953, -2.0078821182250977, -2.317542314529419, -1.3710380792617798, -0.7639381289482117, 1.1733593940734863, 0.21701979637145996, -0.7604668140411377, 1.1839509010314941, -0.2858731746673584, -1.7967466115951538, 1.0063648223876953, -2.1426126956939697 ]
https://github.com/huggingface/datasets/issues/5888
A way to upload and visualize .mp4 files (millions of them) as part of a dataset
Hi! You want to use `push_to_hub` (creates Parquet files) instead of `save_to_disk` (creates Arrow files) when creating a Hub dataset. Parquet is designed for long-term storage and takes less space than the Arrow format, and, most importantly, `load_dataset` can parse it, which should fix the viewer. Regarding the dataset generation, `Dataset.from_generator` with the video data represented as `datasets.Value("binary")` followed by `push_to_hub` should work (if the `push_to_hub` step times out, restart it to resume uploading) PS: Once the dataset is uploaded, to make working with the dataset easier, it's a good idea to add a [transform](https://huggingface.co/docs/datasets/main/en/process#format-transform) to the README that shows how to decode the binary video data into something a model can understand. Also, if you get an `ArrowInvalid` error (can happen when working with large binary data) in `Dataset.from_generator`, reduce the value of `writer_batch_size` (the default is 1000) to fix it.
**Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI
125
142
A way to upload and visualize .mp4 files (millions of them) as part of a dataset **Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI Hi! You want to use `push_to_hub` (creates Parquet files) instead of `save_to_disk` (creates Arrow files) when creating a Hub dataset. Parquet is designed for long-term storage and takes less space than the Arrow format, and, most importantly, `load_dataset` can parse it, which should fix the viewer. Regarding the dataset generation, `Dataset.from_generator` with the video data represented as `datasets.Value("binary")` followed by `push_to_hub` should work (if the `push_to_hub` step times out, restart it to resume uploading) PS: Once the dataset is uploaded, to make working with the dataset easier, it's a good idea to add a [transform](https://huggingface.co/docs/datasets/main/en/process#format-transform) to the README that shows how to decode the binary video data into something a model can understand. Also, if you get an `ArrowInvalid` error (can happen when working with large binary data) in `Dataset.from_generator`, reduce the value of `writer_batch_size` (the default is 1000) to fix it.
[ -1.1497023105621338, -1.0618493556976318, -0.7381432056427002, 1.3729249238967896, -0.22653482854366302, -1.3328652381896973, 0.10793347656726837, -1.055920124053955, 1.7080556154251099, -0.8326871991157532, 0.32068341970443726, -1.6546578407287598, 0.0007223961874842644, -0.5742367506027222, -0.7887683510780334, -0.8429839611053467, -0.45014113187789917, -0.9065365195274353, 0.987855076789856, 2.5212979316711426, 1.113106369972229, -1.3907004594802856, 2.6817209720611572, 0.6714437007904053, -0.1671142429113388, -1.0463215112686157, 0.5181214809417725, 0.07602474093437195, -1.2928231954574585, -0.5091708302497864, -0.8957023620605469, -0.04813048988580704, -0.6293628811836243, -0.5828924179077148, 0.0705682635307312, 0.37163764238357544, -0.1821485459804535, -0.4415900409221649, -0.5795335173606873, -0.6680390238761902, 0.5422411561012268, -0.37582677602767944, 1.0146174430847168, -0.3575689494609833, 1.8826510906219482, -0.5613324046134949, 0.4101714789867401, 0.7448047399520874, 1.4188734292984009, 0.22629106044769287, 0.0010013869032263756, 0.27559587359428406, 0.45654699206352234, -0.004732518456876278, 0.4302006959915161, 1.106340765953064, 0.5809706449508667, 0.5456061959266663, 0.7499739527702332, -2.155428171157837, 1.3677490949630737, -1.0517852306365967, 0.41051721572875977, 1.3899540901184082, -0.9044041633605957, 0.3829876780509949, -1.859259009361267, -0.005308625288307667, 0.5407589077949524, -2.2396087646484375, 0.16424448788166046, -1.3279733657836914, -0.45559585094451904, 0.9410344362258911, 0.28668931126594543, -1.2895469665527344, 0.26574447751045227, -0.5259294509887695, 0.9710730910301208, 0.48365160822868347, 1.162718415260315, -1.7469758987426758, -0.08456772565841675, -0.30347511172294617, 0.12421843409538269, -1.2942219972610474, -1.5049333572387695, 0.5893161296844482, 0.614861011505127, 0.543865978717804, -0.16804511845111847, 1.00705087184906, -1.0498857498168945, 0.8242203593254089, -0.9726396203041077, -1.6740918159484863, -1.4265589714050293, -2.174938678741455, -2.340158700942993, 0.8314405679702759, -0.5048323273658752, -0.48745444416999817, 1.9548417329788208, -1.0751639604568481, -1.7312188148498535, 1.164475679397583, 0.2698681056499481, 0.07965083420276642, 2.388845682144165, 0.1746750921010971, -0.654591977596283, 0.41766124963760376, -0.7126827836036682, 0.8498914837837219, -0.4055725634098053, 1.3682540655136108, 0.4611787497997284, -0.9455996155738831, 1.5984162092208862, -0.4010651409626007, 0.5749687552452087, -0.6291842460632324, -0.558109700679779, -0.9097349643707275, 0.39964935183525085, 1.9027938842773438, -0.2860518991947174, 1.6107341051101685, -0.4013499319553375, -1.6501235961914062, -1.637772798538208, 0.9077763557434082, 0.5030189156532288, -0.8386501669883728, -0.05611351877450943, -0.3995720446109772, 0.13780410587787628, -0.014307020232081413, 1.1282557249069214, 1.169356107711792, 0.734336793422699, -0.3384177088737488, -0.8640439510345459, 0.1851017326116562, -0.13056783378124237, -0.6952664852142334, -1.8609875440597534, -0.37408265471458435, 0.22161754965782166, 0.6547224521636963, -1.1041876077651978, 1.695221185684204, 1.0190560817718506, 1.954895257949829, 1.0041159391403198, -0.33690762519836426, 1.3949683904647827, 0.0868862196803093, 1.8597819805145264, -0.5554875731468201, 0.7201582193374634, -0.40389516949653625, -1.131087064743042, 0.8309517502784729, -0.35268905758857727, -2.054075241088867, -0.7173336744308472, -0.8203575015068054, -0.240075945854187, -0.6758108139038086, 0.89394611120224, -0.33053478598594666, -1.380191683769226, 0.20485042035579681, -0.5520009994506836, 0.13099420070648193, -1.1675448417663574, 0.32570770382881165, 0.7768089771270752, -0.6523140668869019, 0.004724515601992607, -0.19719405472278595, -1.3656212091445923, -0.48839813470840454, 0.25289463996887207, 1.8468351364135742, -0.7962666749954224, 0.978671669960022, 0.9707380533218384, -0.7041307091712952, -0.002080329228192568, 0.3140266537666321, -0.2565133571624756, 0.7917168736457825, -1.0311864614486694, -0.31619617342948914, 1.1494399309158325, -0.207118958234787, -0.5322213172912598, 1.485660195350647, 0.7656149864196777, -0.9690073132514954, -0.15725581347942352, -0.17051327228546143, -0.7998366355895996, 0.02333793044090271, -1.5544897317886353, -0.10169299691915512, 0.3009069561958313, -1.5181134939193726, -0.4863760471343994, -0.23560966551303864, 1.1784976720809937, -0.08254139125347137, 1.3344892263412476, -0.41500532627105713, -0.307681679725647, -0.39021071791648865, -0.4207043945789337, 0.22013330459594727, -0.21978294849395752, -0.6320565938949585, 0.26720839738845825, -0.8106014728546143, 0.45635583996772766, 1.4495631456375122, 0.42242324352264404, 0.004945648834109306, 0.5455747842788696, 1.0683382749557495, 0.26012203097343445, 0.005776979960501194, -0.8517046570777893, -1.528681993484497, 2.055696964263916, -1.519307017326355, 1.9435861110687256, 0.7332749366760254, -0.025012515485286713, -1.7521202564239502, -1.8477131128311157, 1.3276207447052002, 1.1374329328536987, 2.3390982151031494, 0.5740281343460083, 0.3259214758872986, -0.8199262022972107, -0.6390464305877686, 0.36681413650512695, -1.0062183141708374, -0.6968491673469543, 0.05804908648133278, 2.2931272983551025, 1.7849745750427246, -0.6271563172340393, -0.16010884940624237, -1.0554673671722412, 1.443878173828125, -0.16078484058380127, 0.28979137539863586, 2.0845704078674316, -0.3237047791481018, -1.1108524799346924, 1.3521807193756104, -2.2809860706329346, 0.1708119511604309, 1.9596374034881592, 0.3067854940891266, 0.11108468472957611, -1.3862721920013428, -0.6006363034248352, -0.2654963433742523, -0.389823853969574, -1.299411416053772, 0.5311797261238098, -0.3433307409286499, -0.7932563424110413, -1.5449268817901611, 0.09865204244852066, -1.1777201890945435, -1.6418530941009521, 0.33213967084884644, 1.8782511949539185, 1.9798855781555176, -0.620108962059021, 1.515956163406372, -0.2852975130081177, 0.19062963128089905, 1.245254635810852, 1.2273885011672974, 3.1406784057617188, 1.9642796516418457, -1.1634948253631592, 0.6235484480857849, -0.22456218302249908, -0.49579328298568726, 1.1148015260696411, -1.0557435750961304, 1.2500888109207153, -0.15997186303138733, -1.1281750202178955, -1.1709327697753906, 1.0102331638336182, 0.46057501435279846, 0.113388791680336, -0.48617491126060486, 1.1745232343673706, 0.036131806671619415, 1.2853858470916748, 0.5922165513038635, -0.4414118230342865, 0.6370435953140259, -0.38873109221458435, -0.5528567433357239, 1.6165871620178223, 0.19747430086135864, -1.4525386095046997, -2.2891945838928223, -0.28513312339782715, -0.8164292573928833, 0.02688891440629959, -0.5952547788619995, -0.9857959151268005, 1.6448262929916382, 0.3847711682319641, -1.3833822011947632, -0.23353616893291473, -0.34836345911026, -0.5990964770317078, 2.656471014022827, -1.4117604494094849, -0.23420193791389465, -0.9243028163909912, -0.5822162628173828, 1.6202470064163208, -1.2304621934890747, -0.1857365369796753, -1.0388197898864746, -0.6066552400588989, -1.2492294311523438, -0.5419095158576965, -0.05106119439005852, -0.9248185157775879, 0.774996280670166, 0.1071510910987854, -1.0794029235839844, -0.3320253789424896, -0.9137790203094482, 0.8414269685745239, -0.06140527501702309, 0.2529354691505432, 1.8923364877700806, 0.43138962984085083, -0.36899152398109436, 0.6698803901672363, 1.1281424760818481, 0.6357194185256958, -0.7030212879180908, 0.15309685468673706, -0.692512571811676, 0.23489165306091309, -1.2977867126464844, 0.3138241767883301, -2.8368759155273438, 0.7173376083374023, -0.08151962608098984, -0.08532734960317612, 0.027941126376390457, -1.3419381380081177, 1.0514479875564575, 2.6143267154693604, -1.1628856658935547, 0.38850870728492737, 0.27950310707092285, 1.1941890716552734, -1.605955958366394, 0.33651214838027954, -0.3855333924293518, 2.0934038162231445, 0.233733668923378, 1.1655694246292114, -0.5385949015617371, -2.224311113357544, 0.5146137475967407, -1.2493842840194702, -1.1671433448791504, 0.7322058081626892, -0.9028275012969971, 0.05535035952925682, -1.50883150100708, -0.17948919534683228, -0.9329632520675659, -1.1981325149536133, 0.7540860772132874, 0.16948364675045013, 0.41238081455230713, -0.6200785636901855, 0.2851446866989136, -2.2080581188201904, -1.4077852964401245, -0.3037473261356354, -0.9510421752929688, 0.5056678056716919, -0.28206750750541687, 0.6775429844856262, -0.1094309613108635, 0.07203928381204605, 0.37392815947532654, 1.444039225578308, 3.379112720489502, 0.19225409626960754, 0.40371501445770264, -0.16389332711696625, -0.9181488156318665, 1.4305919408798218, 1.0035802125930786, -0.016706960275769234, -0.6107439994812012, -1.016977310180664, 1.2351967096328735, 2.0147459506988525, 1.0468090772628784, 0.003624933771789074, -0.749608039855957, -0.6362948417663574, -0.012784727849066257, 0.17547295987606049, 0.4986937940120697, 0.9150784015655518, 0.11519606411457062, 0.20600338280200958, 1.4319846630096436, 1.24068284034729, -0.4812307059764862, 0.396633505821228, -0.7777378559112549, -0.48428264260292053, 0.4558841586112976, 0.31827059388160706, -0.007601226679980755, 0.35339680314064026, -1.010118842124939, -0.19339759647846222, -0.4335852265357971, -1.0326437950134277, -0.7007679343223572, -0.4824729561805725, -0.39497068524360657, 1.6869572401046753, 0.11203441768884659, -0.49779418110847473, -0.0916147232055664, -0.6875787973403931, -0.12191209197044373, -1.0810158252716064, 0.31853577494621277, -0.0624365359544754, -0.06298407167196274, -0.11682334542274475, 1.7343519926071167, -0.9013159275054932, -2.044691801071167, 0.22486795485019684, 0.19037191569805145, -0.41846156120300293, 0.21775852143764496, 1.5538792610168457, 0.5103592872619629, 1.475874423980713, 1.4785432815551758, 0.969072699546814, -0.669898509979248, -1.331447720527649, 0.6718887686729431, 0.8610044717788696, -1.4190952777862549, 0.8662242293357849, 0.0629543662071228, -0.5479812026023865, 0.7917929291725159, 1.3340020179748535, 0.3850649297237396, -2.068502426147461, 0.7948173880577087, -0.9792130589485168, 0.7683563828468323, 0.7010643482208252, 0.7580544948577881, 0.25480201840400696, 0.8142675757408142, -1.218386173248291, -1.2003538608551025, -0.8279100060462952, -0.6497458219528198, 1.9611157178878784, -0.16981832683086395, 0.6073716282844543, -0.1748335063457489, -1.2597569227218628, -0.13709913194179535, 0.6984551548957825, 0.4276115894317627, -0.3971344530582428, 0.7924594879150391, -0.657770037651062, -1.1609042882919312, -1.3968721628189087, -0.43073827028274536, -1.0591026544570923, -0.8768201470375061, 1.0443458557128906, 0.8198866844177246, 0.3539223372936249, 1.8713589906692505, 0.6212613582611084, 0.2978016436100006, -2.756678342819214, 0.8584862351417542, 0.25224605202674866, -0.08496209979057312, 0.9175853133201599, 0.2755507230758667, 1.039567232131958, -0.05993814021348953, 0.5411058068275452, -2.3664491176605225, 2.229658365249634, -0.2909987270832062, 0.7518004775047302, -0.05046985298395157, -0.16379907727241516, 1.1256142854690552, 0.6069121956825256, 0.562211275100708, -1.1427069902420044, 0.6836445331573486, -0.5539820194244385, 1.1406339406967163, 0.8948348760604858, -0.7689124941825867, 0.0008433964103460312, 1.366767168045044, 0.5092375874519348, -0.5087274312973022, -0.9787659049034119, -0.9234037399291992, 0.8732895255088806, 1.767606496810913, -0.1735578179359436, -0.06467293202877045, 0.8441107273101807, 0.6587473750114441, -1.2690008878707886, 0.15114624798297882, -0.7564716339111328, -0.7645264267921448, 1.5909159183502197, 2.030325412750244, -0.09612838923931122, -0.16538578271865845, -0.6843560934066772, -1.1931897401809692, 0.7126395106315613, 0.048934441059827805, 0.12962840497493744, 0.5694393515586853, -0.6325225830078125, 1.1411346197128296, 0.8571210503578186, 0.9574694633483887, 0.11750735342502594, 0.3464837968349457, 0.35740533471107483, -0.32251158356666565, -1.122821569442749, -0.22207634150981903, -1.0901607275009155, -2.496142625808716, 0.5102019906044006, -0.2980606257915497, -1.5654808282852173, 0.03899456560611725, -1.0326367616653442, 0.9017868041992188, -0.5603236556053162, -1.050150752067566, -1.5930869579315186, 0.19364134967327118, -0.021318070590496063, 0.9218793511390686, -1.6316243410110474, -0.032447390258312225, 1.1165146827697754, 0.807699978351593, -0.6055546402931213, 1.0163977146148682, 0.32678279280662537, 0.9686585068702698, 0.8156103491783142, -0.43647336959838867, 0.4324803948402405, 0.1000642329454422, -1.2873549461364746, 0.4742148518562317, 1.1365872621536255, 0.15806125104427338, 1.3366059064865112, -0.5713258385658264, 0.09683115780353546, 0.41846945881843567, -0.5100558996200562, -0.3602829575538635, -0.5124908685684204, 0.7077438831329346, 0.057350996881723404, -0.8524724245071411, 0.05503484979271889, -0.1239272803068161, -0.25041893124580383, 0.1990966945886612, -1.487040400505066, -0.28048110008239746, -0.4692080318927765, -0.5529721975326538, -1.2017128467559814, -0.07976923882961273, 1.4840331077575684, -0.7162567973136902, -0.1921674907207489, 0.5433793663978577, 0.48304063081741333, 0.573899507522583, 0.6317101716995239, -0.6088836789131165, -0.3656173348426819, -0.27220794558525085, -0.35272255539894104, 0.20585401356220245, 1.3306961059570312, -0.1809021532535553, -0.9502238035202026, 0.7517233490943909, -0.4052676558494568, 0.01975582167506218, 1.985709309577942, 0.13211332261562347, -0.748869001865387, 0.30869460105895996, -0.6997629404067993, 1.820272445678711, 1.808833360671997, 1.3307368755340576, -0.097667396068573, -0.915736198425293, 0.542095959186554, -0.2322014570236206, -0.3733319044113159, 0.9638013243675232, 0.42780935764312744, -0.19727060198783875, -1.3830755949020386, 0.7023813128471375, 1.3391172885894775, -0.8725053071975708, -0.7725145220756531, 0.06716886162757874, -0.8156200647354126, 1.0723817348480225, 0.6548810601234436, 0.4495646357536316, 0.23256786167621613, 1.6234636306762695, 0.6770367622375488, -0.4034847021102905, 0.5328231453895569, 0.5252135396003723, -0.21024560928344727, -2.1495442390441895, -1.1797257661819458, 0.30666854977607727, -0.4617260694503784, -1.5982670783996582, 1.308590054512024, -1.1299625635147095, -0.9096099734306335, 0.5678352117538452, 0.11085328459739685, 1.5171384811401367, 0.4749829173088074, 1.590609073638916, 2.1641626358032227, 0.9016456604003906, 0.42471736669540405, 1.3639435768127441, -0.02817400172352791, -0.5173363089561462, 1.8669456243515015, -0.435062050819397, 0.5375114679336548, 1.1160269975662231, -0.3229520320892334, -1.0145485401153564, -0.7211276292800903, -1.1457880735397339, -0.6028578877449036, 1.123989224433899, 0.10964730381965637, -1.173207402229309, 0.2529924809932709, 1.5912288427352905, 0.14115098118782043, -0.31029844284057617, 0.601348340511322, 0.3692690134048462, -0.7224066257476807, -0.06376650184392929, -0.927513599395752, 0.4244127869606018, -0.26689279079437256, -0.3701731562614441, 0.390371710062027, 0.5197346210479736, 1.2190722227096558, -0.08144017308950424, 0.06182578578591347, 1.2112103700637817, -1.4666463136672974, 1.4070680141448975, -0.6039083003997803, 0.2526005208492279, -2.4072704315185547, 1.5250393152236938, -0.8021772503852844, 1.9181665182113647, -2.5936317443847656, 0.3678504228591919, -0.6805423498153687, -0.5295681953430176, 0.3274507224559784, -0.3219694197177887, 0.1220298558473587, -0.13035880029201508, -1.1482679843902588, 0.01519694272428751, -0.719463586807251, 0.5536879897117615, 1.0765447616577148, 1.3946571350097656, -1.1372227668762207, -0.34897342324256897, -1.735451102256775, -0.21464313566684723, -0.6827557682991028, 0.3393164873123169, -2.0280635356903076, -0.14931483566761017, -1.8768627643585205, -2.3502817153930664, -1.427899956703186, -0.8912020921707153, 1.0796394348144531, 0.13945652544498444, -0.8415999412536621, 1.1115316152572632, -0.34089356660842896, -1.878493309020996, 1.0782557725906372, -2.201305627822876 ]
https://github.com/huggingface/datasets/issues/5888
A way to upload and visualize .mp4 files (millions of them) as part of a dataset
One issue here is that Dataset.from_generator can work well for the non 'infinite sampling' version of the dataset. The training set for example is often sampled dynamically given the video files that I have uploaded. I worry that storing the video data as binary means that I'll end up duplicating a lot of the data. Furthermore, storing video data as anything but .mp4 would quickly make the dataset size from 1.9TB to 1PB.
**Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI
125
73
A way to upload and visualize .mp4 files (millions of them) as part of a dataset **Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI One issue here is that Dataset.from_generator can work well for the non 'infinite sampling' version of the dataset. The training set for example is often sampled dynamically given the video files that I have uploaded. I worry that storing the video data as binary means that I'll end up duplicating a lot of the data. Furthermore, storing video data as anything but .mp4 would quickly make the dataset size from 1.9TB to 1PB.
[ -1.20276939868927, -1.092748999595642, -0.7833294868469238, 1.3399149179458618, -0.22328123450279236, -1.2911224365234375, 0.04617753252387047, -1.0531271696090698, 1.6986361742019653, -0.7968714237213135, 0.26411786675453186, -1.6592893600463867, -0.013823829591274261, -0.5643139481544495, -0.7469356656074524, -0.8398252129554749, -0.42322462797164917, -0.9262206554412842, 0.9924043416976929, 2.5327041149139404, 1.0729917287826538, -1.4052932262420654, 2.700981616973877, 0.6985998153686523, -0.144452303647995, -1.0714550018310547, 0.5614445805549622, 0.1023070216178894, -1.302757740020752, -0.5077900290489197, -0.9034086465835571, 0.007311411201953888, -0.6278192400932312, -0.5339510440826416, 0.06529591232538223, 0.30597999691963196, -0.15323218703269958, -0.4263828694820404, -0.5978861451148987, -0.6361153721809387, 0.5014297962188721, -0.36369431018829346, 0.9840688109397888, -0.3485555946826935, 1.8820244073867798, -0.5297216773033142, 0.33565378189086914, 0.73874431848526, 1.4110747575759888, 0.24882718920707703, 0.020791299641132355, 0.23339760303497314, 0.4970844089984894, -0.04087554290890694, 0.3735199272632599, 1.1096699237823486, 0.5991883873939514, 0.5032370090484619, 0.7274938821792603, -2.145984172821045, 1.3812609910964966, -1.050956130027771, 0.41166606545448303, 1.433029055595398, -0.9429226517677307, 0.4676384925842285, -1.8458760976791382, -0.03101292811334133, 0.5250555872917175, -2.2591590881347656, 0.13230189681053162, -1.3079719543457031, -0.48984837532043457, 0.8962111473083496, 0.24137744307518005, -1.298542857170105, 0.2904217541217804, -0.562870442867279, 0.9705747365951538, 0.49088093638420105, 1.2047230005264282, -1.764588713645935, -0.0786358043551445, -0.27216243743896484, 0.12129367142915726, -1.3337225914001465, -1.4751043319702148, 0.5925583839416504, 0.6414400339126587, 0.5121904015541077, -0.1552053689956665, 0.9571358561515808, -1.064286231994629, 0.8551972508430481, -0.9068753719329834, -1.671881914138794, -1.4298112392425537, -2.22998046875, -2.3580565452575684, 0.885774552822113, -0.4932772219181061, -0.5001901388168335, 1.9368168115615845, -1.1069207191467285, -1.7295900583267212, 1.1756376028060913, 0.25406455993652344, 0.09277410805225372, 2.430846929550171, 0.17250436544418335, -0.6526177525520325, 0.3673200011253357, -0.7073829770088196, 0.888316810131073, -0.42204999923706055, 1.3869388103485107, 0.49178919196128845, -0.8964284658432007, 1.5926433801651, -0.39037975668907166, 0.5262618064880371, -0.621036171913147, -0.5282953381538391, -0.9491351842880249, 0.4256199598312378, 1.9009442329406738, -0.27607861161231995, 1.6646889448165894, -0.412955105304718, -1.6939603090286255, -1.6318016052246094, 0.8650306463241577, 0.488765150308609, -0.8868765830993652, -0.04638533294200897, -0.37126702070236206, 0.13753408193588257, 0.034458357840776443, 1.1066932678222656, 1.220028281211853, 0.7075208425521851, -0.3062393367290497, -0.9149027466773987, 0.20236346125602722, -0.16315707564353943, -0.6894406080245972, -1.8652048110961914, -0.39493775367736816, 0.23863214254379272, 0.6863094568252563, -1.153597116470337, 1.6411588191986084, 1.0296818017959595, 1.9029381275177002, 1.0266318321228027, -0.3592417240142822, 1.4038383960723877, 0.07583148777484894, 1.8406133651733398, -0.5863551497459412, 0.7515581846237183, -0.36328125, -1.1225450038909912, 0.8129972219467163, -0.32345715165138245, -2.0213210582733154, -0.7588881850242615, -0.8298259377479553, -0.23978647589683533, -0.6709206104278564, 0.855761706829071, -0.3249835669994354, -1.3443620204925537, 0.25280627608299255, -0.5721095204353333, 0.1585879921913147, -1.146016240119934, 0.35557857155799866, 0.7814372777938843, -0.6558788418769836, 0.007196386344730854, -0.209337055683136, -1.3764947652816772, -0.500166654586792, 0.2372157871723175, 1.858910322189331, -0.8117535710334778, 0.9781512022018433, 0.9272294044494629, -0.7271785140037537, 0.015963194891810417, 0.33661752939224243, -0.2643246650695801, 0.8086286187171936, -1.0379867553710938, -0.32011768221855164, 1.0958662033081055, -0.2430497109889984, -0.4756332337856293, 1.483000636100769, 0.7932278513908386, -0.9490218162536621, -0.1854492425918579, -0.17322063446044922, -0.8113167881965637, 0.008183518424630165, -1.5845035314559937, -0.1586136817932129, 0.23698541522026062, -1.4908878803253174, -0.5193027853965759, -0.26447224617004395, 1.1417036056518555, -0.08799411356449127, 1.3370108604431152, -0.44599103927612305, -0.31045493483543396, -0.4242416322231293, -0.41880255937576294, 0.27633169293403625, -0.2396913766860962, -0.6231681704521179, 0.32815760374069214, -0.8739585280418396, 0.4507080316543579, 1.4282130002975464, 0.49632200598716736, -0.007077443413436413, 0.5476752519607544, 1.055452823638916, 0.2942282259464264, 0.021230854094028473, -0.8187966346740723, -1.5025546550750732, 2.091606378555298, -1.5132153034210205, 1.9169725179672241, 0.7317365407943726, -0.04316264018416405, -1.7551658153533936, -1.855214238166809, 1.3292375802993774, 1.1768697500228882, 2.343202829360962, 0.5699994564056396, 0.3072611391544342, -0.8107805252075195, -0.6716881394386292, 0.35710254311561584, -1.0428825616836548, -0.7194766402244568, 0.03222557157278061, 2.2735047340393066, 1.7924267053604126, -0.6912001967430115, -0.18136629462242126, -1.059088110923767, 1.4016549587249756, -0.13126784563064575, 0.24371883273124695, 2.100283145904541, -0.3167515993118286, -1.1242218017578125, 1.346274733543396, -2.29941987991333, 0.15983587503433228, 1.9592643976211548, 0.34349024295806885, 0.07587872445583344, -1.4262481927871704, -0.6361833214759827, -0.26313015818595886, -0.369297057390213, -1.2673757076263428, 0.5849542021751404, -0.3682851493358612, -0.8063300251960754, -1.5943084955215454, 0.0660552978515625, -1.1980737447738647, -1.6507062911987305, 0.34921666979789734, 1.834204077720642, 1.984937071800232, -0.6388716101646423, 1.465928554534912, -0.21262317895889282, 0.17629528045654297, 1.2415094375610352, 1.2237493991851807, 3.152630090713501, 1.9618233442306519, -1.1342198848724365, 0.6024483442306519, -0.20367476344108582, -0.4657581150531769, 1.0857034921646118, -1.0530455112457275, 1.2118793725967407, -0.1588866114616394, -1.1385364532470703, -1.1541707515716553, 1.0217814445495605, 0.45140570402145386, 0.07906635105609894, -0.4872504770755768, 1.1669986248016357, 0.008505351841449738, 1.3092057704925537, 0.5682766437530518, -0.42347681522369385, 0.606076717376709, -0.41866227984428406, -0.5253602266311646, 1.6420820951461792, 0.19020003080368042, -1.4709124565124512, -2.2614972591400146, -0.31417471170425415, -0.7723274827003479, -0.007965405471622944, -0.5712832808494568, -0.9914066195487976, 1.601251244544983, 0.4287853240966797, -1.3930455446243286, -0.2457175850868225, -0.40533891320228577, -0.6597614884376526, 2.614220142364502, -1.4433460235595703, -0.24112674593925476, -0.8966938257217407, -0.5455567836761475, 1.578292965888977, -1.2416702508926392, -0.16540703177452087, -1.05754554271698, -0.6037134528160095, -1.2645851373672485, -0.5523480176925659, -0.083757683634758, -0.8962113857269287, 0.7306187152862549, 0.10181007534265518, -0.9897101521492004, -0.29668834805488586, -0.9270899295806885, 0.7909007668495178, -0.03499830514192581, 0.2804190218448639, 1.8846631050109863, 0.4286491274833679, -0.3703630268573761, 0.6440331935882568, 1.0930578708648682, 0.6395970582962036, -0.684514582157135, 0.16018974781036377, -0.6949833631515503, 0.216326504945755, -1.282408356666565, 0.3162965476512909, -2.8301281929016113, 0.7173338532447815, -0.0640467032790184, -0.10760601609945297, 0.042183615267276764, -1.305022120475769, 1.1152665615081787, 2.5997352600097656, -1.1578493118286133, 0.40885767340660095, 0.2540985643863678, 1.2089569568634033, -1.5974143743515015, 0.3892747163772583, -0.35103073716163635, 2.126854181289673, 0.2872150242328644, 1.150229811668396, -0.5410391092300415, -2.2371113300323486, 0.5174834132194519, -1.2198764085769653, -1.1428154706954956, 0.7013859748840332, -0.9022049903869629, 0.05965420603752136, -1.5300493240356445, -0.1926368772983551, -0.8802346587181091, -1.2250012159347534, 0.7807373404502869, 0.1750166416168213, 0.4231192469596863, -0.6170194745063782, 0.2743639349937439, -2.228294610977173, -1.392444372177124, -0.29347825050354004, -0.9767232537269592, 0.5141138434410095, -0.28984296321868896, 0.6578443646430969, -0.08990631252527237, 0.060835100710392, 0.33136627078056335, 1.4095910787582397, 3.379032611846924, 0.20539474487304688, 0.45255157351493835, -0.12927241623401642, -0.9048352837562561, 1.4428800344467163, 1.0077550411224365, -0.025982815772294998, -0.6050653457641602, -1.0549982786178589, 1.2449681758880615, 1.9976465702056885, 1.0605976581573486, 0.04839213192462921, -0.6971263289451599, -0.6500694751739502, -0.0022650170139968395, 0.19769105315208435, 0.5052975416183472, 0.9608373045921326, 0.05930192768573761, 0.21622776985168457, 1.4946556091308594, 1.2559797763824463, -0.5103325247764587, 0.36910155415534973, -0.7743228077888489, -0.5361263751983643, 0.46795862913131714, 0.3329617977142334, -0.0142215546220541, 0.3555239140987396, -1.0295134782791138, -0.1700560748577118, -0.3948056697845459, -1.069169521331787, -0.6874191164970398, -0.4730110168457031, -0.38221368193626404, 1.6767135858535767, 0.16439616680145264, -0.5107807517051697, -0.13894766569137573, -0.728119969367981, -0.11118298023939133, -1.0675532817840576, 0.3242177665233612, -0.02598623000085354, -0.048980917781591415, -0.07831224799156189, 1.821800708770752, -0.8778340816497803, -2.050295114517212, 0.2425498366355896, 0.20662879943847656, -0.39136168360710144, 0.1899127960205078, 1.5613503456115723, 0.48554983735084534, 1.451667308807373, 1.4570273160934448, 0.9583687782287598, -0.6646102070808411, -1.3472834825515747, 0.6510009169578552, 0.7994493246078491, -1.4279394149780273, 0.8543535470962524, 0.021696191281080246, -0.5555258393287659, 0.7890429496765137, 1.3709689378738403, 0.3416847586631775, -2.0771572589874268, 0.8295243978500366, -0.9897971153259277, 0.756016731262207, 0.6698910593986511, 0.7856441140174866, 0.2213212251663208, 0.823876678943634, -1.2545034885406494, -1.1878151893615723, -0.8669317960739136, -0.6220653653144836, 1.9827795028686523, -0.1767440140247345, 0.5864776968955994, -0.18142765760421753, -1.248286485671997, -0.12912218272686005, 0.6810104846954346, 0.35210326313972473, -0.35683566331863403, 0.8412561416625977, -0.6663082838058472, -1.2403020858764648, -1.4189810752868652, -0.43349361419677734, -1.0060817003250122, -0.8708429932594299, 1.0376648902893066, 0.8268747329711914, 0.28749293088912964, 1.8826647996902466, 0.576432466506958, 0.2669160068035126, -2.7758984565734863, 0.8507771492004395, 0.2270558476448059, -0.0596386082470417, 0.955708384513855, 0.24964496493339539, 1.0526924133300781, -0.06638045608997345, 0.502311110496521, -2.3464417457580566, 2.2177505493164062, -0.3069736361503601, 0.8123660087585449, -0.06531617045402527, -0.13976448774337769, 1.1672766208648682, 0.657504677772522, 0.6586276292800903, -1.129037618637085, 0.7291249632835388, -0.541120171546936, 1.1252548694610596, 0.9570302367210388, -0.730799674987793, 0.011162169277668, 1.3457177877426147, 0.5110383033752441, -0.47571879625320435, -0.9745063185691833, -0.9052373170852661, 0.8555974960327148, 1.8351999521255493, -0.17778280377388, -0.05493301525712013, 0.8121457099914551, 0.6640602946281433, -1.326642394065857, 0.1265067458152771, -0.802876889705658, -0.7338609099388123, 1.5712966918945312, 2.0464015007019043, -0.05990201607346535, -0.18267101049423218, -0.6232691407203674, -1.2058649063110352, 0.6505255103111267, 0.07498431205749512, 0.18801164627075195, 0.6007729172706604, -0.650296688079834, 1.1375811100006104, 0.8573288917541504, 0.9741582870483398, 0.1097056046128273, 0.3385607898235321, 0.3661687672138214, -0.2535582482814789, -1.1201046705245972, -0.23603519797325134, -1.0789324045181274, -2.409860849380493, 0.5209934711456299, -0.3002067804336548, -1.593673586845398, 0.03374224156141281, -1.0325984954833984, 0.9150180220603943, -0.5449970364570618, -1.0561758279800415, -1.6357719898223877, 0.1795310080051422, -0.0816296860575676, 0.9056987762451172, -1.6255120038986206, -0.044759009033441544, 1.1589497327804565, 0.8292352557182312, -0.5556464791297913, 1.0423057079315186, 0.3251214325428009, 0.9850724935531616, 0.8039649128913879, -0.4359273612499237, 0.3725947439670563, 0.12121870368719101, -1.2800785303115845, 0.4697420299053192, 1.1068542003631592, 0.1749664545059204, 1.3178472518920898, -0.632529616355896, 0.12651720643043518, 0.4567463994026184, -0.5033402442932129, -0.33827242255210876, -0.4856683611869812, 0.727380096912384, 0.047656383365392685, -0.8439066410064697, 0.03776925429701805, -0.1719021499156952, -0.23612463474273682, 0.2295917570590973, -1.4807851314544678, -0.31405824422836304, -0.4992184340953827, -0.5184441804885864, -1.1864783763885498, -0.0643124133348465, 1.495883584022522, -0.7508338689804077, -0.17513173818588257, 0.5369223356246948, 0.5226469039916992, 0.6174156069755554, 0.6066873073577881, -0.5579078793525696, -0.37836959958076477, -0.2417762577533722, -0.3492588996887207, 0.1579647958278656, 1.2614096403121948, -0.1942499876022339, -0.980779230594635, 0.790285587310791, -0.3826726973056793, 0.04291709512472153, 2.0088019371032715, 0.0824788361787796, -0.748816192150116, 0.29533159732818604, -0.6975532174110413, 1.8240153789520264, 1.7815312147140503, 1.3549944162368774, -0.09488614648580551, -0.9303481578826904, 0.5400446653366089, -0.18027585744857788, -0.34871137142181396, 0.9342758655548096, 0.49681511521339417, -0.1754695475101471, -1.3865174055099487, 0.6618852019309998, 1.3102526664733887, -0.9253715872764587, -0.7421584129333496, 0.05215948447585106, -0.8368672728538513, 1.0697234869003296, 0.6646952033042908, 0.47166889905929565, 0.20567995309829712, 1.701170802116394, 0.6308013796806335, -0.4429534375667572, 0.5243246555328369, 0.5437542796134949, -0.2322380244731903, -2.1403427124023438, -1.1534970998764038, 0.2685459554195404, -0.390922486782074, -1.574418067932129, 1.3027819395065308, -1.1235456466674805, -0.8725383281707764, 0.570925772190094, 0.12478112429380417, 1.478445053100586, 0.4462408721446991, 1.6051615476608276, 2.1528613567352295, 0.8836393356323242, 0.3975740671157837, 1.346696138381958, -0.0261175986379385, -0.5260936617851257, 1.8717128038406372, -0.4011499881744385, 0.5415687561035156, 1.1316555738449097, -0.32402172684669495, -0.9849606156349182, -0.701590359210968, -1.0502040386199951, -0.5833550691604614, 1.139756441116333, 0.11960474401712418, -1.173933982849121, 0.21639487147331238, 1.5713691711425781, 0.1519692838191986, -0.33303624391555786, 0.5603861808776855, 0.41593217849731445, -0.6647524237632751, -0.05734146758913994, -0.9853745102882385, 0.40597206354141235, -0.27120962738990784, -0.37834322452545166, 0.38052791357040405, 0.49629029631614685, 1.2104495763778687, -0.058056481182575226, 0.07051980495452881, 1.2756034135818481, -1.4580153226852417, 1.4424574375152588, -0.5622743368148804, 0.21465376019477844, -2.372960090637207, 1.549083948135376, -0.7965061068534851, 1.9322818517684937, -2.5586860179901123, 0.33855342864990234, -0.6990139484405518, -0.5175417065620422, 0.3467558026313782, -0.33323904871940613, 0.15328863263130188, -0.14265739917755127, -1.1188020706176758, 0.031258974224328995, -0.7307648062705994, 0.539601743221283, 1.0981709957122803, 1.3480576276779175, -1.1082937717437744, -0.33447688817977905, -1.71506667137146, -0.237461656332016, -0.6975609660148621, 0.3639644384384155, -2.0137271881103516, -0.187964528799057, -1.861750841140747, -2.3450963497161865, -1.436460018157959, -0.8941209316253662, 1.06923508644104, 0.11913236230611801, -0.8696792125701904, 1.1006438732147217, -0.36248189210891724, -1.8751133680343628, 1.1100635528564453, -2.1797962188720703 ]
https://github.com/huggingface/datasets/issues/5888
A way to upload and visualize .mp4 files (millions of them) as part of a dataset
> storing video data as anything but .mp4 What I mean by storing as `datasets.Value("binary")` is embedding raw MP4 bytes in the Arrow table, but, indeed, this would waste a lot of space if there are duplicates. So I see two options: * if one video is not mapped to too many samples, you can embed the video bytes and do "group by" on the rest of the columns (this would turn them into lists) to avoid duplicating them (then, it should be easy to define a `map` in the README that samples the video data to "unpack" the samples) * you can create a dataset script that downloads the video files and embeds their file paths into the Arrow file Also, I misread MP4 as MP3. We need to add a `Video` feature to the `datasets` lib to support MP4 files in the viewer (a bit trickier to implement than the `Image` feature due to the Arrow limitations).
**Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI
125
159
A way to upload and visualize .mp4 files (millions of them) as part of a dataset **Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI > storing video data as anything but .mp4 What I mean by storing as `datasets.Value("binary")` is embedding raw MP4 bytes in the Arrow table, but, indeed, this would waste a lot of space if there are duplicates. So I see two options: * if one video is not mapped to too many samples, you can embed the video bytes and do "group by" on the rest of the columns (this would turn them into lists) to avoid duplicating them (then, it should be easy to define a `map` in the README that samples the video data to "unpack" the samples) * you can create a dataset script that downloads the video files and embeds their file paths into the Arrow file Also, I misread MP4 as MP3. We need to add a `Video` feature to the `datasets` lib to support MP4 files in the viewer (a bit trickier to implement than the `Image` feature due to the Arrow limitations).
[ -1.2151069641113281, -1.0723611116409302, -0.7809685468673706, 1.3403688669204712, -0.21745362877845764, -1.2955981492996216, 0.07379093766212463, -1.0556073188781738, 1.7011977434158325, -0.7921388745307922, 0.2987508475780487, -1.6309446096420288, -0.009197486564517021, -0.5874087810516357, -0.791235089302063, -0.8230173587799072, -0.4514038860797882, -0.9122757911682129, 0.9787579774856567, 2.570890188217163, 1.0947158336639404, -1.432747721672058, 2.6914944648742676, 0.693752110004425, -0.14692442119121552, -1.0395954847335815, 0.5173202157020569, 0.09153582155704498, -1.287936806678772, -0.5171891450881958, -0.9072665572166443, -0.012058231048285961, -0.601081132888794, -0.5366396903991699, 0.03564194589853287, 0.35631251335144043, -0.16412591934204102, -0.4182395339012146, -0.5910018682479858, -0.6636571884155273, 0.5213100910186768, -0.39341819286346436, 1.017345666885376, -0.34033188223838806, 1.8651541471481323, -0.5367074012756348, 0.369861900806427, 0.7352606058120728, 1.4105020761489868, 0.2571554481983185, 0.004792134277522564, 0.28180018067359924, 0.4693261384963989, -0.06084509938955307, 0.40895286202430725, 1.1173373460769653, 0.614486575126648, 0.48829904198646545, 0.7703412175178528, -2.1363930702209473, 1.375077486038208, -1.0357762575149536, 0.437252938747406, 1.4156537055969238, -0.912739634513855, 0.42199158668518066, -1.8612152338027954, -0.0372985377907753, 0.5137825012207031, -2.2706704139709473, 0.1875201314687729, -1.2898143529891968, -0.47511357069015503, 0.901229739189148, 0.25397783517837524, -1.3020190000534058, 0.2876223623752594, -0.5294700860977173, 0.9642366170883179, 0.4605374336242676, 1.1890217065811157, -1.7346386909484863, -0.09034540504217148, -0.278886616230011, 0.15693767368793488, -1.2757071256637573, -1.482170581817627, 0.5603234767913818, 0.6121344566345215, 0.5156126022338867, -0.16999973356723785, 0.9701364040374756, -1.0479003190994263, 0.8583934307098389, -0.9388669729232788, -1.65274178981781, -1.4434360265731812, -2.237912178039551, -2.345292329788208, 0.8874003887176514, -0.5040271878242493, -0.49568089842796326, 1.9512817859649658, -1.076950192451477, -1.7063380479812622, 1.1724803447723389, 0.2887131869792938, 0.08613046258687973, 2.4119560718536377, 0.16899605095386505, -0.6819719076156616, 0.42195621132850647, -0.7237429022789001, 0.9012594223022461, -0.44508588314056396, 1.3739866018295288, 0.4670792520046234, -0.908187985420227, 1.5922564268112183, -0.423202782869339, 0.5162692666053772, -0.6301723718643188, -0.5460940599441528, -0.9289113879203796, 0.4638368487358093, 1.8703347444534302, -0.2795201241970062, 1.6295198202133179, -0.416418194770813, -1.6750670671463013, -1.6791810989379883, 0.9046867489814758, 0.5236565470695496, -0.8688080310821533, -0.016952943056821823, -0.4033013582229614, 0.1325673907995224, 0.03677436709403992, 1.1090432405471802, 1.216889500617981, 0.7110095024108887, -0.3207082152366638, -0.9055919647216797, 0.19774368405342102, -0.1546008288860321, -0.6800472736358643, -1.8633487224578857, -0.3903520703315735, 0.2534610629081726, 0.632332980632782, -1.1336559057235718, 1.6581923961639404, 1.0315253734588623, 1.9418175220489502, 1.0071290731430054, -0.3114718198776245, 1.4333667755126953, 0.07815637439489365, 1.853731632232666, -0.5797626972198486, 0.7129519581794739, -0.3769865036010742, -1.1364511251449585, 0.8434046506881714, -0.3390779197216034, -2.0591495037078857, -0.7196542620658875, -0.8267388939857483, -0.2302646040916443, -0.6802983283996582, 0.8789745569229126, -0.3275500535964966, -1.3360984325408936, 0.2489084154367447, -0.5900131464004517, 0.1149265393614769, -1.165338158607483, 0.3401458263397217, 0.7839419841766357, -0.6490627527236938, 0.004319002851843834, -0.18831323087215424, -1.357493281364441, -0.5026394128799438, 0.23049497604370117, 1.8536884784698486, -0.8075545430183411, 0.9598951935768127, 0.9712108373641968, -0.7095539569854736, 0.014378983527421951, 0.34989380836486816, -0.27510514855384827, 0.8040672540664673, -1.054527997970581, -0.3006492555141449, 1.1131168603897095, -0.19292040169239044, -0.48020046949386597, 1.4584180116653442, 0.7909599542617798, -0.9766466617584229, -0.15772752463817596, -0.13946449756622314, -0.8196026086807251, 0.04231256991624832, -1.5638889074325562, -0.1455242782831192, 0.25771546363830566, -1.5229617357254028, -0.5175056457519531, -0.2554374635219574, 1.1373963356018066, -0.1107659712433815, 1.3413766622543335, -0.4730905294418335, -0.28551504015922546, -0.40556207299232483, -0.427943617105484, 0.21991001069545746, -0.24422261118888855, -0.6429933309555054, 0.3163081705570221, -0.8385701775550842, 0.4506405293941498, 1.433233380317688, 0.4699702858924866, -0.00041294610127806664, 0.5259085297584534, 1.042907953262329, 0.2819480299949646, 0.02602561004459858, -0.843940019607544, -1.5230177640914917, 2.0714805126190186, -1.5134731531143188, 1.9401953220367432, 0.7649547457695007, -0.009559051133692265, -1.709246039390564, -1.8537925481796265, 1.3556801080703735, 1.1702989339828491, 2.3737785816192627, 0.5633809566497803, 0.29178914427757263, -0.8141772747039795, -0.6628211140632629, 0.35000479221343994, -1.0657129287719727, -0.7369112372398376, 0.02583295665681362, 2.295494318008423, 1.7929143905639648, -0.6571863293647766, -0.18066374957561493, -1.0513477325439453, 1.4292316436767578, -0.11714139580726624, 0.24271424114704132, 2.0563547611236572, -0.30026957392692566, -1.1181825399398804, 1.3328728675842285, -2.3006396293640137, 0.15612216293811798, 1.9693893194198608, 0.3113354444503784, 0.10455255210399628, -1.3870759010314941, -0.6042056083679199, -0.2690385580062866, -0.3651929199695587, -1.242592453956604, 0.5776371955871582, -0.3290407061576843, -0.8008649945259094, -1.5924046039581299, 0.09892525523900986, -1.197811484336853, -1.6175150871276855, 0.35045382380485535, 1.836452841758728, 2.0099637508392334, -0.640508770942688, 1.5086100101470947, -0.25888770818710327, 0.18676882982254028, 1.2099815607070923, 1.2353039979934692, 3.1694395542144775, 1.9491280317306519, -1.1342666149139404, 0.5629479289054871, -0.22725588083267212, -0.4697432518005371, 1.0781424045562744, -1.0609495639801025, 1.2253129482269287, -0.12432444095611572, -1.1084808111190796, -1.1395621299743652, 0.9857879281044006, 0.4644142687320709, 0.10617091506719589, -0.49260374903678894, 1.1492944955825806, 0.0200485922396183, 1.3235211372375488, 0.5887290239334106, -0.3852131962776184, 0.6106920838356018, -0.374290406703949, -0.5189922451972961, 1.6234557628631592, 0.1955401748418808, -1.4950038194656372, -2.264620780944824, -0.2678123712539673, -0.8197551965713501, 0.026019202545285225, -0.5706035494804382, -1.0010063648223877, 1.6266837120056152, 0.3731655478477478, -1.3633311986923218, -0.24678829312324524, -0.3838847279548645, -0.6290728449821472, 2.602874755859375, -1.4527543783187866, -0.2616126835346222, -0.902110755443573, -0.5450030565261841, 1.582404375076294, -1.2365829944610596, -0.1744362711906433, -1.05110764503479, -0.5944949388504028, -1.2354189157485962, -0.5710420608520508, -0.08421622961759567, -0.9187682271003723, 0.7164655923843384, 0.12351655960083008, -1.0421515703201294, -0.296425461769104, -0.9392517805099487, 0.7864084839820862, -0.025407718494534492, 0.28871485590934753, 1.8779001235961914, 0.4470933973789215, -0.35937824845314026, 0.6624177694320679, 1.1451945304870605, 0.6289111971855164, -0.6545258164405823, 0.1444864720106125, -0.6779347658157349, 0.23365531861782074, -1.288312554359436, 0.3075590431690216, -2.815685272216797, 0.7344799637794495, -0.06071920692920685, -0.09472246468067169, 0.04103044420480728, -1.3161499500274658, 1.1271023750305176, 2.5939319133758545, -1.1386919021606445, 0.4164857566356659, 0.2806769907474518, 1.203554391860962, -1.6124173402786255, 0.3613475561141968, -0.33207967877388, 2.1091816425323486, 0.26064667105674744, 1.1583043336868286, -0.5426906943321228, -2.2514045238494873, 0.5116303563117981, -1.2513840198516846, -1.1599713563919067, 0.7231998443603516, -0.9032920598983765, 0.02101796865463257, -1.5246989727020264, -0.1625371277332306, -0.8846384882926941, -1.207635760307312, 0.7696937918663025, 0.17141814529895782, 0.41216230392456055, -0.6195750832557678, 0.2758188247680664, -2.2386856079101562, -1.3977949619293213, -0.31809201836586, -0.9796209335327148, 0.5095365047454834, -0.28243470191955566, 0.6837410926818848, -0.12851354479789734, 0.015388550236821175, 0.3502403497695923, 1.435816764831543, 3.382913112640381, 0.1904059499502182, 0.45178771018981934, -0.1421324759721756, -0.8985999226570129, 1.458430528640747, 0.9953108429908752, -0.041765086352825165, -0.6067458987236023, -1.0467015504837036, 1.2758817672729492, 2.0178422927856445, 1.0595084428787231, 0.009437406435608864, -0.7322033643722534, -0.6337559223175049, -0.006623691879212856, 0.17277589440345764, 0.4764237105846405, 0.9572177529335022, 0.05469080060720444, 0.17464837431907654, 1.4717539548873901, 1.2726694345474243, -0.5208843946456909, 0.391031950712204, -0.7421703338623047, -0.5308380126953125, 0.46368607878685, 0.31553247570991516, -0.011944406665861607, 0.3706497550010681, -1.0131648778915405, -0.18203333020210266, -0.38627952337265015, -1.0488468408584595, -0.7010990381240845, -0.5006073713302612, -0.36021170020103455, 1.6859856843948364, 0.16319164633750916, -0.4845518171787262, -0.10003626346588135, -0.7321311831474304, -0.12052787095308304, -1.0734847784042358, 0.2925354838371277, -0.025681134313344955, -0.07526561617851257, -0.09720051288604736, 1.78635835647583, -0.8750123381614685, -2.067793846130371, 0.24586109817028046, 0.20038706064224243, -0.4073789119720459, 0.18047498166561127, 1.5596452951431274, 0.47891515493392944, 1.4761735200881958, 1.4423335790634155, 0.9481319785118103, -0.6877081990242004, -1.3082457780838013, 0.6865832209587097, 0.8517902493476868, -1.4138891696929932, 0.8447070717811584, 0.028735807165503502, -0.5209805369377136, 0.7851145267486572, 1.3510963916778564, 0.36457058787345886, -2.0595901012420654, 0.8292562365531921, -0.9852685928344727, 0.7788627743721008, 0.6593589186668396, 0.7434176206588745, 0.24135838449001312, 0.7970434427261353, -1.248077154159546, -1.1996712684631348, -0.8765214681625366, -0.6254216432571411, 1.9949651956558228, -0.16613951325416565, 0.5850660800933838, -0.15933959186077118, -1.2708909511566162, -0.13681769371032715, 0.697041928768158, 0.3834083676338196, -0.3805544376373291, 0.798525333404541, -0.6808645725250244, -1.2339750528335571, -1.4410356283187866, -0.4193434417247772, -0.9966976642608643, -0.8914985656738281, 1.0349043607711792, 0.8088924288749695, 0.3024003803730011, 1.898077130317688, 0.6321158409118652, 0.27165529131889343, -2.762810230255127, 0.8769891858100891, 0.24690572917461395, -0.06122001260519028, 0.9547203779220581, 0.27231672406196594, 1.01520574092865, -0.06543704122304916, 0.5394390225410461, -2.385815382003784, 2.21498703956604, -0.2693714499473572, 0.8199464082717896, -0.050269752740859985, -0.1544080525636673, 1.1359113454818726, 0.6226216554641724, 0.6004782319068909, -1.1877706050872803, 0.6519142389297485, -0.5454767346382141, 1.1428104639053345, 0.8994653224945068, -0.748475193977356, 0.022282438352704048, 1.3229151964187622, 0.48027828335762024, -0.4841991066932678, -0.973865270614624, -0.8836014866828918, 0.8786754012107849, 1.813506007194519, -0.17486950755119324, -0.03716978058218956, 0.8272665739059448, 0.6549965739250183, -1.3012422323226929, 0.08488500118255615, -0.8026217818260193, -0.752565860748291, 1.5841131210327148, 2.057385206222534, -0.06524752080440521, -0.1878105252981186, -0.6329917907714844, -1.2378484010696411, 0.6931056380271912, 0.04929313808679581, 0.219349205493927, 0.5951301455497742, -0.6314921975135803, 1.1313261985778809, 0.8497823476791382, 0.9469400644302368, 0.1327466368675232, 0.32207486033439636, 0.40563297271728516, -0.2979638874530792, -1.0861735343933105, -0.26338374614715576, -1.115593671798706, -2.46759033203125, 0.513177216053009, -0.29978832602500916, -1.570270299911499, 0.017725717276334763, -1.000562071800232, 0.9045900702476501, -0.5400456190109253, -1.036339521408081, -1.591740608215332, 0.1644781529903412, -0.06321000307798386, 0.9080960750579834, -1.6239166259765625, -0.091530941426754, 1.1597657203674316, 0.8086169958114624, -0.6027681231498718, 1.018420696258545, 0.3073755204677582, 0.9640715718269348, 0.8197197914123535, -0.4431610405445099, 0.40920159220695496, 0.0831027701497078, -1.2996901273727417, 0.4651007354259491, 1.1352651119232178, 0.1283777356147766, 1.3254632949829102, -0.6114050149917603, 0.08888591080904007, 0.42701590061187744, -0.5032886266708374, -0.3689603805541992, -0.4939136505126953, 0.7156272530555725, 0.07015471160411835, -0.875074565410614, 0.01707242615520954, -0.12585817277431488, -0.2353336215019226, 0.1991940438747406, -1.4718154668807983, -0.28827083110809326, -0.4819170832633972, -0.5386160612106323, -1.1962729692459106, -0.0807642787694931, 1.4778026342391968, -0.7710978984832764, -0.16345252096652985, 0.5279263257980347, 0.5231119990348816, 0.6061608195304871, 0.6261195540428162, -0.6068472266197205, -0.3889356255531311, -0.2487364411354065, -0.3508524000644684, 0.18689072132110596, 1.3019323348999023, -0.15527580678462982, -0.9738441109657288, 0.7646540403366089, -0.39048418402671814, 0.039150483906269073, 1.9760777950286865, 0.1167709082365036, -0.7640856504440308, 0.29676544666290283, -0.6948378682136536, 1.8506603240966797, 1.7737680673599243, 1.3287062644958496, -0.07862173765897751, -0.9123452305793762, 0.5587603449821472, -0.1863536387681961, -0.3402405083179474, 0.9546375274658203, 0.44393280148506165, -0.17600594460964203, -1.428368330001831, 0.6575616002082825, 1.3468124866485596, -0.9116095304489136, -0.7859250903129578, 0.04029072821140289, -0.8282986283302307, 1.0418323278427124, 0.6896018981933594, 0.4484494924545288, 0.2201533317565918, 1.6957939863204956, 0.679192066192627, -0.4530455768108368, 0.5305771231651306, 0.5525780320167542, -0.1969904899597168, -2.1578152179718018, -1.1623800992965698, 0.2653084397315979, -0.3825814127922058, -1.5485477447509766, 1.3154839277267456, -1.1008236408233643, -0.8928632736206055, 0.5755162835121155, 0.08428110927343369, 1.483877182006836, 0.4481537342071533, 1.5763859748840332, 2.159205913543701, 0.8604682087898254, 0.3953517973423004, 1.3194206953048706, -0.0628150925040245, -0.5287160873413086, 1.8614884614944458, -0.3775143027305603, 0.5111160278320312, 1.1205066442489624, -0.3486260175704956, -1.0002119541168213, -0.7074734568595886, -1.0837037563323975, -0.6082493662834167, 1.1410428285598755, 0.10484068840742111, -1.166396141052246, 0.2291974276304245, 1.6188366413116455, 0.15666350722312927, -0.35483014583587646, 0.5417418479919434, 0.42481595277786255, -0.7054348587989807, -0.05495993793010712, -0.9703987836837769, 0.44021886587142944, -0.2575923502445221, -0.39853501319885254, 0.38943153619766235, 0.4984188377857208, 1.1996768712997437, -0.07837983220815659, 0.0710558146238327, 1.2044001817703247, -1.4416927099227905, 1.423250436782837, -0.5868808031082153, 0.22791318595409393, -2.3489990234375, 1.5505634546279907, -0.8113763928413391, 1.9300363063812256, -2.5754685401916504, 0.359317421913147, -0.6846379041671753, -0.5189530253410339, 0.3454486131668091, -0.3169366717338562, 0.15518055856227875, -0.12143845856189728, -1.142777681350708, -0.004987807944417, -0.6850449442863464, 0.5624474287033081, 1.0888665914535522, 1.3419499397277832, -1.1009759902954102, -0.3410612940788269, -1.6946794986724854, -0.22642068564891815, -0.6850316524505615, 0.33707624673843384, -2.0189568996429443, -0.15262256562709808, -1.890315055847168, -2.280681610107422, -1.4466708898544312, -0.8772144913673401, 1.1095445156097412, 0.13552232086658478, -0.876798689365387, 1.1154571771621704, -0.36859431862831116, -1.892991065979004, 1.1122008562088013, -2.195570230484009 ]
https://github.com/huggingface/datasets/issues/5888
A way to upload and visualize .mp4 files (millions of them) as part of a dataset
@mariosasko Right. If I want my dataset to be streamable, what are the necessary requirements to achieve that within the context of .mp4 binaries like we have here? I guess your second point here would not support that right?
**Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI
125
39
A way to upload and visualize .mp4 files (millions of them) as part of a dataset **Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI @mariosasko Right. If I want my dataset to be streamable, what are the necessary requirements to achieve that within the context of .mp4 binaries like we have here? I guess your second point here would not support that right?
[ -1.1812145709991455, -1.0736167430877686, -0.7859338521957397, 1.3387408256530762, -0.20353634655475616, -1.2810307741165161, 0.0433800145983696, -1.0525041818618774, 1.6901005506515503, -0.7881402373313904, 0.29658830165863037, -1.657260537147522, 0.0020867381244897842, -0.5666563510894775, -0.7791957855224609, -0.8337228298187256, -0.4693593382835388, -0.9320724010467529, 0.9675877690315247, 2.5756452083587646, 1.0930572748184204, -1.4230661392211914, 2.6851346492767334, 0.6923853158950806, -0.15414868295192719, -1.0696163177490234, 0.5458118915557861, 0.08797623217105865, -1.2691636085510254, -0.5035896897315979, -0.8872774243354797, -0.03459490090608597, -0.624370276927948, -0.5488531589508057, 0.04560767114162445, 0.32689473032951355, -0.12582436203956604, -0.3938409388065338, -0.600383996963501, -0.6610796451568604, 0.5470045208930969, -0.40376603603363037, 0.9861335754394531, -0.34329551458358765, 1.9119067192077637, -0.5607373714447021, 0.36771535873413086, 0.7320590019226074, 1.4219624996185303, 0.25611045956611633, 0.014223458245396614, 0.2505020499229431, 0.47004789113998413, -0.03398587182164192, 0.3982192277908325, 1.0760653018951416, 0.6102651953697205, 0.4801398813724518, 0.7233572602272034, -2.136796474456787, 1.3823134899139404, -1.0640217065811157, 0.4035051465034485, 1.4271258115768433, -0.9070757031440735, 0.4285547435283661, -1.8643349409103394, -0.03689654543995857, 0.5277511477470398, -2.2621514797210693, 0.12598375976085663, -1.316483974456787, -0.49085575342178345, 0.9022552371025085, 0.263454407453537, -1.3223239183425903, 0.2670169770717621, -0.5530136227607727, 0.9671893119812012, 0.4989875257015228, 1.2104319334030151, -1.7741329669952393, -0.0911460667848587, -0.29138803482055664, 0.12083235383033752, -1.3308463096618652, -1.4599498510360718, 0.5666096210479736, 0.5865908265113831, 0.5147680640220642, -0.12971735000610352, 0.950268566608429, -1.0689520835876465, 0.8648794889450073, -0.9390905499458313, -1.6744211912155151, -1.418359398841858, -2.2437992095947266, -2.369725465774536, 0.8821865916252136, -0.4703456163406372, -0.5155318975448608, 1.9324707984924316, -1.0861982107162476, -1.7114750146865845, 1.1817625761032104, 0.25448229908943176, 0.08346855640411377, 2.4272732734680176, 0.16281592845916748, -0.6606795191764832, 0.3840399980545044, -0.7396636605262756, 0.9080463647842407, -0.4171064496040344, 1.412581205368042, 0.4893660843372345, -0.8823310732841492, 1.603919506072998, -0.427498996257782, 0.5117242932319641, -0.6129665970802307, -0.54848313331604, -0.9169011116027832, 0.4234083890914917, 1.903441071510315, -0.2900833189487457, 1.6603424549102783, -0.4150817394256592, -1.6797069311141968, -1.6230477094650269, 0.8907062411308289, 0.4918307065963745, -0.9139052629470825, -0.04176302254199982, -0.3939376175403595, 0.13996875286102295, 0.04007389023900032, 1.10417640209198, 1.1888514757156372, 0.6968508362770081, -0.3273501694202423, -0.9005025029182434, 0.2171933799982071, -0.16271094977855682, -0.6961079239845276, -1.8646382093429565, -0.3919790983200073, 0.2446300983428955, 0.6711814403533936, -1.1714258193969727, 1.6264286041259766, 1.0265616178512573, 1.9306813478469849, 1.0103334188461304, -0.3485834300518036, 1.386555552482605, 0.03835498169064522, 1.8693310022354126, -0.5690575242042542, 0.7444849610328674, -0.38743865489959717, -1.1215858459472656, 0.8154730200767517, -0.34541061520576477, -2.053417921066284, -0.765277624130249, -0.8362762331962585, -0.24885877966880798, -0.7090282440185547, 0.8652986288070679, -0.31620365381240845, -1.3446485996246338, 0.25231969356536865, -0.5982406735420227, 0.1264578253030777, -1.1708773374557495, 0.3342573046684265, 0.7983123660087585, -0.6465449333190918, -0.007864010520279408, -0.18765194714069366, -1.367064118385315, -0.49555128812789917, 0.2313305139541626, 1.885359287261963, -0.8160362243652344, 0.9856855273246765, 0.9572319388389587, -0.7080312371253967, 0.0227822158485651, 0.34294912219047546, -0.2556994557380676, 0.8165103197097778, -1.0174028873443604, -0.3052659034729004, 1.1015782356262207, -0.22895550727844238, -0.49868956208229065, 1.5258246660232544, 0.8022817969322205, -0.9464302062988281, -0.15890569984912872, -0.18447239696979523, -0.7781581282615662, 0.02638029307126999, -1.5589526891708374, -0.15633192658424377, 0.24884679913520813, -1.513307809829712, -0.5184267163276672, -0.25111979246139526, 1.142966389656067, -0.09385271370410919, 1.3507510423660278, -0.46596643328666687, -0.3182641863822937, -0.41999953985214233, -0.4451182186603546, 0.25947305560112, -0.21957887709140778, -0.6210945844650269, 0.3295283615589142, -0.8686895370483398, 0.4599028527736664, 1.4106736183166504, 0.4806402921676636, 0.024719007313251495, 0.517306923866272, 1.0210989713668823, 0.25798508524894714, 0.009001975879073143, -0.8380468487739563, -1.5256671905517578, 2.1050825119018555, -1.5245280265808105, 1.944595217704773, 0.741445779800415, -0.05800284445285797, -1.7196345329284668, -1.83284330368042, 1.3142446279525757, 1.1766307353973389, 2.342872142791748, 0.5586187839508057, 0.31791824102401733, -0.821467399597168, -0.6448474526405334, 0.3667544424533844, -1.0575209856033325, -0.7215318083763123, 0.009297266602516174, 2.2734875679016113, 1.7716503143310547, -0.6617558002471924, -0.16757583618164062, -1.0653409957885742, 1.3958454132080078, -0.11801274120807648, 0.24933764338493347, 2.0870978832244873, -0.3226238191127777, -1.1244442462921143, 1.3396551609039307, -2.299208879470825, 0.16337281465530396, 1.9480555057525635, 0.3486330509185791, 0.086912140250206, -1.4007853269577026, -0.601753830909729, -0.3025490641593933, -0.35920432209968567, -1.2438101768493652, 0.5829271078109741, -0.3396175503730774, -0.8258631825447083, -1.5700048208236694, 0.05889366194605827, -1.1859350204467773, -1.63394296169281, 0.3677641749382019, 1.8386112451553345, 2.0111844539642334, -0.6686506867408752, 1.4681233167648315, -0.218419149518013, 0.18981944024562836, 1.245037317276001, 1.225158929824829, 3.1572775840759277, 2.001970052719116, -1.1457821130752563, 0.584886372089386, -0.22700700163841248, -0.4677579700946808, 1.0999891757965088, -1.0612070560455322, 1.2227767705917358, -0.15254557132720947, -1.136966347694397, -1.1544458866119385, 1.033271312713623, 0.45969709753990173, 0.07961905002593994, -0.48581916093826294, 1.1731536388397217, 0.001970849931240082, 1.293474555015564, 0.5555025935173035, -0.40063583850860596, 0.5932988524436951, -0.4206504821777344, -0.516047477722168, 1.6674201488494873, 0.19260749220848083, -1.505908489227295, -2.2654383182525635, -0.2972623407840729, -0.8103543519973755, 0.0028847306966781616, -0.5616373419761658, -1.0205000638961792, 1.6022324562072754, 0.40720123052597046, -1.3988869190216064, -0.26203566789627075, -0.40037477016448975, -0.669367790222168, 2.6415364742279053, -1.4600719213485718, -0.22342334687709808, -0.9074828028678894, -0.5629416704177856, 1.585872769355774, -1.2738639116287231, -0.1611362248659134, -1.0217839479446411, -0.6517960429191589, -1.2575563192367554, -0.561586320400238, -0.10173743963241577, -0.9237971305847168, 0.6860590577125549, 0.10967229306697845, -1.001420259475708, -0.3074868619441986, -0.9185419678688049, 0.7735488414764404, -0.034358493983745575, 0.30210593342781067, 1.8597484827041626, 0.4439718425273895, -0.34115535020828247, 0.6262468695640564, 1.1352558135986328, 0.6400181651115417, -0.6752112507820129, 0.12514106929302216, -0.6848140954971313, 0.2365245819091797, -1.2571654319763184, 0.32483696937561035, -2.8097047805786133, 0.7322067618370056, -0.08603741228580475, -0.09541517496109009, 0.044893477112054825, -1.267591953277588, 1.1358633041381836, 2.5756752490997314, -1.1482077836990356, 0.4033953547477722, 0.26110774278640747, 1.1762436628341675, -1.5901877880096436, 0.3701450526714325, -0.3350101709365845, 2.130094051361084, 0.2763262689113617, 1.1581815481185913, -0.5377417802810669, -2.225328207015991, 0.5417664051055908, -1.2224349975585938, -1.1479744911193848, 0.6995593905448914, -0.8753079175949097, 0.03427441045641899, -1.5177199840545654, -0.1747283935546875, -0.9078507423400879, -1.2218763828277588, 0.7559948563575745, 0.15730087459087372, 0.4127529263496399, -0.5935326814651489, 0.26310959458351135, -2.257277250289917, -1.4185432195663452, -0.28791648149490356, -0.9933649897575378, 0.5096536874771118, -0.2895429730415344, 0.655612587928772, -0.07913509011268616, 0.08455871045589447, 0.3657766580581665, 1.399098515510559, 3.4041969776153564, 0.23649275302886963, 0.4889671206474304, -0.10345236957073212, -0.9277998208999634, 1.4358110427856445, 1.0099257230758667, -0.006778842769563198, -0.5942156314849854, -1.0341280698776245, 1.2590305805206299, 2.0236854553222656, 1.0768519639968872, 0.018139807507395744, -0.6957537531852722, -0.6274948120117188, 0.006002339534461498, 0.19944709539413452, 0.499771386384964, 0.9567298889160156, 0.03415653109550476, 0.2069825828075409, 1.489518642425537, 1.288404941558838, -0.5482209324836731, 0.3793475925922394, -0.7704822421073914, -0.4917638599872589, 0.4461539685726166, 0.3227945864200592, -0.004175374750047922, 0.35500168800354004, -1.00678551197052, -0.17815880477428436, -0.37729328870773315, -1.044014811515808, -0.721379280090332, -0.4737824499607086, -0.37771835923194885, 1.659216046333313, 0.1629621833562851, -0.4768794775009155, -0.09967085719108582, -0.7262340188026428, -0.10435375571250916, -1.0838897228240967, 0.296342134475708, -0.013345526531338692, -0.054005324840545654, -0.10949648916721344, 1.8127660751342773, -0.8976866006851196, -2.0793001651763916, 0.25513675808906555, 0.20929984748363495, -0.4480055570602417, 0.2027471959590912, 1.540010690689087, 0.4865294396877289, 1.4755520820617676, 1.4368352890014648, 0.9663383364677429, -0.6857717037200928, -1.3063092231750488, 0.6762917637825012, 0.8343595266342163, -1.4062561988830566, 0.8556177020072937, 0.03749784454703331, -0.5395163297653198, 0.7997936606407166, 1.3696508407592773, 0.3672727942466736, -2.0434908866882324, 0.8025333285331726, -0.9729204177856445, 0.76902836561203, 0.6386203169822693, 0.7784526348114014, 0.25679105520248413, 0.8000702857971191, -1.2654122114181519, -1.1656609773635864, -0.8860527873039246, -0.6252241730690002, 1.9799439907073975, -0.15204255282878876, 0.5686664581298828, -0.168590247631073, -1.2421828508377075, -0.11738479137420654, 0.7000763416290283, 0.38913509249687195, -0.35581332445144653, 0.8367770910263062, -0.6328933238983154, -1.250534176826477, -1.4195712804794312, -0.41373541951179504, -1.0126001834869385, -0.862877607345581, 1.0212420225143433, 0.8070176839828491, 0.2957788109779358, 1.9013034105300903, 0.5938854813575745, 0.27405908703804016, -2.781879425048828, 0.8573212027549744, 0.22989089787006378, -0.04147375002503395, 0.9810524582862854, 0.27764585614204407, 1.0340594053268433, -0.06489469110965729, 0.5001603364944458, -2.334190607070923, 2.23996639251709, -0.324341744184494, 0.8059653043746948, -0.04752139747142792, -0.1249166876077652, 1.1548259258270264, 0.6500264406204224, 0.6030027270317078, -1.1719586849212646, 0.6966094970703125, -0.5615820288658142, 1.1149988174438477, 0.9472166299819946, -0.727966845035553, -0.002322495449334383, 1.311607003211975, 0.5111690163612366, -0.46084311604499817, -0.9927784204483032, -0.8716647624969482, 0.8738388419151306, 1.8229199647903442, -0.18161436915397644, -0.07330138981342316, 0.817701518535614, 0.6610972285270691, -1.3090611696243286, 0.12113505601882935, -0.8090870380401611, -0.7701666355133057, 1.5759857892990112, 2.0716326236724854, -0.05449138954281807, -0.19736945629119873, -0.6076356172561646, -1.2264318466186523, 0.6838410496711731, 0.04827101528644562, 0.19850073754787445, 0.6104069352149963, -0.6455129384994507, 1.1580866575241089, 0.8769009113311768, 0.9513580799102783, 0.10354931652545929, 0.30678874254226685, 0.36517569422721863, -0.24634970724582672, -1.0929129123687744, -0.2588152289390564, -1.1241075992584229, -2.440458297729492, 0.5254206657409668, -0.30648329854011536, -1.5989593267440796, 0.03294362127780914, -1.0203478336334229, 0.9123702645301819, -0.5160872340202332, -1.01459538936615, -1.630445122718811, 0.16762027144432068, -0.0682029128074646, 0.9090662002563477, -1.618878960609436, -0.06394487619400024, 1.1802241802215576, 0.802132248878479, -0.5699787735939026, 1.058137059211731, 0.32016727328300476, 0.9534716010093689, 0.791118860244751, -0.4232673645019531, 0.3998014032840729, 0.13736484944820404, -1.2972443103790283, 0.4823148250579834, 1.1538926362991333, 0.13716697692871094, 1.30508553981781, -0.5869385600090027, 0.13280178606510162, 0.42188212275505066, -0.497067928314209, -0.3432389497756958, -0.4973418414592743, 0.7152148485183716, 0.08546896278858185, -0.8450285196304321, 0.0675211101770401, -0.18286867439746857, -0.21747152507305145, 0.21058210730552673, -1.4835786819458008, -0.32049185037612915, -0.49602144956588745, -0.5236718654632568, -1.1822832822799683, -0.08202092349529266, 1.5162591934204102, -0.7756802439689636, -0.17048870027065277, 0.5209878087043762, 0.5363581776618958, 0.6383939385414124, 0.615799605846405, -0.5796892046928406, -0.3791902959346771, -0.2812822759151459, -0.33573803305625916, 0.18563812971115112, 1.248236894607544, -0.1856306493282318, -0.9985703229904175, 0.8010957837104797, -0.3934859037399292, 0.0547117181122303, 1.9911754131317139, 0.10432368516921997, -0.7649345397949219, 0.298953115940094, -0.7119563817977905, 1.82570219039917, 1.7658292055130005, 1.3127331733703613, -0.07694610953330994, -0.9128885865211487, 0.5382442474365234, -0.15448884665966034, -0.3370044231414795, 0.9371068477630615, 0.4598686695098877, -0.2060663402080536, -1.3988512754440308, 0.6322260499000549, 1.3329105377197266, -0.9219307899475098, -0.7703781723976135, 0.06319881975650787, -0.8539235591888428, 1.0632038116455078, 0.6474787592887878, 0.4903593361377716, 0.20359736680984497, 1.6705290079116821, 0.6399460434913635, -0.45964986085891724, 0.5064494013786316, 0.5466984510421753, -0.23981542885303497, -2.1291613578796387, -1.139514446258545, 0.27649763226509094, -0.4267462491989136, -1.5469151735305786, 1.2985711097717285, -1.1237514019012451, -0.8559452891349792, 0.5753085613250732, 0.12277685105800629, 1.4936695098876953, 0.4374648630619049, 1.6101864576339722, 2.143573522567749, 0.891900897026062, 0.40104275941848755, 1.3528236150741577, -0.026271134614944458, -0.5154498815536499, 1.8365815877914429, -0.38385042548179626, 0.5077508687973022, 1.138819694519043, -0.33487966656684875, -0.9791433811187744, -0.7123173475265503, -1.060884952545166, -0.576736569404602, 1.1381068229675293, 0.11775857210159302, -1.180845022201538, 0.19171597063541412, 1.5998762845993042, 0.17135116457939148, -0.3278741240501404, 0.5016409158706665, 0.40045300126075745, -0.6965484023094177, -0.0378887839615345, -0.9827615022659302, 0.405634343624115, -0.249590665102005, -0.37196651101112366, 0.37652912735939026, 0.5032559037208557, 1.177024006843567, -0.06381359696388245, 0.08017478883266449, 1.2681498527526855, -1.4730457067489624, 1.4517542123794556, -0.5246129035949707, 0.23646937310695648, -2.327305793762207, 1.5101128816604614, -0.7638140916824341, 1.929176926612854, -2.5663211345672607, 0.3229603171348572, -0.6985684037208557, -0.5307015180587769, 0.3326258659362793, -0.3347635865211487, 0.17231395840644836, -0.14751222729682922, -1.1075608730316162, -0.003035648725926876, -0.7226408123970032, 0.5092186331748962, 1.1006685495376587, 1.3533539772033691, -1.083451747894287, -0.3334493339061737, -1.712263822555542, -0.22616225481033325, -0.68895423412323, 0.33254215121269226, -2.0331196784973145, -0.14350414276123047, -1.8560980558395386, -2.2964298725128174, -1.466139316558838, -0.8899266719818115, 1.0844955444335938, 0.11676201224327087, -0.8558082580566406, 1.06455659866333, -0.38967087864875793, -1.8569297790527344, 1.1052533388137817, -2.1909801959991455 ]
https://github.com/huggingface/datasets/issues/5888
A way to upload and visualize .mp4 files (millions of them) as part of a dataset
The streaming would work, but the video paths would require using `fsspec.open` to get the content.
**Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI
125
16
A way to upload and visualize .mp4 files (millions of them) as part of a dataset **Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI The streaming would work, but the video paths would require using `fsspec.open` to get the content.
[ -1.1852796077728271, -1.08036470413208, -0.785582959651947, 1.369928240776062, -0.1922316551208496, -1.3037164211273193, 0.04493548721075058, -1.0293078422546387, 1.6909377574920654, -0.7961147427558899, 0.3155936896800995, -1.6550976037979126, -0.011755788698792458, -0.5725312829017639, -0.7840045690536499, -0.8375123143196106, -0.45224782824516296, -0.9089944958686829, 0.9956644773483276, 2.5525991916656494, 1.084166169166565, -1.4165040254592896, 2.692781448364258, 0.6764594912528992, -0.1637776494026184, -1.052150011062622, 0.5382592082023621, 0.11696832627058029, -1.2872265577316284, -0.5405562520027161, -0.8708321452140808, -0.028884759172797203, -0.6256887912750244, -0.5476675629615784, 0.07399969547986984, 0.31980398297309875, -0.14349623024463654, -0.4076055884361267, -0.5778928399085999, -0.6834991574287415, 0.5178271532058716, -0.38562265038490295, 0.9697191119194031, -0.36153462529182434, 1.895829439163208, -0.5482226610183716, 0.3652140200138092, 0.731476366519928, 1.4373245239257812, 0.2296915054321289, 0.008102504536509514, 0.27403438091278076, 0.47609439492225647, -0.040464192628860474, 0.40701088309288025, 1.0873724222183228, 0.5800725221633911, 0.49334317445755005, 0.7168379426002502, -2.1137630939483643, 1.4135042428970337, -1.0664819478988647, 0.410550057888031, 1.4286237955093384, -0.9270773530006409, 0.4341121315956116, -1.8510795831680298, -0.030894994735717773, 0.512353241443634, -2.2591538429260254, 0.13116401433944702, -1.3142181634902954, -0.48250409960746765, 0.913638174533844, 0.2768680453300476, -1.3321020603179932, 0.27495160698890686, -0.5522097945213318, 0.9671884775161743, 0.47245490550994873, 1.1956729888916016, -1.7775416374206543, -0.09297831356525421, -0.2882574796676636, 0.11314298957586288, -1.3400627374649048, -1.4747601747512817, 0.5672535300254822, 0.5970945358276367, 0.5176782011985779, -0.12549704313278198, 0.9516039490699768, -1.0513473749160767, 0.8540664315223694, -0.9108824133872986, -1.6571626663208008, -1.4446213245391846, -2.2640650272369385, -2.369490385055542, 0.9183454513549805, -0.49376070499420166, -0.501480758190155, 1.9146188497543335, -1.0794482231140137, -1.7350391149520874, 1.1878621578216553, 0.2908843457698822, 0.0917058065533638, 2.4434831142425537, 0.18610835075378418, -0.6690428256988525, 0.3924931287765503, -0.7269652485847473, 0.8970667719841003, -0.44451814889907837, 1.4073971509933472, 0.5175266861915588, -0.8916002511978149, 1.5893594026565552, -0.40073394775390625, 0.5042183995246887, -0.62209552526474, -0.5194602012634277, -0.9277454018592834, 0.44303375482559204, 1.8928718566894531, -0.272793710231781, 1.6502773761749268, -0.39354434609413147, -1.6581891775131226, -1.635547161102295, 0.8946678638458252, 0.48982053995132446, -0.8930484652519226, -0.04136113077402115, -0.3526459336280823, 0.1352783441543579, 0.04262031614780426, 1.0954903364181519, 1.1881026029586792, 0.6776325106620789, -0.3340616524219513, -0.9028984308242798, 0.23538371920585632, -0.14931711554527283, -0.6786653399467468, -1.8623312711715698, -0.4052842855453491, 0.23423956334590912, 0.6739909648895264, -1.1746346950531006, 1.6296876668930054, 1.0433887243270874, 1.9252792596817017, 1.0027406215667725, -0.3593093454837799, 1.4000451564788818, 0.05546452850103378, 1.88469398021698, -0.5763956308364868, 0.7531741857528687, -0.3665107786655426, -1.1238971948623657, 0.8201338648796082, -0.34664416313171387, -2.068875789642334, -0.7493786811828613, -0.864206850528717, -0.2520686089992523, -0.6817814111709595, 0.8815129399299622, -0.32256099581718445, -1.337041974067688, 0.2412649691104889, -0.6021531820297241, 0.14487218856811523, -1.1897447109222412, 0.31921306252479553, 0.802724301815033, -0.6289520263671875, -0.017260340973734856, -0.20233681797981262, -1.374481439590454, -0.48993992805480957, 0.23533028364181519, 1.8739537000656128, -0.7903158664703369, 1.0073378086090088, 0.9441173672676086, -0.7129108309745789, 0.007866926491260529, 0.3538248836994171, -0.26453402638435364, 0.8281294703483582, -1.0274542570114136, -0.3274261951446533, 1.1061702966690063, -0.2206958830356598, -0.5108383893966675, 1.5059109926223755, 0.8093856573104858, -0.9475126266479492, -0.1587510108947754, -0.18757322430610657, -0.7824977040290833, 0.05587323009967804, -1.5698294639587402, -0.16541935503482819, 0.2519136965274811, -1.5062891244888306, -0.5238543152809143, -0.24290721118450165, 1.1429275274276733, -0.11552227288484573, 1.3552454710006714, -0.443969190120697, -0.30684608221054077, -0.4320790469646454, -0.42822542786598206, 0.2569970488548279, -0.22395260632038116, -0.6508944034576416, 0.3418821692466736, -0.8535616993904114, 0.4837653636932373, 1.40506911277771, 0.4873855412006378, 0.01671125739812851, 0.5558752417564392, 1.0361586809158325, 0.2411474585533142, 0.005890949629247189, -0.8477254509925842, -1.513989806175232, 2.114797592163086, -1.5237040519714355, 1.9424797296524048, 0.7505121231079102, -0.03487426042556763, -1.7043143510818481, -1.8256317377090454, 1.337096095085144, 1.1713392734527588, 2.3344478607177734, 0.5771685242652893, 0.31080880761146545, -0.8250757455825806, -0.6729637384414673, 0.3402695953845978, -1.0675832033157349, -0.7385975122451782, 0.027921544387936592, 2.271552801132202, 1.7856881618499756, -0.6460773944854736, -0.15089479088783264, -1.0660998821258545, 1.4188876152038574, -0.1348043829202652, 0.22147589921951294, 2.1059322357177734, -0.28437432646751404, -1.126232385635376, 1.3109397888183594, -2.272918462753296, 0.17397800087928772, 1.9542618989944458, 0.36788275837898254, 0.06918922811746597, -1.417850136756897, -0.6168689131736755, -0.29294881224632263, -0.3499199450016022, -1.2675420045852661, 0.5503905415534973, -0.34443750977516174, -0.8164910674095154, -1.5715991258621216, 0.06678813695907593, -1.1759412288665771, -1.646358847618103, 0.3415968418121338, 1.8227473497390747, 1.9974615573883057, -0.6240211725234985, 1.4694876670837402, -0.21178746223449707, 0.16456077992916107, 1.2338800430297852, 1.2060480117797852, 3.13202166557312, 1.9821127653121948, -1.1122379302978516, 0.5867969989776611, -0.2259700894355774, -0.47034382820129395, 1.1034408807754517, -1.0501205921173096, 1.2260128259658813, -0.14712432026863098, -1.11838698387146, -1.1626615524291992, 1.0155850648880005, 0.4539600610733032, 0.06546451151371002, -0.517393946647644, 1.1837455034255981, -0.010020836256444454, 1.3043509721755981, 0.5464338064193726, -0.3951265513896942, 0.5953003764152527, -0.40706971287727356, -0.5341212749481201, 1.6597648859024048, 0.17396794259548187, -1.5014265775680542, -2.2662861347198486, -0.29131221771240234, -0.797335147857666, 0.0001512393355369568, -0.5833975076675415, -1.0201021432876587, 1.6208909749984741, 0.43762561678886414, -1.3819847106933594, -0.24891570210456848, -0.4137040972709656, -0.7043946981430054, 2.65518856048584, -1.452230453491211, -0.2413814663887024, -0.9045125842094421, -0.5244669914245605, 1.567657470703125, -1.2570786476135254, -0.14504440128803253, -1.0414681434631348, -0.6392990946769714, -1.2287812232971191, -0.5543916821479797, -0.1246049553155899, -0.9198012948036194, 0.6858840584754944, 0.06554801762104034, -1.0214952230453491, -0.32517626881599426, -0.9131945967674255, 0.7647062540054321, -0.011679893359541893, 0.2938893735408783, 1.8579620122909546, 0.4398302137851715, -0.3262152075767517, 0.641209065914154, 1.1372567415237427, 0.6476824283599854, -0.667745053768158, 0.16868582367897034, -0.6633219122886658, 0.21595843136310577, -1.2450146675109863, 0.3298046588897705, -2.80969500541687, 0.7335706949234009, -0.07126802206039429, -0.08836384117603302, 0.023500913754105568, -1.26935875415802, 1.1523866653442383, 2.609232187271118, -1.1631184816360474, 0.41170111298561096, 0.2608741819858551, 1.159956693649292, -1.6120766401290894, 0.3739417493343353, -0.3478474020957947, 2.1275079250335693, 0.26622793078422546, 1.1270899772644043, -0.5514302253723145, -2.236408233642578, 0.5262197852134705, -1.2308934926986694, -1.134399652481079, 0.6925522089004517, -0.877613365650177, 0.03597535938024521, -1.5053110122680664, -0.16217944025993347, -0.8886602520942688, -1.2221348285675049, 0.7662261724472046, 0.1514146775007248, 0.4298925995826721, -0.5739629864692688, 0.2638527750968933, -2.2605226039886475, -1.4305599927902222, -0.3083646297454834, -1.0006535053253174, 0.5263891816139221, -0.28165748715400696, 0.657960832118988, -0.0649029091000557, 0.060601606965065, 0.36845865845680237, 1.4133753776550293, 3.395697593688965, 0.2152116447687149, 0.4866139590740204, -0.10032405704259872, -0.899854838848114, 1.4236104488372803, 1.0128483772277832, -0.012020440772175789, -0.604913055896759, -1.0354199409484863, 1.2758959531784058, 2.0253403186798096, 1.0736534595489502, 0.029427731409668922, -0.7027714252471924, -0.6395079493522644, 0.023670410737395287, 0.18088480830192566, 0.49110856652259827, 0.9499381184577942, 0.07175800204277039, 0.2047734260559082, 1.479239583015442, 1.286933183670044, -0.5346993207931519, 0.3892362713813782, -0.7589817047119141, -0.48232972621917725, 0.45087409019470215, 0.32502657175064087, -0.013925198465585709, 0.37473636865615845, -0.9916588068008423, -0.16712874174118042, -0.36866849660873413, -1.0641164779663086, -0.7169294357299805, -0.4805598556995392, -0.4124099612236023, 1.704543948173523, 0.14812611043453217, -0.4730388820171356, -0.08987424522638321, -0.7269217371940613, -0.09412707388401031, -1.0857175588607788, 0.29055333137512207, -0.015025647357106209, -0.05269550532102585, -0.11581722646951675, 1.808817744255066, -0.9033398628234863, -2.0929417610168457, 0.20912106335163116, 0.21272921562194824, -0.4537598788738251, 0.18382909893989563, 1.550089716911316, 0.4690190553665161, 1.4630433320999146, 1.440385103225708, 0.9588597416877747, -0.6917597055435181, -1.337317705154419, 0.6503853797912598, 0.8546667098999023, -1.4093024730682373, 0.8654693961143494, 0.05195619910955429, -0.5021223425865173, 0.8078686594963074, 1.4154245853424072, 0.35156911611557007, -2.0444388389587402, 0.7955302000045776, -0.9676886796951294, 0.7993882298469543, 0.6326819062232971, 0.7420948147773743, 0.2478022575378418, 0.8143900632858276, -1.2800236940383911, -1.1701281070709229, -0.8866948485374451, -0.6206455826759338, 1.969321846961975, -0.14595361053943634, 0.5739461183547974, -0.17870581150054932, -1.2556579113006592, -0.11125937104225159, 0.6741938591003418, 0.4068639278411865, -0.33651217818260193, 0.8210515379905701, -0.6555904746055603, -1.2503269910812378, -1.4509400129318237, -0.4283186197280884, -0.9940435886383057, -0.8714223504066467, 1.0304218530654907, 0.8184691667556763, 0.286433607339859, 1.8851895332336426, 0.5979530215263367, 0.24418902397155762, -2.7735273838043213, 0.857491135597229, 0.22606642544269562, -0.022035876289010048, 0.9549707770347595, 0.2590533196926117, 1.0453764200210571, -0.07354341447353363, 0.4908888638019562, -2.3443076610565186, 2.224184513092041, -0.32276400923728943, 0.7984108328819275, -0.01786041259765625, -0.12945307791233063, 1.1405822038650513, 0.63735032081604, 0.626785397529602, -1.1912564039230347, 0.6943526268005371, -0.5532748699188232, 1.1298658847808838, 0.9528033137321472, -0.7270137667655945, 0.009217137470841408, 1.3224012851715088, 0.4934634566307068, -0.4787736237049103, -1.0117148160934448, -0.8826408982276917, 0.8690356612205505, 1.7985883951187134, -0.18196074664592743, -0.07257980853319168, 0.8246934413909912, 0.645173192024231, -1.2979367971420288, 0.1448686122894287, -0.8086896538734436, -0.7789780497550964, 1.5841156244277954, 2.059058427810669, -0.05081344395875931, -0.19921401143074036, -0.6175516843795776, -1.2103608846664429, 0.6558758020401001, 0.04517141729593277, 0.19743011891841888, 0.5902154445648193, -0.6234555244445801, 1.1530317068099976, 0.8486729264259338, 0.9726094007492065, 0.09514753520488739, 0.31359732151031494, 0.3520037531852722, -0.2774963676929474, -1.1254122257232666, -0.2582944333553314, -1.110382318496704, -2.4979302883148193, 0.507912278175354, -0.3331988751888275, -1.5850920677185059, 0.02947644330561161, -1.024588704109192, 0.9027140140533447, -0.5322101712226868, -1.0230164527893066, -1.6016440391540527, 0.16404442489147186, -0.07426325976848602, 0.8866505026817322, -1.6267071962356567, -0.07715334743261337, 1.1896905899047852, 0.7928075194358826, -0.5738976001739502, 1.0545928478240967, 0.3169722259044647, 0.9711374640464783, 0.7969778180122375, -0.4228852093219757, 0.4197384715080261, 0.13588018715381622, -1.2895206212997437, 0.5240853428840637, 1.1291035413742065, 0.15146172046661377, 1.2930375337600708, -0.5775938034057617, 0.1410638391971588, 0.425419420003891, -0.4939481317996979, -0.351907879114151, -0.513676643371582, 0.7428751587867737, 0.06814170628786087, -0.871232807636261, 0.08462809771299362, -0.17459210753440857, -0.1974249631166458, 0.20428620278835297, -1.4803792238235474, -0.32270190119743347, -0.48455142974853516, -0.5261960029602051, -1.1824681758880615, -0.11267240345478058, 1.4882344007492065, -0.7762286067008972, -0.16990487277507782, 0.5269371271133423, 0.5279698371887207, 0.6440027952194214, 0.6287428140640259, -0.5724528431892395, -0.38625189661979675, -0.2587069272994995, -0.31485673785209656, 0.1899077445268631, 1.2342767715454102, -0.1800866425037384, -0.9584475159645081, 0.7789359092712402, -0.3851703405380249, 0.0521555095911026, 2.0035910606384277, 0.10737372189760208, -0.7779468297958374, 0.3088766932487488, -0.6978444457054138, 1.8267015218734741, 1.762906551361084, 1.3148400783538818, -0.09661294519901276, -0.9372233748435974, 0.5392138957977295, -0.15168555080890656, -0.3635419011116028, 0.9296746850013733, 0.4662364721298218, -0.2017815113067627, -1.3775579929351807, 0.6313463449478149, 1.3387986421585083, -0.8889374136924744, -0.801895260810852, 0.03763819485902786, -0.8558459877967834, 1.0355799198150635, 0.6563010215759277, 0.4697120785713196, 0.22184787690639496, 1.6883379220962524, 0.6260932087898254, -0.4569956362247467, 0.5108201503753662, 0.5325022339820862, -0.2637052834033966, -2.126086473464966, -1.1355313062667847, 0.2650917172431946, -0.4330933392047882, -1.557199239730835, 1.2822959423065186, -1.0952460765838623, -0.8550418615341187, 0.6026550531387329, 0.14299386739730835, 1.5027574300765991, 0.418064683675766, 1.6161701679229736, 2.126216173171997, 0.8723379969596863, 0.3928021788597107, 1.3481943607330322, -0.028285831212997437, -0.5441839694976807, 1.8655452728271484, -0.37602218985557556, 0.5124083757400513, 1.1317743062973022, -0.3415045738220215, -0.9856556057929993, -0.7065812945365906, -1.0545636415481567, -0.586855947971344, 1.1386632919311523, 0.12965606153011322, -1.1814383268356323, 0.18788236379623413, 1.5847622156143188, 0.1855831742286682, -0.29863423109054565, 0.528958797454834, 0.4231523871421814, -0.6941667199134827, -0.04066199064254761, -1.0038594007492065, 0.39780911803245544, -0.2264394611120224, -0.3749134838581085, 0.37188971042633057, 0.5049291253089905, 1.1730167865753174, -0.062372513115406036, 0.09168284386396408, 1.2373380661010742, -1.4543119668960571, 1.4209120273590088, -0.5385239124298096, 0.2507897615432739, -2.337714195251465, 1.5169577598571777, -0.7927566170692444, 1.907407522201538, -2.556248426437378, 0.3353368937969208, -0.7240259051322937, -0.5157039761543274, 0.3403265178203583, -0.3502417802810669, 0.17163194715976715, -0.13410796225070953, -1.1137593984603882, 0.0015860693529248238, -0.7413558959960938, 0.5111619830131531, 1.1039447784423828, 1.3743542432785034, -1.0739327669143677, -0.32933560013771057, -1.7210761308670044, -0.21744555234909058, -0.6949776411056519, 0.3595309555530548, -2.0049149990081787, -0.15037402510643005, -1.871428370475769, -2.312429904937744, -1.468437910079956, -0.8821830153465271, 1.0852242708206177, 0.14019176363945007, -0.850814938545227, 1.0624788999557495, -0.3598310351371765, -1.8624176979064941, 1.1223856210708618, -2.1884992122650146 ]
https://github.com/huggingface/datasets/issues/5888
A way to upload and visualize .mp4 files (millions of them) as part of a dataset
Not yet. The (open source) tooling for video is not great in terms of ease of use/performance, so we are discussing internally the best way to support it (one option is creating a new library for video IO, but this will require a lot of work)
**Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI
125
46
A way to upload and visualize .mp4 files (millions of them) as part of a dataset **Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI Not yet. The (open source) tooling for video is not great in terms of ease of use/performance, so we are discussing internally the best way to support it (one option is creating a new library for video IO, but this will require a lot of work)
[ -1.185950756072998, -1.0825985670089722, -0.7813410758972168, 1.376579761505127, -0.19826476275920868, -1.3146666288375854, 0.04207635298371315, -1.0288366079330444, 1.6894961595535278, -0.8131370544433594, 0.33164605498313904, -1.6397206783294678, 0.0024222945794463158, -0.5912325382232666, -0.7839297652244568, -0.8254538774490356, -0.4382348954677582, -0.9229446649551392, 0.9912720918655396, 2.58913516998291, 1.1142810583114624, -1.4239200353622437, 2.690014362335205, 0.6857147812843323, -0.17442195117473602, -1.0547415018081665, 0.5341894030570984, 0.08496613055467606, -1.2498886585235596, -0.5369907021522522, -0.8852784037590027, -0.038429319858551025, -0.6097627878189087, -0.5376467108726501, 0.024632923305034637, 0.3404442071914673, -0.13462774455547333, -0.39889732003211975, -0.6079695820808411, -0.6717563271522522, 0.5271878838539124, -0.3946898579597473, 0.9788490533828735, -0.3368297815322876, 1.8969173431396484, -0.5256867408752441, 0.3615665137767792, 0.6962177157402039, 1.4449938535690308, 0.2524324059486389, 0.0008308906108140945, 0.26905450224876404, 0.4585665464401245, -0.05709703266620636, 0.40179067850112915, 1.114805817604065, 0.6146494746208191, 0.4796273112297058, 0.7320349812507629, -2.10953688621521, 1.4172544479370117, -1.074802279472351, 0.4421810805797577, 1.4182634353637695, -0.9306170344352722, 0.4438934326171875, -1.8278872966766357, -0.06059759855270386, 0.5189885497093201, -2.2677769660949707, 0.12442611902952194, -1.3070563077926636, -0.4753192365169525, 0.8908811211585999, 0.266606867313385, -1.3544756174087524, 0.2564040720462799, -0.5686467885971069, 0.9670423269271851, 0.45084714889526367, 1.1796199083328247, -1.7710939645767212, -0.10612597316503525, -0.2770267128944397, 0.11199401319026947, -1.315786600112915, -1.4817851781845093, 0.5800544619560242, 0.6036439538002014, 0.5254701972007751, -0.13242709636688232, 0.9523794054985046, -1.0606803894042969, 0.8603612780570984, -0.9171196222305298, -1.6510826349258423, -1.4531869888305664, -2.261197805404663, -2.3584203720092773, 0.8988655805587769, -0.48274877667427063, -0.5173983573913574, 1.951723337173462, -1.065538763999939, -1.7056082487106323, 1.1744892597198486, 0.28311917185783386, 0.08821121603250504, 2.469658851623535, 0.15292809903621674, -0.698030948638916, 0.3972213864326477, -0.7244393229484558, 0.8829038143157959, -0.44869452714920044, 1.4156198501586914, 0.4952015280723572, -0.9277117252349854, 1.6170138120651245, -0.42010316252708435, 0.48060083389282227, -0.6116254925727844, -0.5357022881507874, -0.9121498465538025, 0.45899438858032227, 1.867509126663208, -0.2820075750350952, 1.650702953338623, -0.41551026701927185, -1.6433799266815186, -1.657010555267334, 0.8748106956481934, 0.4907207190990448, -0.8921929597854614, -0.04486558958888054, -0.3917308747768402, 0.12139902263879776, 0.04869690537452698, 1.1037486791610718, 1.1785346269607544, 0.6687742471694946, -0.34329426288604736, -0.9078638553619385, 0.21797050535678864, -0.17311403155326843, -0.6661388278007507, -1.861565113067627, -0.40233904123306274, 0.2443026453256607, 0.6541938185691833, -1.1461071968078613, 1.6506404876708984, 1.036737322807312, 1.9283812046051025, 1.0186213254928589, -0.3355616331100464, 1.397483229637146, 0.028975743800401688, 1.8450732231140137, -0.5924649834632874, 0.7546608448028564, -0.35430383682250977, -1.128791093826294, 0.8081367015838623, -0.3516349196434021, -2.036318302154541, -0.750363290309906, -0.8374907970428467, -0.23086881637573242, -0.7064371109008789, 0.8934914469718933, -0.3062756061553955, -1.3264628648757935, 0.25312796235084534, -0.6205824017524719, 0.1369493156671524, -1.1870213747024536, 0.34038448333740234, 0.7895464301109314, -0.6360669732093811, -0.00001914985477924347, -0.1818857342004776, -1.3596335649490356, -0.485129177570343, 0.21907652914524078, 1.8880892992019653, -0.7930014729499817, 0.9771649837493896, 0.9489642977714539, -0.7001144289970398, 0.024763546884059906, 0.3521757125854492, -0.27431613206863403, 0.8377078175544739, -1.0072834491729736, -0.3061459958553314, 1.1315683126449585, -0.21599192917346954, -0.48566824197769165, 1.5012590885162354, 0.8057688474655151, -0.9554803967475891, -0.15545867383480072, -0.16981486976146698, -0.8093791007995605, 0.056170057505369186, -1.583688735961914, -0.16431841254234314, 0.2693362236022949, -1.5048096179962158, -0.4987680912017822, -0.24176958203315735, 1.1552194356918335, -0.09488604217767715, 1.3637385368347168, -0.44906359910964966, -0.2790757417678833, -0.4227457642555237, -0.4109645187854767, 0.2424456924200058, -0.22808009386062622, -0.6297653317451477, 0.316461980342865, -0.8616998195648193, 0.4680987298488617, 1.4320439100265503, 0.48404648900032043, 0.0215451717376709, 0.5340585112571716, 1.0326173305511475, 0.2649911940097809, 0.003982605412602425, -0.842674970626831, -1.5011273622512817, 2.0914664268493652, -1.4912405014038086, 1.9447237253189087, 0.7945381999015808, -0.030947130173444748, -1.7154494524002075, -1.8340190649032593, 1.3156415224075317, 1.1838027238845825, 2.348686456680298, 0.5787451267242432, 0.30696478486061096, -0.8486797213554382, -0.6619434356689453, 0.3591670095920563, -1.070859670639038, -0.7156819105148315, 0.014414883218705654, 2.283234119415283, 1.8038009405136108, -0.6413632035255432, -0.1480243057012558, -1.0839450359344482, 1.4057104587554932, -0.11561907082796097, 0.22709910571575165, 2.0837740898132324, -0.3115372061729431, -1.1204464435577393, 1.3344099521636963, -2.294980764389038, 0.1594199687242508, 1.9539883136749268, 0.355934202671051, 0.08498796075582504, -1.4257404804229736, -0.5694887042045593, -0.29490840435028076, -0.34858259558677673, -1.2703856229782104, 0.5945547223091125, -0.3384619355201721, -0.8375873565673828, -1.597033143043518, 0.05973897501826286, -1.1892008781433105, -1.649458408355713, 0.3742647171020508, 1.8082259893417358, 2.0113260746002197, -0.6416776776313782, 1.4903274774551392, -0.2017868459224701, 0.18139152228832245, 1.2226758003234863, 1.2426601648330688, 3.143599033355713, 1.962954044342041, -1.1628401279449463, 0.5825756192207336, -0.21886275708675385, -0.46764934062957764, 1.088234305381775, -1.0865366458892822, 1.2298469543457031, -0.1452600508928299, -1.1387416124343872, -1.1549850702285767, 1.0196788311004639, 0.4558859169483185, 0.07140962779521942, -0.5022968649864197, 1.182822823524475, 0.018481355160474777, 1.2836929559707642, 0.5650094747543335, -0.3871864676475525, 0.6025681495666504, -0.40962037444114685, -0.5152319073677063, 1.6432650089263916, 0.1859431266784668, -1.507308006286621, -2.259932041168213, -0.27302077412605286, -0.8200421929359436, -0.006375675089657307, -0.5991567373275757, -1.031553864479065, 1.6180495023727417, 0.413409024477005, -1.3985943794250488, -0.2563103139400482, -0.40685367584228516, -0.6779685616493225, 2.6240720748901367, -1.4423353672027588, -0.23453377187252045, -0.9324101209640503, -0.5456304550170898, 1.5727355480194092, -1.2685681581497192, -0.1298408806324005, -1.038502812385559, -0.6242215037345886, -1.2422031164169312, -0.5419823527336121, -0.12973695993423462, -0.9128485918045044, 0.683245062828064, 0.09519326686859131, -1.0028026103973389, -0.30550187826156616, -0.8941317200660706, 0.7680684924125671, -0.03291559964418411, 0.2611761689186096, 1.8491625785827637, 0.4167019724845886, -0.3537951409816742, 0.6492614150047302, 1.1302728652954102, 0.6446979641914368, -0.6496526598930359, 0.1440453678369522, -0.6855318546295166, 0.2428629845380783, -1.257453203201294, 0.3152267634868622, -2.822761297225952, 0.7384078502655029, -0.09067663550376892, -0.10795369744300842, 0.027310222387313843, -1.288645625114441, 1.1567350625991821, 2.5792183876037598, -1.1452124118804932, 0.41095465421676636, 0.2450636774301529, 1.1579278707504272, -1.6240997314453125, 0.37660273909568787, -0.3558780550956726, 2.1238510608673096, 0.2752833664417267, 1.1305534839630127, -0.5536811947822571, -2.2215089797973633, 0.5224990844726562, -1.2333905696868896, -1.0951862335205078, 0.680223822593689, -0.8936223387718201, 0.027307558804750443, -1.499895691871643, -0.1699327528476715, -0.8997355699539185, -1.1944770812988281, 0.7561807036399841, 0.1361674964427948, 0.41177064180374146, -0.5859535932540894, 0.2721394896507263, -2.2276904582977295, -1.4088455438613892, -0.3148815631866455, -0.9884520769119263, 0.5068674087524414, -0.283520370721817, 0.6473401188850403, -0.0904456377029419, 0.06250470131635666, 0.3552628457546234, 1.4076277017593384, 3.373042583465576, 0.22376425564289093, 0.47991159558296204, -0.12146400660276413, -0.9274163246154785, 1.428300142288208, 1.0179332494735718, -0.004527999088168144, -0.5961279273033142, -1.0340694189071655, 1.3159961700439453, 2.0051937103271484, 1.0513157844543457, 0.03557896986603737, -0.7175959944725037, -0.6586621403694153, -0.010825732722878456, 0.2157173901796341, 0.46442046761512756, 0.9415799379348755, 0.042314182966947556, 0.21025468409061432, 1.4981143474578857, 1.2840925455093384, -0.5417647957801819, 0.36666855216026306, -0.768666684627533, -0.47475895285606384, 0.44992250204086304, 0.321166455745697, -0.016434986144304276, 0.3770551085472107, -0.998135507106781, -0.19838641583919525, -0.3806788921356201, -1.0441974401474, -0.7154468297958374, -0.47246605157852173, -0.37954872846603394, 1.699161410331726, 0.15873496234416962, -0.47999170422554016, -0.07920190691947937, -0.742917001247406, -0.12879255414009094, -1.109542965888977, 0.2914455831050873, 0.007774283178150654, -0.05120943859219551, -0.10990620404481888, 1.8100850582122803, -0.8802909851074219, -2.0883235931396484, 0.22430486977100372, 0.20024548470973969, -0.45284244418144226, 0.18961220979690552, 1.5669118165969849, 0.46947699785232544, 1.475006341934204, 1.4587258100509644, 0.9557415246963501, -0.6901227235794067, -1.3146162033081055, 0.6835346221923828, 0.8273184299468994, -1.4253982305526733, 0.8822330832481384, 0.027079377323389053, -0.5278628468513489, 0.8027405738830566, 1.3968546390533447, 0.39087995886802673, -2.065168857574463, 0.8025500774383545, -0.9755365252494812, 0.8112766742706299, 0.6427587270736694, 0.7400503754615784, 0.2488037794828415, 0.7662087082862854, -1.280237078666687, -1.197927474975586, -0.858672022819519, -0.6282845139503479, 1.9747341871261597, -0.15141704678535461, 0.6145083904266357, -0.1689942479133606, -1.2650110721588135, -0.13479213416576385, 0.6925875544548035, 0.3968479037284851, -0.37235143780708313, 0.8314922451972961, -0.66415935754776, -1.2470619678497314, -1.4447802305221558, -0.40817299485206604, -0.9977971911430359, -0.8769209980964661, 1.0498954057693481, 0.8278605341911316, 0.28350913524627686, 1.9092708826065063, 0.5993984341621399, 0.2654956877231598, -2.7320921421051025, 0.8708846569061279, 0.24113409221172333, -0.03500400111079216, 0.9591272473335266, 0.2690381407737732, 1.029395580291748, -0.051741331815719604, 0.4865296483039856, -2.3484888076782227, 2.223944664001465, -0.26369184255599976, 0.826590359210968, -0.047990817576646805, -0.13090553879737854, 1.1640303134918213, 0.6293743848800659, 0.6116176843643188, -1.1886180639266968, 0.7094456553459167, -0.5400021076202393, 1.127209186553955, 0.9197983741760254, -0.7295682430267334, 0.0047503504902124405, 1.324232578277588, 0.5013713240623474, -0.4839986264705658, -0.9981389045715332, -0.8865742683410645, 0.8809383511543274, 1.8020439147949219, -0.163961261510849, -0.06104559823870659, 0.8201175928115845, 0.6405760049819946, -1.2971097230911255, 0.12408005446195602, -0.7870373725891113, -0.7518897652626038, 1.6006149053573608, 2.041287899017334, -0.06933092325925827, -0.1908923089504242, -0.5923856496810913, -1.2446728944778442, 0.6728574633598328, 0.03686060756444931, 0.15626318752765656, 0.5934942960739136, -0.6488757729530334, 1.1510670185089111, 0.8878741264343262, 0.9497040510177612, 0.11312974989414215, 0.3041399419307709, 0.3816816210746765, -0.27427026629447937, -1.1060960292816162, -0.2398642599582672, -1.1262134313583374, -2.4855175018310547, 0.5094130635261536, -0.2900550663471222, -1.586055874824524, 0.02363256737589836, -1.0330393314361572, 0.8995208144187927, -0.5185332298278809, -1.0196473598480225, -1.5950465202331543, 0.16686245799064636, -0.07742507010698318, 0.9216524362564087, -1.6315685510635376, -0.056460294872522354, 1.156673789024353, 0.8042258620262146, -0.5685321688652039, 1.0436654090881348, 0.3163144588470459, 0.9780901074409485, 0.8027332425117493, -0.43263310194015503, 0.3983025550842285, 0.10879602283239365, -1.28793466091156, 0.4984555244445801, 1.1429623365402222, 0.14649686217308044, 1.2961870431900024, -0.5648577809333801, 0.1261170357465744, 0.42521536350250244, -0.49829596281051636, -0.35778602957725525, -0.4871596097946167, 0.7383774518966675, 0.06047571077942848, -0.8628196716308594, 0.0464126318693161, -0.16049669682979584, -0.22959096729755402, 0.19774600863456726, -1.4861196279525757, -0.29867419600486755, -0.4889993965625763, -0.530680775642395, -1.1872622966766357, -0.10664362460374832, 1.49288809299469, -0.763234555721283, -0.16258661448955536, 0.5225920081138611, 0.5433144569396973, 0.6173661351203918, 0.6383267641067505, -0.5650864839553833, -0.40185898542404175, -0.22957108914852142, -0.3238183856010437, 0.2033701390028, 1.2376846075057983, -0.16807341575622559, -0.9617697596549988, 0.7815712094306946, -0.4075486958026886, 0.050754621624946594, 1.9711272716522217, 0.11622917652130127, -0.7682395577430725, 0.32259660959243774, -0.7020072937011719, 1.838674545288086, 1.7655977010726929, 1.3201777935028076, -0.061821356415748596, -0.9289891123771667, 0.5488744974136353, -0.16419927775859833, -0.34931179881095886, 0.9339949488639832, 0.44580426812171936, -0.2089160829782486, -1.415375828742981, 0.6117838025093079, 1.3161343336105347, -0.9025151133537292, -0.7478178143501282, 0.0337190106511116, -0.864550769329071, 1.0497686862945557, 0.6427155137062073, 0.4723317325115204, 0.21508558094501495, 1.6905901432037354, 0.6304440498352051, -0.43584826588630676, 0.49018120765686035, 0.5380107760429382, -0.24867971241474152, -2.138237953186035, -1.1413319110870361, 0.2560347020626068, -0.42966386675834656, -1.5438438653945923, 1.2681522369384766, -1.116702675819397, -0.8739045262336731, 0.5731285214424133, 0.12815740704536438, 1.4796565771102905, 0.4100241959095001, 1.6054556369781494, 2.1391873359680176, 0.8830503225326538, 0.3843279480934143, 1.3574367761611938, -0.030117828398942947, -0.5044647455215454, 1.845747947692871, -0.3811416029930115, 0.5194851160049438, 1.107772946357727, -0.34735777974128723, -1.0231282711029053, -0.6896136403083801, -1.0591241121292114, -0.6038827896118164, 1.134793996810913, 0.13792255520820618, -1.1721726655960083, 0.20787863433361053, 1.5784627199172974, 0.17171567678451538, -0.31907889246940613, 0.49448245763778687, 0.4340255856513977, -0.6683741211891174, -0.024174299091100693, -0.9925435185432434, 0.4013643264770508, -0.23949265480041504, -0.3757791817188263, 0.37737005949020386, 0.5106753706932068, 1.173362135887146, -0.07392417639493942, 0.10266966372728348, 1.2417877912521362, -1.4769368171691895, 1.452271580696106, -0.5604507923126221, 0.24078369140625, -2.3444526195526123, 1.540947437286377, -0.7844368815422058, 1.9375364780426025, -2.5923380851745605, 0.3593606948852539, -0.6985799670219421, -0.5250228643417358, 0.36454734206199646, -0.34588557481765747, 0.16868938505649567, -0.13179008662700653, -1.1318191289901733, -0.010019643232226372, -0.7046812176704407, 0.4963565468788147, 1.1266353130340576, 1.3382223844528198, -1.0954500436782837, -0.3175449073314667, -1.6996945142745972, -0.20714564621448517, -0.6970375776290894, 0.32587018609046936, -2.030134439468384, -0.13312038779258728, -1.858862280845642, -2.297321319580078, -1.4637492895126343, -0.8605853915214539, 1.0761284828186035, 0.13903072476387024, -0.8588825464248657, 1.0748414993286133, -0.3641703426837921, -1.8577159643173218, 1.0980675220489502, -2.1881046295166016 ]
https://github.com/huggingface/datasets/issues/5888
A way to upload and visualize .mp4 files (millions of them) as part of a dataset
True. I spend a good 4 months just mixing and matching existing solutions so I could get performance that would not IO bound my model training. This is what I ended up with, in case it's useful https://github.com/AntreasAntoniou/TALI/blob/045cf9e5aa75b1bf2c6d5351fb910fa10e3ff32c/tali/data/data_plus.py#L85
**Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI
125
38
A way to upload and visualize .mp4 files (millions of them) as part of a dataset **Is your feature request related to a problem? Please describe.** I recently chose to use huggingface hub as the home for a large multi modal dataset I've been building. https://huggingface.co/datasets/Antreas/TALI It combines images, text, audio and video. Now, I could very easily upload a dataset made via datasets.Dataset.from_generator, as long as it did not include video files. I found that including .mp4 files in the entries would not auto-upload those files. Hence I tried to upload them myself. I quickly found out that uploading many small files is a very bad way to use git lfs, and that it would take ages, so, I resorted to using 7z to pack them all up. But then I had a new problem. My dataset had a size of 1.9TB. Trying to upload such a large file with the default huggingface_hub API always resulted in time outs etc. So I decided to split the large files into chunks of 5GB each and reupload. So, eventually it all worked out. But now the dataset can't be properly and natively used by the datasets API because of all the needed preprocessing -- and furthermore the hub is unable to visualize things. **Describe the solution you'd like** A native way to upload large datasets that include .mp4 or other video types. **Describe alternatives you've considered** Already explained earlier **Additional context** https://huggingface.co/datasets/Antreas/TALI True. I spend a good 4 months just mixing and matching existing solutions so I could get performance that would not IO bound my model training. This is what I ended up with, in case it's useful https://github.com/AntreasAntoniou/TALI/blob/045cf9e5aa75b1bf2c6d5351fb910fa10e3ff32c/tali/data/data_plus.py#L85
[ -1.2097371816635132, -1.0847102403640747, -0.7698685526847839, 1.3511428833007812, -0.18640625476837158, -1.2706283330917358, 0.06267087906599045, -1.031760573387146, 1.6641919612884521, -0.7842571139335632, 0.2850280702114105, -1.6514801979064941, -0.05408359691500664, -0.535085916519165, -0.7616373896598816, -0.8084372282028198, -0.4316622316837311, -0.9447450041770935, 0.9969191551208496, 2.5783026218414307, 1.1114377975463867, -1.4121506214141846, 2.733150005340576, 0.6847919225692749, -0.18176935613155365, -1.0544824600219727, 0.5390362739562988, 0.08953074365854263, -1.3029688596725464, -0.5195402503013611, -0.8897905945777893, 0.021921295672655106, -0.5909715890884399, -0.5065033435821533, 0.05056709423661232, 0.32803764939308167, -0.11323104053735733, -0.3742944002151489, -0.5855184197425842, -0.6684973835945129, 0.5313801765441895, -0.4066424071788788, 0.9705699682235718, -0.3319258689880371, 1.8697731494903564, -0.5339216589927673, 0.38167083263397217, 0.723211407661438, 1.4017541408538818, 0.20575200021266937, 0.02318095788359642, 0.2490984946489334, 0.4780256748199463, -0.04509922116994858, 0.42791250348091125, 1.1500016450881958, 0.6187667846679688, 0.47055894136428833, 0.7174603939056396, -2.1278347969055176, 1.3861020803451538, -1.0004602670669556, 0.42531824111938477, 1.3896334171295166, -0.8956056833267212, 0.42010536789894104, -1.859127163887024, -0.039076149463653564, 0.5410646796226501, -2.2673206329345703, 0.16113555431365967, -1.3137688636779785, -0.5278056263923645, 0.8937618732452393, 0.22645680606365204, -1.327885627746582, 0.2573263347148895, -0.5558793544769287, 0.9946765899658203, 0.48079562187194824, 1.204150676727295, -1.765580654144287, -0.107197605073452, -0.2543237805366516, 0.10242215543985367, -1.302395224571228, -1.5053461790084839, 0.5618458986282349, 0.6001750826835632, 0.5543262362480164, -0.14157231152057648, 0.9551007747650146, -1.0660637617111206, 0.8716326355934143, -0.9058979153633118, -1.635049819946289, -1.4221960306167603, -2.2684648036956787, -2.3377013206481934, 0.8884183168411255, -0.4791007339954376, -0.4786587357521057, 1.938960075378418, -1.0997865200042725, -1.7267358303070068, 1.1514153480529785, 0.29138311743736267, 0.09477853029966354, 2.4244399070739746, 0.2178889811038971, -0.69656902551651, 0.39065298438072205, -0.7296673655509949, 0.8658521175384521, -0.42822182178497314, 1.404558539390564, 0.4994337856769562, -0.8635640144348145, 1.5909212827682495, -0.4339228868484497, 0.5048748850822449, -0.6349803805351257, -0.5111396312713623, -0.9238055348396301, 0.409365713596344, 1.8799322843551636, -0.31424811482429504, 1.6498595476150513, -0.4103167653083801, -1.6756715774536133, -1.617737889289856, 0.8521903157234192, 0.5017393231391907, -0.8834632039070129, -0.05451228842139244, -0.3992770314216614, 0.13096880912780762, 0.044113315641880035, 1.062857747077942, 1.2074944972991943, 0.6997019648551941, -0.32761111855506897, -0.9219124913215637, 0.23004448413848877, -0.16346469521522522, -0.6777362823486328, -1.862726092338562, -0.36076778173446655, 0.25757482647895813, 0.685194730758667, -1.1996694803237915, 1.6743569374084473, 1.0227810144424438, 1.9669090509414673, 1.0014300346374512, -0.37820670008659363, 1.4144883155822754, 0.05178580805659294, 1.8456519842147827, -0.558165967464447, 0.7210447788238525, -0.3604468107223511, -1.1232609748840332, 0.8104044198989868, -0.3405039608478546, -2.0492827892303467, -0.7474350333213806, -0.8327470421791077, -0.24412019550800323, -0.71864253282547, 0.8724910616874695, -0.3254845440387726, -1.3593835830688477, 0.22466881573200226, -0.5924270153045654, 0.1519518345594406, -1.182626724243164, 0.3192548453807831, 0.7547315955162048, -0.6330359578132629, -0.010687347501516342, -0.1848035454750061, -1.366481900215149, -0.45915621519088745, 0.24420134723186493, 1.8815208673477173, -0.7431046366691589, 0.9808331727981567, 0.9686596989631653, -0.6943597197532654, 0.034559350460767746, 0.3461132347583771, -0.2757416367530823, 0.8177087903022766, -1.0360554456710815, -0.2971378266811371, 1.121042251586914, -0.2079838216304779, -0.5146978497505188, 1.4581749439239502, 0.8201120495796204, -0.9609156250953674, -0.21017546951770782, -0.1755886673927307, -0.7842892408370972, 0.04837774485349655, -1.5687800645828247, -0.18913120031356812, 0.2666167616844177, -1.474300742149353, -0.4973037838935852, -0.2733261287212372, 1.1615111827850342, -0.09752630442380905, 1.3547507524490356, -0.4274485409259796, -0.2738442122936249, -0.37569355964660645, -0.44450443983078003, 0.2550736367702484, -0.22943998873233795, -0.6475223302841187, 0.30820852518081665, -0.8854017853736877, 0.40854376554489136, 1.453984260559082, 0.48010194301605225, 0.0047349222004413605, 0.533137857913971, 1.025852918624878, 0.29765769839286804, -0.006003299728035927, -0.8191726207733154, -1.5382074117660522, 2.120154619216919, -1.5108726024627686, 1.9479632377624512, 0.7988113164901733, -0.07143474370241165, -1.7311540842056274, -1.859802484512329, 1.2991176843643188, 1.1742414236068726, 2.3876655101776123, 0.5835868120193481, 0.34065601229667664, -0.819640040397644, -0.7029410004615784, 0.35369443893432617, -1.0424554347991943, -0.7182261347770691, 0.03093588724732399, 2.2993133068084717, 1.7963995933532715, -0.6396449208259583, -0.15701016783714294, -1.04050874710083, 1.3680506944656372, -0.112611785531044, 0.2288825958967209, 2.0826520919799805, -0.30786171555519104, -1.1044158935546875, 1.2982151508331299, -2.289266347885132, 0.19760042428970337, 1.9632378816604614, 0.3353601396083832, 0.07150781899690628, -1.414853811264038, -0.6169222593307495, -0.31205132603645325, -0.3504944145679474, -1.2628533840179443, 0.5769127607345581, -0.3606332540512085, -0.8550642728805542, -1.5587387084960938, 0.06281520426273346, -1.1940792798995972, -1.660365343093872, 0.38551846146583557, 1.8501732349395752, 2.0559511184692383, -0.694178581237793, 1.4477462768554688, -0.22948460280895233, 0.16821983456611633, 1.2111356258392334, 1.2311195135116577, 3.1104049682617188, 1.9420890808105469, -1.1574146747589111, 0.613001823425293, -0.2287987768650055, -0.4568853974342346, 1.0823382139205933, -1.0533016920089722, 1.2017414569854736, -0.15042738616466522, -1.130171775817871, -1.1313817501068115, 1.0306360721588135, 0.46961259841918945, 0.0743328183889389, -0.49084633588790894, 1.18434739112854, 0.028824906796216965, 1.3046241998672485, 0.5686010122299194, -0.40441596508026123, 0.6105346083641052, -0.34106239676475525, -0.5284250974655151, 1.6418782472610474, 0.1557024121284485, -1.4964747428894043, -2.27736234664917, -0.305664598941803, -0.8339859843254089, -0.03948282450437546, -0.5870606899261475, -1.0056663751602173, 1.5902564525604248, 0.4471535384654999, -1.38655686378479, -0.27454885840415955, -0.3625490963459015, -0.6176244020462036, 2.631129503250122, -1.4205249547958374, -0.23441696166992188, -0.9223101735115051, -0.5040014982223511, 1.5757935047149658, -1.2595781087875366, -0.16289657354354858, -1.0114951133728027, -0.6396162509918213, -1.267056941986084, -0.5434498190879822, -0.08711306005716324, -0.9024015069007874, 0.6743680834770203, 0.11724303662776947, -0.9801520109176636, -0.29151785373687744, -0.9149647355079651, 0.8291476368904114, -0.022886481136083603, 0.2577500343322754, 1.8455300331115723, 0.40892860293388367, -0.3433588445186615, 0.6301596164703369, 1.1260432004928589, 0.6261091828346252, -0.6802999377250671, 0.11448469012975693, -0.7228316068649292, 0.24912439286708832, -1.310761570930481, 0.2891783118247986, -2.8426754474639893, 0.7247927784919739, -0.08144218474626541, -0.10546018183231354, 0.03171640262007713, -1.3020695447921753, 1.1588886976242065, 2.5838887691497803, -1.1541215181350708, 0.44202035665512085, 0.3024480640888214, 1.1646020412445068, -1.5954835414886475, 0.3341846764087677, -0.3706890940666199, 2.106675624847412, 0.2598767876625061, 1.1601667404174805, -0.5686621069908142, -2.2094669342041016, 0.5474152565002441, -1.2302443981170654, -1.1039443016052246, 0.6819502115249634, -0.9038789868354797, 0.047613777220249176, -1.5049885511398315, -0.18689695000648499, -0.9176648259162903, -1.2031422853469849, 0.732322633266449, 0.17621362209320068, 0.4372002184391022, -0.6148179769515991, 0.3040318787097931, -2.225961923599243, -1.4068330526351929, -0.2865595519542694, -0.9980637431144714, 0.5243789553642273, -0.3288564682006836, 0.6291259527206421, -0.0572328120470047, 0.05139288678765297, 0.3460391163825989, 1.3808735609054565, 3.384387254714966, 0.220648854970932, 0.4382741153240204, -0.1014995202422142, -0.9404992461204529, 1.4310712814331055, 0.9727886319160461, -0.006102546583861113, -0.5824788808822632, -1.0526398420333862, 1.2917675971984863, 2.0527639389038086, 1.0898571014404297, 0.02368542179465294, -0.7414748072624207, -0.6836951971054077, 0.021278593689203262, 0.19490046799182892, 0.47954443097114563, 0.9673263430595398, 0.03474203497171402, 0.18188704550266266, 1.4780172109603882, 1.2836862802505493, -0.5259814262390137, 0.4049091935157776, -0.7971335649490356, -0.48487991094589233, 0.4214695692062378, 0.307452917098999, -0.007782249711453915, 0.3825537860393524, -1.052013635635376, -0.17375478148460388, -0.3601142466068268, -1.036191701889038, -0.7297664284706116, -0.443259060382843, -0.363116592168808, 1.6536494493484497, 0.14197975397109985, -0.4659022092819214, -0.05548694729804993, -0.7461404204368591, -0.11757142841815948, -1.075142741203308, 0.24519310891628265, -0.05314885452389717, -0.03189985826611519, -0.1200951635837555, 1.790294885635376, -0.8827866911888123, -2.089576005935669, 0.20567189157009125, 0.21702034771442413, -0.43359464406967163, 0.18391180038452148, 1.5972660779953003, 0.49150350689888, 1.441343069076538, 1.42312490940094, 0.9822316765785217, -0.6644632816314697, -1.293383240699768, 0.6975241899490356, 0.8382040858268738, -1.3885971307754517, 0.8840497136116028, -0.013538239523768425, -0.5419633388519287, 0.8109157085418701, 1.3952332735061646, 0.349189430475235, -2.0623090267181396, 0.8514032959938049, -0.9209259152412415, 0.7684023976325989, 0.6622759699821472, 0.7902960777282715, 0.23986901342868805, 0.8111428022384644, -1.2916170358657837, -1.1677017211914062, -0.8747793436050415, -0.6143395900726318, 1.976699948310852, -0.1331767737865448, 0.5731975436210632, -0.17567548155784607, -1.2255151271820068, -0.11552131921052933, 0.7110918164253235, 0.38596558570861816, -0.3716471195220947, 0.8142935037612915, -0.6547113060951233, -1.2160919904708862, -1.4188916683197021, -0.4157074987888336, -0.9825260043144226, -0.8896387815475464, 1.0183314085006714, 0.7996698617935181, 0.346383273601532, 1.935833215713501, 0.6075247526168823, 0.2746295928955078, -2.757702112197876, 0.8630761504173279, 0.2464548498392105, -0.037203311920166016, 0.9750537276268005, 0.24942328035831451, 1.0662277936935425, -0.012855816632509232, 0.486895352602005, -2.337310552597046, 2.1995396614074707, -0.301863431930542, 0.8209788799285889, -0.0650407001376152, -0.14698036015033722, 1.1647571325302124, 0.6432496905326843, 0.6149618625640869, -1.215855360031128, 0.7087428569793701, -0.5448784232139587, 1.1060701608657837, 0.9325899481773376, -0.7714210748672485, 0.04922397434711456, 1.3280820846557617, 0.4735358953475952, -0.46971505880355835, -0.995074450969696, -0.8662366271018982, 0.8804536461830139, 1.80743408203125, -0.1673874706029892, -0.039062127470970154, 0.8210119009017944, 0.6768267750740051, -1.3181986808776855, 0.08636429905891418, -0.7729149460792542, -0.750231146812439, 1.6167542934417725, 2.0811727046966553, -0.06506626307964325, -0.21234020590782166, -0.6128423810005188, -1.2400776147842407, 0.6735228896141052, 0.0038466481491923332, 0.17405802011489868, 0.6206315755844116, -0.666765034198761, 1.1511553525924683, 0.8060178160667419, 0.9762908816337585, 0.067499540746212, 0.29091307520866394, 0.3840367794036865, -0.29158908128738403, -1.1102505922317505, -0.28948724269866943, -1.134000301361084, -2.505586862564087, 0.4974665939807892, -0.264800101518631, -1.6048532724380493, 0.05177810415625572, -1.0040754079818726, 0.898036003112793, -0.5565741658210754, -1.024786114692688, -1.571428894996643, 0.2073468714952469, -0.0985560491681099, 0.9014108777046204, -1.6568812131881714, -0.08104502409696579, 1.1821454763412476, 0.8262073397636414, -0.5249444246292114, 1.041698694229126, 0.31696897745132446, 0.9739541411399841, 0.7745693922042847, -0.42022937536239624, 0.4279349148273468, 0.1069624274969101, -1.2896720170974731, 0.48389431834220886, 1.185221791267395, 0.18491052091121674, 1.297601342201233, -0.5689355134963989, 0.15104186534881592, 0.43318814039230347, -0.5300663113594055, -0.40659400820732117, -0.44791263341903687, 0.7293692231178284, 0.0743318721652031, -0.9062522649765015, 0.03479062765836716, -0.1841423064470291, -0.2085639387369156, 0.20182234048843384, -1.4762442111968994, -0.3185255229473114, -0.47143277525901794, -0.5143646001815796, -1.2140864133834839, -0.052204687148332596, 1.474382758140564, -0.7930388450622559, -0.19467341899871826, 0.5283836126327515, 0.5048189163208008, 0.6292613744735718, 0.6203370690345764, -0.6255161166191101, -0.36661455035209656, -0.260987251996994, -0.32266896963119507, 0.20905280113220215, 1.244238018989563, -0.1765764057636261, -0.9831256866455078, 0.7480382919311523, -0.3977360129356384, 0.06728217750787735, 1.994639277458191, 0.09787103533744812, -0.7413977980613708, 0.30440717935562134, -0.7194989323616028, 1.8290220499038696, 1.7437052726745605, 1.3447476625442505, -0.07562632113695145, -0.8989965319633484, 0.549233078956604, -0.19151785969734192, -0.3567105233669281, 0.9488779306411743, 0.45589321851730347, -0.19296488165855408, -1.4082872867584229, 0.5634183883666992, 1.3277255296707153, -0.9097787141799927, -0.7423792481422424, 0.031085651367902756, -0.8415537476539612, 1.0940780639648438, 0.6808136701583862, 0.4379926025867462, 0.21182584762573242, 1.667096734046936, 0.6422759890556335, -0.44755426049232483, 0.5215839743614197, 0.5305988192558289, -0.2332363724708557, -2.145632028579712, -1.086668610572815, 0.27641603350639343, -0.39110976457595825, -1.5483596324920654, 1.3056217432022095, -1.11112380027771, -0.8999687433242798, 0.5727843046188354, 0.1572345346212387, 1.4606761932373047, 0.4303777813911438, 1.6196495294570923, 2.147958755493164, 0.8759366869926453, 0.3814370036125183, 1.3112720251083374, -0.04465082287788391, -0.5176793336868286, 1.878647804260254, -0.39655983448028564, 0.529855489730835, 1.1033259630203247, -0.37065523862838745, -1.0032100677490234, -0.732520341873169, -1.088038682937622, -0.5720586180686951, 1.1478509902954102, 0.1131436750292778, -1.1569353342056274, 0.1964486986398697, 1.5957947969436646, 0.1585550457239151, -0.3275207579135895, 0.5769402980804443, 0.4143315851688385, -0.6649280786514282, -0.04926299676299095, -0.9675195813179016, 0.3929758071899414, -0.20436564087867737, -0.378889799118042, 0.3385467231273651, 0.5104095935821533, 1.1866837739944458, -0.07473840564489365, 0.058409396559000015, 1.261711597442627, -1.4494671821594238, 1.4408906698226929, -0.5889684557914734, 0.263077974319458, -2.3566102981567383, 1.5124443769454956, -0.7802057862281799, 1.9005651473999023, -2.567139148712158, 0.3207705616950989, -0.6756007075309753, -0.5126566290855408, 0.3177625238895416, -0.34988391399383545, 0.15761183202266693, -0.12495824694633484, -1.0886436700820923, -0.00785144604742527, -0.7581180930137634, 0.5458326935768127, 1.1218796968460083, 1.3579695224761963, -1.1138666868209839, -0.3003353774547577, -1.7335114479064941, -0.2013343870639801, -0.7397345304489136, 0.31744691729545593, -2.0323190689086914, -0.17130251228809357, -1.9111499786376953, -2.3084282875061035, -1.447709083557129, -0.8716146945953369, 1.071747899055481, 0.1426481008529663, -0.8821373581886292, 1.0701453685760498, -0.3605826795101166, -1.844193696975708, 1.1197185516357422, -2.191110849380493 ]
https://github.com/huggingface/datasets/issues/5881
Split dataset by node: index error when sharding iterable dataset
cc @lhoestq in case you have any ideas here! Might need a multi-host set-up to debug (can give you access to a JAX one if you need)
### Describe the bug Context: we're splitting an iterable dataset by node and then passing it to a torch data loader with multiple workers When we iterate over it for 5 steps, we don't get an error When we instead iterate over it for 8 steps, we get an `IndexError` when fetching the data if we have too many workers ### Steps to reproduce the bug Here, we have 2 JAX processes (`jax.process_count() = 2`) which we split the dataset over. The dataset loading script can be found here: https://huggingface.co/datasets/distil-whisper/librispeech_asr/blob/c6a1e805cbfeed5057400ac5937327d7e30281b8/librispeech_asr.py#L310 <details> <summary> Code to reproduce </summary> ```python from datasets import load_dataset import jax from datasets.distributed import split_dataset_by_node from torch.utils.data import DataLoader from tqdm import tqdm # load an example dataset (https://huggingface.co/datasets/distil-whisper/librispeech_asr) dataset = load_dataset("distil-whisper/librispeech_asr", "all", split="train.clean.100", streaming=True) # just keep the text column -> no need to define a collator dataset_text = dataset.remove_columns(set(dataset.features.keys()) - {"text"}) # define some constants batch_size = 256 num_examples = 5 # works for 5 examples, doesn't for 8 num_workers = dataset_text.n_shards # try with multiple workers dataloader = DataLoader(dataset_text, batch_size=batch_size, num_workers=num_workers, drop_last=True) for i, batch in tqdm(enumerate(dataloader), total=num_examples, desc="Multiple workers"): if i == num_examples: break # try splitting by node (we can't do this with `dataset_text` since `split_dataset_by_node` expects the Audio column for an ASR dataset) dataset = split_dataset_by_node(dataset, rank=jax.process_index(), world_size=jax.process_count()) # remove the text column again dataset_text = dataset.remove_columns(set(dataset.features.keys()) - {"text"}) dataloader = DataLoader(dataset_text, batch_size=16, num_workers=num_workers // 2, drop_last=True) for i, batch in tqdm(enumerate(dataloader), total=num_examples, desc="Split by node"): if i == num_examples: break # too many workers dataloader = DataLoader(dataset_text, batch_size=256, num_workers=num_workers, drop_last=True) for i, batch in tqdm(enumerate(dataloader), total=num_examples, desc="Too many workers"): if i == num_examples: break ``` </details> <details> <summary> With 5 examples: </summary> ``` Multiple workers: 100%|███████████████████████████████████████████████████████████████████| 5/5 [00:16<00:00, 3.33s/it] Assigning 7 shards (or data sources) of the dataset to each node. Split by node: 100%|██████████████████████████████████████████████████████████████████████| 5/5 [00:13<00:00, 2.76s/it] Assigning 7 shards (or data sources) of the dataset to each node. Too many dataloader workers: 14 (max is dataset.n_shards=7). Stopping 7 dataloader workers. To parallelize data loading, we give each process some shards (or data sources) to process. Therefore it's unnecessary t o have a number of workers greater than dataset.n_shards=7. To enable more parallelism, please split the dataset in more files than 7. Too many workers: 100%|███████████████████████████████████████████████████████████████████| 5/5 [00:15<00:00, 3.03s/it] ``` </details> <details> <summary> With 7 examples: </summary> ``` Multiple workers: 100%|███████████████████████████████████████████████████████████████████| 8/8 [00:13<00:00, 1.71s/it] Assigning 7 shards (or data sources) of the dataset to each node. Split by node: 100%|██████████████████████████████████████████████████████████████████████| 8/8 [00:11<00:00, 1.38s/it] Assigning 7 shards (or data sources) of the dataset to each node. Too many dataloader workers: 14 (max is dataset.n_shards=7). Stopping 7 dataloader workers. To parallelize data loading, we give each process some shards (or data sources) to process. Therefore it's unnecessary to have a number of workers greater than dataset.n_shards=7. To enable more parallelism, please split the dataset in more files than 7. Too many workers: 88%|██████████████████████████████████████████████████████████▋ | 7/8 [00:13<00:01, 1.89s/it] Traceback (most recent call last): File "distil-whisper/test_librispeech.py", line 36, in <module> for i, batch in tqdm(enumerate(dataloader), total=num_examples, desc="Too many workers"): File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/tqdm/std.py", line 1178, in __iter__ for obj in iterable: File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 633, in __next__ data = self._next_data() File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1325, in _next_data return self._process_data(data) File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1371, in _process_data data.reraise() File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/_utils.py", line 644, in reraise raise exception IndexError: Caught IndexError in DataLoader worker process 7. Original Traceback (most recent call last): File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 308, in _worker_loop data = fetcher.fetch(index) File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 32, in fetch data.append(next(self.dataset_iter)) File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 986, in __iter__ yield from self._iter_pytorch(ex_iterable) File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 920, in _iter_pytorch for key, example in ex_iterable.shard_data_sources(worker_info.id, worker_info.num_workers): File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 540, in shard_data_sources self.ex_iterable.shard_data_sources(worker_id, num_workers), File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 796, in shard_data_sources self.ex_iterable.shard_data_sources(worker_id, num_workers), File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 126, in shard_data_sources requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices]) File "/home/sanchitgandhi/datasets/src/datasets/utils/sharding.py", line 76, in _merge_gen_kwargs for key in gen_kwargs_list[0] IndexError: list index out of range ``` </details> ### Expected behavior Should pass for both 5 and 7 examples ### Environment info - `datasets` version: 2.12.1.dev0 - Platform: Linux-5.13.0-1023-gcp-x86_64-with-glibc2.29 - Python version: 3.8.10 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1
127
27
Split dataset by node: index error when sharding iterable dataset ### Describe the bug Context: we're splitting an iterable dataset by node and then passing it to a torch data loader with multiple workers When we iterate over it for 5 steps, we don't get an error When we instead iterate over it for 8 steps, we get an `IndexError` when fetching the data if we have too many workers ### Steps to reproduce the bug Here, we have 2 JAX processes (`jax.process_count() = 2`) which we split the dataset over. The dataset loading script can be found here: https://huggingface.co/datasets/distil-whisper/librispeech_asr/blob/c6a1e805cbfeed5057400ac5937327d7e30281b8/librispeech_asr.py#L310 <details> <summary> Code to reproduce </summary> ```python from datasets import load_dataset import jax from datasets.distributed import split_dataset_by_node from torch.utils.data import DataLoader from tqdm import tqdm # load an example dataset (https://huggingface.co/datasets/distil-whisper/librispeech_asr) dataset = load_dataset("distil-whisper/librispeech_asr", "all", split="train.clean.100", streaming=True) # just keep the text column -> no need to define a collator dataset_text = dataset.remove_columns(set(dataset.features.keys()) - {"text"}) # define some constants batch_size = 256 num_examples = 5 # works for 5 examples, doesn't for 8 num_workers = dataset_text.n_shards # try with multiple workers dataloader = DataLoader(dataset_text, batch_size=batch_size, num_workers=num_workers, drop_last=True) for i, batch in tqdm(enumerate(dataloader), total=num_examples, desc="Multiple workers"): if i == num_examples: break # try splitting by node (we can't do this with `dataset_text` since `split_dataset_by_node` expects the Audio column for an ASR dataset) dataset = split_dataset_by_node(dataset, rank=jax.process_index(), world_size=jax.process_count()) # remove the text column again dataset_text = dataset.remove_columns(set(dataset.features.keys()) - {"text"}) dataloader = DataLoader(dataset_text, batch_size=16, num_workers=num_workers // 2, drop_last=True) for i, batch in tqdm(enumerate(dataloader), total=num_examples, desc="Split by node"): if i == num_examples: break # too many workers dataloader = DataLoader(dataset_text, batch_size=256, num_workers=num_workers, drop_last=True) for i, batch in tqdm(enumerate(dataloader), total=num_examples, desc="Too many workers"): if i == num_examples: break ``` </details> <details> <summary> With 5 examples: </summary> ``` Multiple workers: 100%|███████████████████████████████████████████████████████████████████| 5/5 [00:16<00:00, 3.33s/it] Assigning 7 shards (or data sources) of the dataset to each node. Split by node: 100%|██████████████████████████████████████████████████████████████████████| 5/5 [00:13<00:00, 2.76s/it] Assigning 7 shards (or data sources) of the dataset to each node. Too many dataloader workers: 14 (max is dataset.n_shards=7). Stopping 7 dataloader workers. To parallelize data loading, we give each process some shards (or data sources) to process. Therefore it's unnecessary t o have a number of workers greater than dataset.n_shards=7. To enable more parallelism, please split the dataset in more files than 7. Too many workers: 100%|███████████████████████████████████████████████████████████████████| 5/5 [00:15<00:00, 3.03s/it] ``` </details> <details> <summary> With 7 examples: </summary> ``` Multiple workers: 100%|███████████████████████████████████████████████████████████████████| 8/8 [00:13<00:00, 1.71s/it] Assigning 7 shards (or data sources) of the dataset to each node. Split by node: 100%|██████████████████████████████████████████████████████████████████████| 8/8 [00:11<00:00, 1.38s/it] Assigning 7 shards (or data sources) of the dataset to each node. Too many dataloader workers: 14 (max is dataset.n_shards=7). Stopping 7 dataloader workers. To parallelize data loading, we give each process some shards (or data sources) to process. Therefore it's unnecessary to have a number of workers greater than dataset.n_shards=7. To enable more parallelism, please split the dataset in more files than 7. Too many workers: 88%|██████████████████████████████████████████████████████████▋ | 7/8 [00:13<00:01, 1.89s/it] Traceback (most recent call last): File "distil-whisper/test_librispeech.py", line 36, in <module> for i, batch in tqdm(enumerate(dataloader), total=num_examples, desc="Too many workers"): File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/tqdm/std.py", line 1178, in __iter__ for obj in iterable: File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 633, in __next__ data = self._next_data() File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1325, in _next_data return self._process_data(data) File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1371, in _process_data data.reraise() File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/_utils.py", line 644, in reraise raise exception IndexError: Caught IndexError in DataLoader worker process 7. Original Traceback (most recent call last): File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 308, in _worker_loop data = fetcher.fetch(index) File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 32, in fetch data.append(next(self.dataset_iter)) File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 986, in __iter__ yield from self._iter_pytorch(ex_iterable) File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 920, in _iter_pytorch for key, example in ex_iterable.shard_data_sources(worker_info.id, worker_info.num_workers): File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 540, in shard_data_sources self.ex_iterable.shard_data_sources(worker_id, num_workers), File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 796, in shard_data_sources self.ex_iterable.shard_data_sources(worker_id, num_workers), File "/home/sanchitgandhi/datasets/src/datasets/iterable_dataset.py", line 126, in shard_data_sources requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices]) File "/home/sanchitgandhi/datasets/src/datasets/utils/sharding.py", line 76, in _merge_gen_kwargs for key in gen_kwargs_list[0] IndexError: list index out of range ``` </details> ### Expected behavior Should pass for both 5 and 7 examples ### Environment info - `datasets` version: 2.12.1.dev0 - Platform: Linux-5.13.0-1023-gcp-x86_64-with-glibc2.29 - Python version: 3.8.10 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 cc @lhoestq in case you have any ideas here! Might need a multi-host set-up to debug (can give you access to a JAX one if you need)
[ -1.2880133390426636, -0.9727054238319397, -0.6107147932052612, 1.3763887882232666, -0.13837292790412903, -1.1879032850265503, 0.18096737563610077, -1.0618406534194946, 1.590919852256775, -0.8489632606506348, 0.29745152592658997, -1.683239459991455, -0.008944690227508545, -0.5077376961708069, -0.6703460216522217, -0.8681108355522156, -0.3812616169452667, -0.8162789344787598, 1.1302436590194702, 2.4968254566192627, 1.201846957206726, -1.315751314163208, 2.748302698135376, 0.6582362651824951, -0.27255895733833313, -1.027936339378357, 0.6045676469802856, -0.06855875998735428, -1.2673336267471313, -0.4538203179836273, -0.9607851505279541, -0.050905197858810425, -0.5610966682434082, -0.39574432373046875, 0.02584233321249485, 0.3962114751338959, -0.2912517189979553, -0.3672858476638794, -0.5841395258903503, -0.7660625576972961, 0.47409865260124207, -0.3546903133392334, 0.9486677646636963, -0.29849573969841003, 1.8066437244415283, -0.5601232647895813, 0.5006402730941772, 0.6517691612243652, 1.3164876699447632, 0.19835831224918365, 0.004931244067847729, 0.26174864172935486, 0.34571579098701477, -0.06250438094139099, 0.5694570541381836, 1.155940055847168, 0.6274836659431458, 0.47395965456962585, 0.6196419596672058, -2.2398457527160645, 1.3144525289535522, -0.9638249278068542, 0.34793972969055176, 1.4050711393356323, -0.8444387912750244, 0.4178388714790344, -1.7773327827453613, -0.09126631170511246, 0.5469105839729309, -2.27730393409729, 0.23773272335529327, -1.325830101966858, -0.5217684507369995, 0.9962840676307678, 0.334128201007843, -1.1704506874084473, 0.1662980616092682, -0.47251346707344055, 1.1083500385284424, 0.4812678396701813, 1.0967278480529785, -1.686720848083496, -0.12233483791351318, -0.26065516471862793, 0.14121107757091522, -1.3477503061294556, -1.6433889865875244, 0.5708688497543335, 0.6434971690177917, 0.6069601774215698, -0.1337055116891861, 1.095575213432312, -1.060203194618225, 0.7563138604164124, -1.0199109315872192, -1.679542064666748, -1.3846124410629272, -2.327409029006958, -2.3546454906463623, 0.712207019329071, -0.45783165097236633, -0.5113337635993958, 2.092804193496704, -1.0233228206634521, -1.7632991075515747, 1.208365797996521, 0.23115848004817963, 0.013091210275888443, 2.4224374294281006, 0.25321096181869507, -0.7097742557525635, 0.45056718587875366, -0.7714584469795227, 0.7904573678970337, -0.33708152174949646, 1.3638349771499634, 0.45758846402168274, -0.9592742919921875, 1.5601091384887695, -0.412086546421051, 0.5618985891342163, -0.6418360471725464, -0.5810928344726562, -0.7569356560707092, 0.34075024724006653, 1.9338512420654297, -0.32143062353134155, 1.544597864151001, -0.37383025884628296, -1.5328710079193115, -1.5425997972488403, 0.9037381410598755, 0.5364498496055603, -0.825293242931366, 0.07697983086109161, -0.45669496059417725, 0.1344487965106964, -0.06984308362007141, 1.0817116498947144, 1.2102121114730835, 0.7125813961029053, -0.39204320311546326, -0.8830668330192566, 0.29108813405036926, -0.11553261429071426, -0.7304123640060425, -1.7256766557693481, -0.3293275237083435, 0.13889536261558533, 0.6009049415588379, -1.2296212911605835, 1.7407848834991455, 0.9166998267173767, 1.9898693561553955, 1.0239429473876953, -0.37141281366348267, 1.3913995027542114, 0.15091848373413086, 1.7672141790390015, -0.5004535913467407, 0.6198309659957886, -0.3242233693599701, -1.1526861190795898, 0.7716571092605591, -0.3258340358734131, -1.948348045349121, -0.746161162853241, -0.7874871492385864, -0.17801418900489807, -0.8467282056808472, 0.9105562567710876, -0.28180986642837524, -1.4903202056884766, 0.1431373506784439, -0.7328584790229797, 0.2221440225839615, -1.2772377729415894, 0.3117752969264984, 0.7211734652519226, -0.6430221796035767, 0.031025355681777, -0.27086958289146423, -1.225848913192749, -0.4382941722869873, 0.28333714604377747, 1.883233904838562, -0.6712068915367126, 0.845156192779541, 1.0136935710906982, -0.6907914876937866, 0.023156268522143364, 0.2592045068740845, -0.270065039396286, 0.787274181842804, -0.9975057244300842, -0.43802687525749207, 1.2196412086486816, -0.2264242321252823, -0.5832356214523315, 1.5647718906402588, 0.7400546073913574, -1.0742582082748413, -0.26946720480918884, -0.17403340339660645, -0.8071973323822021, 0.0133749321103096, -1.6481614112854004, -0.1362011432647705, 0.3560903072357178, -1.5159404277801514, -0.5042406916618347, -0.2116909772157669, 1.261700987815857, -0.2078516036272049, 1.4770413637161255, -0.3909868001937866, -0.1708942949771881, -0.3364342153072357, -0.4591086804866791, 0.1294168382883072, -0.19609107077121735, -0.571345329284668, 0.17070496082305908, -0.8677072525024414, 0.3261125683784485, 1.503491759300232, 0.3651426136493683, 0.031592339277267456, 0.47549012303352356, 1.0687304735183716, 0.3986281454563141, -0.10865941643714905, -0.8707578778266907, -1.5681651830673218, 1.9054310321807861, -1.4357706308364868, 1.958014965057373, 0.7837129831314087, -0.040326230227947235, -1.7925528287887573, -1.7984626293182373, 1.2565298080444336, 1.1342109441757202, 2.4316859245300293, 0.4560566544532776, 0.39862096309661865, -0.7669664025306702, -0.704913854598999, 0.28076663613319397, -0.9288330674171448, -0.7435075640678406, 0.18826201558113098, 2.2945899963378906, 1.8036472797393799, -0.5088151693344116, -0.1281469166278839, -0.9406444430351257, 1.292051911354065, -0.21179337799549103, 0.2617623507976532, 1.98067045211792, -0.27886876463890076, -0.9930194020271301, 1.3723461627960205, -2.399900197982788, 0.24259957671165466, 2.046671152114868, 0.2904443144798279, 0.0969475731253624, -1.3065755367279053, -0.6479589939117432, -0.3405352532863617, -0.3803211748600006, -1.2406843900680542, 0.5053160786628723, -0.2521594166755676, -0.7796058654785156, -1.4238768815994263, 0.12572871148586273, -1.1178425550460815, -1.6359232664108276, 0.2885833978652954, 1.9035097360610962, 2.0513269901275635, -0.8653369545936584, 1.4458755254745483, -0.343677818775177, 0.1975424885749817, 1.2366212606430054, 1.1986247301101685, 3.072916030883789, 1.920741081237793, -1.3437538146972656, 0.7339689135551453, -0.20735476911067963, -0.5317918658256531, 1.1618555784225464, -1.1529629230499268, 1.2062969207763672, -0.13130173087120056, -1.299952745437622, -1.2716048955917358, 1.0221366882324219, 0.47281742095947266, 0.03172443062067032, -0.5367808938026428, 1.2686684131622314, 0.0641837790608406, 1.3826799392700195, 0.5571231842041016, -0.4143788814544678, 0.5899078845977783, -0.3562733232975006, -0.5933078527450562, 1.6024872064590454, 0.15813159942626953, -1.4870591163635254, -2.285559892654419, -0.29511791467666626, -0.8357827663421631, 0.024491185322403908, -0.6660251021385193, -1.0508538484573364, 1.5671972036361694, 0.3724042475223541, -1.2540711164474487, -0.354347825050354, -0.34166741371154785, -0.5533539056777954, 2.6693506240844727, -1.3748648166656494, -0.18001003563404083, -1.0368152856826782, -0.6278185248374939, 1.6445807218551636, -1.2693705558776855, -0.21084365248680115, -1.0412565469741821, -0.6365325450897217, -1.2730796337127686, -0.4542606472969055, 0.05861639231443405, -0.9427255988121033, 0.7925325036048889, 0.17358490824699402, -1.113303303718567, -0.27672699093818665, -0.9189224243164062, 0.9873976707458496, -0.15657496452331543, 0.17162305116653442, 1.79725980758667, 0.350089967250824, -0.40047743916511536, 0.7325589060783386, 1.188539743423462, 0.6307011842727661, -0.6975427269935608, 0.10693169385194778, -0.7921223044395447, 0.36323094367980957, -1.3708600997924805, 0.22672681510448456, -2.865898609161377, 0.6446416974067688, -0.024881571531295776, -0.09651835262775421, -0.043663859367370605, -1.2925653457641602, 1.0463024377822876, 2.538999319076538, -1.2067075967788696, 0.5660713315010071, 0.4554389715194702, 1.227586030960083, -1.617566704750061, 0.3092467486858368, -0.40936461091041565, 2.0151491165161133, 0.22595974802970886, 1.235913872718811, -0.48800721764564514, -2.3024189472198486, 0.6262450218200684, -1.2368391752243042, -1.1022735834121704, 0.8256945013999939, -0.9377186298370361, 0.14696143567562103, -1.4244762659072876, -0.23035244643688202, -0.8884494304656982, -1.180351972579956, 0.6901974678039551, 0.12315423041582108, 0.38265320658683777, -0.5852016806602478, 0.4102725386619568, -2.2065556049346924, -1.3305954933166504, -0.19088822603225708, -1.0255672931671143, 0.44583478569984436, -0.390764057636261, 0.6271086931228638, -0.17813347280025482, 0.020493051037192345, 0.34465858340263367, 1.4771206378936768, 3.403078556060791, 0.27265626192092896, 0.32884231209754944, -0.18874414265155792, -1.0070446729660034, 1.4986119270324707, 0.9101890921592712, -0.0867776945233345, -0.5106359124183655, -1.009395718574524, 1.2158451080322266, 1.8875770568847656, 1.0328762531280518, -0.031129322946071625, -0.8824635148048401, -0.7400343418121338, -0.011074256151914597, 0.18493899703025818, 0.4488238990306854, 0.9693350195884705, 0.04359059780836105, 0.21360479295253754, 1.392093539237976, 1.1595056056976318, -0.38370299339294434, 0.37720635533332825, -0.8844941258430481, -0.5103749632835388, 0.4726250171661377, 0.2377549111843109, -0.047300152480602264, 0.41339951753616333, -0.9779259562492371, -0.23427028954029083, -0.4028310179710388, -0.8831570148468018, -0.6657339334487915, -0.44612157344818115, -0.3366541266441345, 1.6096810102462769, 0.08313634246587753, -0.48595529794692993, 0.05133397877216339, -0.7698206305503845, -0.17394861578941345, -1.114997386932373, 0.20806965231895447, -0.00722871907055378, -0.13701698184013367, -0.09315415471792221, 1.7464052438735962, -0.9037566781044006, -2.0693984031677246, 0.2025260478258133, 0.2740338444709778, -0.3014013469219208, 0.1673184633255005, 1.7074406147003174, 0.4252714514732361, 1.4395281076431274, 1.3063582181930542, 0.9793239235877991, -0.6209957599639893, -1.3194457292556763, 0.758401095867157, 0.9856471419334412, -1.3718053102493286, 0.9060023427009583, -0.025453628972172737, -0.5462609529495239, 0.6369197368621826, 1.2955067157745361, 0.5359703302383423, -1.9027959108352661, 0.8333699703216553, -1.0198529958724976, 0.784413754940033, 0.7378391027450562, 0.7804281115531921, 0.24881669878959656, 0.8437579870223999, -1.2580909729003906, -1.1072534322738647, -0.7194979786872864, -0.5853317379951477, 1.9753342866897583, -0.2589232325553894, 0.6083825826644897, -0.2053084373474121, -1.2631422281265259, -0.05344158411026001, 0.7531657814979553, 0.3865754008293152, -0.46409156918525696, 0.8138723969459534, -0.6484978795051575, -1.0600782632827759, -1.3567644357681274, -0.38923096656799316, -1.0601266622543335, -1.0047980546951294, 1.084886908531189, 0.7612088918685913, 0.25146639347076416, 1.8192720413208008, 0.6074643731117249, 0.31824666261672974, -2.617324113845825, 0.912499725818634, 0.24407517910003662, -0.07033485919237137, 0.8647153377532959, 0.30493056774139404, 1.058747410774231, 0.048749685287475586, 0.5476662516593933, -2.407386541366577, 2.2592461109161377, -0.2481546700000763, 0.6627647280693054, -0.09203086793422699, -0.16038130223751068, 1.149025321006775, 0.5916882157325745, 0.5235151052474976, -1.1120619773864746, 0.7437741160392761, -0.573828399181366, 1.132942795753479, 0.8896082043647766, -0.8226662278175354, -0.025794818997383118, 1.397688865661621, 0.4608328342437744, -0.5624706149101257, -0.9219851493835449, -0.9309097528457642, 0.9666717052459717, 1.669063925743103, -0.054143235087394714, -0.0751737654209137, 0.8397998213768005, 0.6778668165206909, -1.2935153245925903, 0.07075126469135284, -0.656299889087677, -0.7182957530021667, 1.6572612524032593, 2.0753095149993896, -0.058655448257923126, -0.1838337779045105, -0.6156198382377625, -1.2258284091949463, 0.7644953727722168, -0.02242705598473549, 0.1495794653892517, 0.6964664459228516, -0.6354969143867493, 1.0888110399246216, 0.7676008343696594, 0.89683997631073, 0.18957747519016266, 0.18499119579792023, 0.3838566839694977, -0.37775009870529175, -1.1661251783370972, -0.21742504835128784, -1.1118355989456177, -2.5660998821258545, 0.4729875326156616, -0.1873340904712677, -1.4080322980880737, 0.03220819681882858, -1.0065335035324097, 0.9851280450820923, -0.6524900794029236, -1.0770351886749268, -1.5527584552764893, 0.2306993007659912, -0.06072399020195007, 0.9145088195800781, -1.676410436630249, -0.18468278646469116, 1.1668606996536255, 0.9196165204048157, -0.5792818665504456, 1.0588395595550537, 0.2862400412559509, 1.0130559206008911, 0.7274783253669739, -0.39818984270095825, 0.5926587581634521, 0.062012821435928345, -1.3764256238937378, 0.4493377208709717, 1.1588363647460938, 0.3085061013698578, 1.482445478439331, -0.5202904343605042, 0.06605906039476395, 0.407509982585907, -0.5961037874221802, -0.460692435503006, -0.4743468463420868, 0.6902151703834534, 0.09793249517679214, -0.9562252759933472, -0.08204242587089539, -0.14358942210674286, -0.23467835783958435, 0.22913847863674164, -1.4805214405059814, -0.1841181218624115, -0.4466763138771057, -0.6033475399017334, -1.2934938669204712, 0.005678052082657814, 1.5157183408737183, -0.9062027931213379, -0.22179347276687622, 0.47285279631614685, 0.36772722005844116, 0.5512521862983704, 0.6629748940467834, -0.7616700530052185, -0.21590867638587952, -0.27498671412467957, -0.3584810197353363, 0.23267842829227448, 1.3924283981323242, -0.17569977045059204, -1.0064657926559448, 0.6972987651824951, -0.35541489720344543, 0.0898214653134346, 1.9120259284973145, 0.1312454789876938, -0.7757006883621216, 0.2930944859981537, -0.720176100730896, 1.8865549564361572, 1.6849552392959595, 1.4528329372406006, -0.13136206567287445, -0.8677331209182739, 0.5681745409965515, -0.3340631425380707, -0.311843603849411, 0.9371976852416992, 0.45480266213417053, -0.22543108463287354, -1.4474773406982422, 0.7216969728469849, 1.244476318359375, -0.8513818979263306, -0.7586455345153809, 0.13059499859809875, -0.8005423545837402, 1.1604121923446655, 0.5947816371917725, 0.3174503743648529, 0.251397967338562, 1.6490557193756104, 0.7636841535568237, -0.48087942600250244, 0.5531513690948486, 0.5562329888343811, -0.21482087671756744, -2.113522529602051, -1.0703105926513672, 0.29949113726615906, -0.4702020287513733, -1.5178426504135132, 1.4519996643066406, -1.1331292390823364, -0.9822718501091003, 0.5821021795272827, 0.13375303149223328, 1.4491420984268188, 0.3851071894168854, 1.6247130632400513, 2.0795626640319824, 0.8907977938652039, 0.3188270926475525, 1.2715061902999878, -0.10733616352081299, -0.36232250928878784, 1.8094865083694458, -0.4231630861759186, 0.4520590305328369, 1.01851487159729, -0.32809117436408997, -1.081489086151123, -0.782666027545929, -1.2490439414978027, -0.668246328830719, 1.1626603603363037, 0.09104690700769424, -1.0484626293182373, 0.2630407214164734, 1.573569893836975, 0.07714526355266571, -0.25189900398254395, 0.7082980871200562, 0.4422830045223236, -0.754505455493927, -0.05106300860643387, -0.8855203986167908, 0.5148227214813232, -0.2184513807296753, -0.3004615306854248, 0.22951354086399078, 0.5291557908058167, 1.3927403688430786, -0.017709657549858093, 0.14520181715488434, 1.1791903972625732, -1.3815419673919678, 1.3863525390625, -0.5917250514030457, 0.24278044700622559, -2.4411139488220215, 1.3750172853469849, -0.7670133113861084, 1.926051378250122, -2.6785688400268555, 0.525987982749939, -0.6222937703132629, -0.48919054865837097, 0.31570184230804443, -0.41424527764320374, 0.09991300851106644, -0.11061020195484161, -1.0898741483688354, -0.049590423703193665, -0.6765027046203613, 0.6323070526123047, 1.1102352142333984, 1.37213134765625, -1.1046403646469116, -0.2916615605354309, -1.7542356252670288, -0.14379799365997314, -0.7677701115608215, 0.346183717250824, -1.9733233451843262, -0.23850864171981812, -1.9732812643051147, -2.336728811264038, -1.2559922933578491, -0.742743194103241, 1.100111961364746, 0.1917114555835724, -0.9567899107933044, 1.249496579170227, -0.398581862449646, -1.7997701168060303, 1.1311140060424805, -2.1950554847717285 ]
https://github.com/huggingface/datasets/issues/5880
load_dataset from s3 file system through streaming can't not iterate data
This sounds related to #5281. Can you try passing `storage_options=s3_client.storage_options` instead passing it to `use_auth_token=` ?
### Describe the bug I have a JSON file in my s3 file system(minio), I can use load_dataset to get the file link, but I can't iterate it <img width="816" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/cc0778d3-36f3-45b5-ac68-4e7c664c2ed0"> <img width="1144" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/76872af3-8b3c-42ff-9f55-528c920a7af1"> we can change 4 lines to fix this bug, you can check whether it is ok for us. <img width="941" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/5a22155a-ece7-496c-8506-047e5c235cd3"> ### Steps to reproduce the bug 1. storage a file in you s3 file system 2. use load_dataset to read it through streaming 3. iterate it ### Expected behavior can iterate it successfully ### Environment info - `datasets` version: 2.12.0 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.8.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1
128
16
load_dataset from s3 file system through streaming can't not iterate data ### Describe the bug I have a JSON file in my s3 file system(minio), I can use load_dataset to get the file link, but I can't iterate it <img width="816" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/cc0778d3-36f3-45b5-ac68-4e7c664c2ed0"> <img width="1144" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/76872af3-8b3c-42ff-9f55-528c920a7af1"> we can change 4 lines to fix this bug, you can check whether it is ok for us. <img width="941" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/5a22155a-ece7-496c-8506-047e5c235cd3"> ### Steps to reproduce the bug 1. storage a file in you s3 file system 2. use load_dataset to read it through streaming 3. iterate it ### Expected behavior can iterate it successfully ### Environment info - `datasets` version: 2.12.0 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.8.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 This sounds related to #5281. Can you try passing `storage_options=s3_client.storage_options` instead passing it to `use_auth_token=` ?
[ -1.1962956190109253, -0.8526085019111633, -0.7510212659835815, 1.4951664209365845, -0.12607495486736298, -1.1831469535827637, 0.15544117987155914, -0.9927203059196472, 1.6554651260375977, -0.7214742302894592, 0.3203240633010864, -1.6556580066680908, -0.050498053431510925, -0.4960607588291168, -0.699828028678894, -0.8777125477790833, -0.4067801833152771, -0.749998152256012, 1.0587635040283203, 2.5626492500305176, 1.2309143543243408, -1.3252556324005127, 2.696920871734619, 0.6159381866455078, -0.22535733878612518, -0.9313895106315613, 0.509865403175354, 0.028233978897333145, -1.3081450462341309, -0.3643655776977539, -0.8443198204040527, -0.033299632370471954, -0.5232372283935547, -0.44518810510635376, 0.04046854004263878, 0.4459623098373413, -0.3080335557460785, -0.39624205231666565, -0.5515923500061035, -0.7530916929244995, 0.4629402458667755, -0.42667824029922485, 0.9051839709281921, -0.3490629494190216, 1.7733993530273438, -0.5390303134918213, 0.4941696524620056, 0.7488356828689575, 1.2763198614120483, 0.19894953072071075, 0.08169853687286377, 0.2746182382106781, 0.3231225311756134, -0.14275963604450226, 0.4665657579898834, 1.2123111486434937, 0.5736334323883057, 0.44505566358566284, 0.6688277721405029, -2.1803252696990967, 1.3138954639434814, -0.8680895566940308, 0.22682566940784454, 1.3850387334823608, -0.9547696113586426, 0.39348265528678894, -1.8880144357681274, -0.06231583282351494, 0.45718953013420105, -2.2779483795166016, 0.34665757417678833, -1.2622716426849365, -0.5236916542053223, 0.952558696269989, 0.23054198920726776, -1.2740479707717896, 0.10547003149986267, -0.4913698732852936, 1.0354187488555908, 0.4359831213951111, 1.1885825395584106, -1.7200316190719604, -0.09826496988534927, -0.2391134798526764, 0.14643090963363647, -1.3349298238754272, -1.5860834121704102, 0.5077666640281677, 0.561569094657898, 0.6978610157966614, -0.036586131900548935, 0.9536678194999695, -1.0107163190841675, 0.817587673664093, -0.9348894953727722, -1.6698684692382812, -1.391815423965454, -2.3707149028778076, -2.2902886867523193, 0.7660732865333557, -0.3625815808773041, -0.47622305154800415, 2.0234932899475098, -1.0796409845352173, -1.712239384651184, 1.0511541366577148, 0.2582072913646698, -0.0591641366481781, 2.4167745113372803, 0.28881940245628357, -0.8237264752388, 0.5015796422958374, -0.7481182217597961, 0.7205194234848022, -0.39593127369880676, 1.315031886100769, 0.4227786362171173, -1.012618899345398, 1.6048297882080078, -0.4148109257221222, 0.6046541333198547, -0.7338101267814636, -0.4925409257411957, -0.7816228270530701, 0.2086685448884964, 1.8969073295593262, -0.2920151948928833, 1.5288795232772827, -0.25732195377349854, -1.5959436893463135, -1.5562744140625, 0.8706262707710266, 0.5623918175697327, -0.7088046669960022, 0.0843944177031517, -0.3511417508125305, 0.0856594666838646, -0.012240725569427013, 0.9841482639312744, 1.2528566122055054, 0.7299897074699402, -0.26932492852211, -0.9273834228515625, 0.21553443372249603, -0.06628219038248062, -0.6530975103378296, -1.7398889064788818, -0.281914085149765, 0.22046537697315216, 0.613832414150238, -1.3801590204238892, 1.7975516319274902, 0.863373875617981, 1.9790050983428955, 1.0329267978668213, -0.3931238055229187, 1.5765657424926758, 0.08133909851312637, 1.8385913372039795, -0.38088008761405945, 0.625622034072876, -0.28738752007484436, -1.2123435735702515, 0.7614017128944397, -0.33533892035484314, -2.006359100341797, -0.7282264232635498, -0.7574973702430725, -0.1490778923034668, -0.7875658273696899, 0.8991976380348206, -0.30434635281562805, -1.4239054918289185, 0.301858127117157, -0.6443113088607788, 0.1512824445962906, -1.3300929069519043, 0.25712570548057556, 0.6932215094566345, -0.6381253004074097, 0.06351163238286972, -0.20064488053321838, -1.2934455871582031, -0.476065993309021, 0.32153281569480896, 1.8430129289627075, -0.6299729347229004, 0.935306191444397, 1.0537694692611694, -0.6795552372932434, -0.00662530492991209, 0.3663431406021118, -0.3402203917503357, 0.9108593463897705, -1.0849380493164062, -0.39273643493652344, 1.1402490139007568, -0.22934041917324066, -0.6424343585968018, 1.4033586978912354, 0.7488034963607788, -1.0245752334594727, -0.2668452262878418, -0.09630560874938965, -0.8104010224342346, 0.04092404246330261, -1.6679540872573853, -0.1172269657254219, 0.37888509035110474, -1.4392644166946411, -0.48010528087615967, -0.1955980658531189, 1.3015209436416626, -0.19500844180583954, 1.4011151790618896, -0.26897725462913513, -0.1316799372434616, -0.42937394976615906, -0.5203694105148315, 0.12561672925949097, -0.1842050850391388, -0.63355952501297, 0.25624632835388184, -0.7452036738395691, 0.3110501766204834, 1.4494125843048096, 0.34580057859420776, 0.025373708456754684, 0.489847332239151, 1.1173615455627441, 0.3863058090209961, -0.1525733917951584, -0.8458964228630066, -1.5532790422439575, 1.9845823049545288, -1.4535956382751465, 2.0358831882476807, 0.8693766593933105, -0.12149341404438019, -1.8039015531539917, -1.950446367263794, 1.3245925903320312, 1.110810399055481, 2.4584567546844482, 0.5860799551010132, 0.4754132628440857, -0.7468121647834778, -0.7555172443389893, 0.25988441705703735, -1.017478346824646, -0.7848411798477173, 0.21031902730464935, 2.392242431640625, 1.7081384658813477, -0.4058782160282135, -0.1844591349363327, -1.0061014890670776, 1.2737977504730225, -0.10697294771671295, 0.18806947767734528, 2.009423017501831, -0.16155946254730225, -1.1003168821334839, 1.286321997642517, -2.2581467628479004, 0.19187293946743011, 1.9507358074188232, 0.31361013650894165, 0.12223732471466064, -1.3761464357376099, -0.7388136386871338, -0.26762887835502625, -0.4449998736381531, -1.194720983505249, 0.5282194018363953, -0.2888721525669098, -0.7998913526535034, -1.4530754089355469, 0.11075948178768158, -1.1994118690490723, -1.6843847036361694, 0.30501464009284973, 1.8716264963150024, 2.1013827323913574, -0.890244722366333, 1.4187428951263428, -0.21776975691318512, 0.08845795691013336, 1.182260513305664, 1.269008994102478, 3.167543649673462, 1.8288681507110596, -1.3089438676834106, 0.6818653345108032, -0.1352379471063614, -0.4386957585811615, 1.1449254751205444, -1.1258440017700195, 1.235963225364685, -0.17928919196128845, -1.2425721883773804, -1.152833342552185, 0.9724157452583313, 0.5229059457778931, 0.03855491057038307, -0.48485100269317627, 1.1442493200302124, 0.15226595103740692, 1.3827524185180664, 0.5396474599838257, -0.24827653169631958, 0.6407977938652039, -0.3688502311706543, -0.47461754083633423, 1.6180239915847778, 0.09932980686426163, -1.5423561334609985, -2.3992249965667725, -0.26740550994873047, -0.8465788960456848, 0.004575623199343681, -0.672154426574707, -1.0887538194656372, 1.6023800373077393, 0.4162871241569519, -1.147388219833374, -0.2909777760505676, -0.3533973693847656, -0.6305181384086609, 2.685889482498169, -1.4576668739318848, -0.14884647727012634, -0.9971559047698975, -0.5725188255310059, 1.5645792484283447, -1.1318182945251465, -0.22912946343421936, -1.0135917663574219, -0.5377668738365173, -1.3223918676376343, -0.5145196318626404, 0.02901127189397812, -0.8667136430740356, 0.7462259531021118, 0.2425481379032135, -1.1320459842681885, -0.25852036476135254, -0.9853922724723816, 0.9068506360054016, -0.1307496577501297, 0.17585337162017822, 1.7916549444198608, 0.4295693337917328, -0.37575432658195496, 0.7359455227851868, 1.1735320091247559, 0.5904967188835144, -0.6419068574905396, 0.12387107312679291, -0.6895764470100403, 0.32112258672714233, -1.29082453250885, 0.2886107861995697, -2.831662178039551, 0.657707154750824, -0.1143503487110138, -0.09861686080694199, 0.018620725721120834, -1.1978117227554321, 1.1311007738113403, 2.5861623287200928, -1.148037314414978, 0.5950942635536194, 0.42043134570121765, 1.1526837348937988, -1.7012931108474731, 0.2180451899766922, -0.4570493698120117, 2.054809331893921, 0.09616632759571075, 1.2489839792251587, -0.5850541591644287, -2.3205759525299072, 0.5716992616653442, -1.2765494585037231, -1.1453064680099487, 0.8173639178276062, -0.8974260091781616, 0.14577671885490417, -1.2742990255355835, -0.24486388266086578, -0.9032455086708069, -1.207938313484192, 0.647120475769043, 0.09147904068231583, 0.5063259601593018, -0.5410813689231873, 0.3822823166847229, -2.2400965690612793, -1.344040036201477, -0.24145039916038513, -1.0139020681381226, 0.4858281910419464, -0.3933984339237213, 0.7310836315155029, -0.15454837679862976, -0.00611814996227622, 0.3047701120376587, 1.41444730758667, 3.2857604026794434, 0.15235447883605957, 0.3155228793621063, -0.1529809534549713, -0.9920978546142578, 1.4697548151016235, 0.9386012554168701, -0.10017137229442596, -0.682206928730011, -1.0967625379562378, 1.2172504663467407, 1.9505093097686768, 1.1279066801071167, 0.05211394652724266, -0.8416401147842407, -0.7909689545631409, -0.034081730991601944, 0.185217946767807, 0.48969531059265137, 1.0133657455444336, 0.03367263451218605, 0.08519262820482254, 1.4113049507141113, 1.2406636476516724, -0.35614198446273804, 0.31205472350120544, -0.8116308450698853, -0.40514254570007324, 0.44259771704673767, 0.25728219747543335, 0.030729990452528, 0.39090803265571594, -1.078150749206543, -0.21042247116565704, -0.3548465669155121, -0.9381991028785706, -0.757997989654541, -0.38781672716140747, -0.31596434116363525, 1.7170264720916748, 0.044914837926626205, -0.4339170753955841, 0.03968837484717369, -0.753139317035675, -0.07342797517776489, -1.1054422855377197, 0.25338301062583923, -0.1449696570634842, -0.012131483294069767, -0.10452189296483994, 1.7445213794708252, -0.9868566393852234, -2.1878533363342285, 0.12956549227237701, 0.23464494943618774, -0.3738018572330475, 0.1850292980670929, 1.6829615831375122, 0.5539376735687256, 1.4198695421218872, 1.339023470878601, 0.9642974734306335, -0.7562538385391235, -1.287160873413086, 0.6691296100616455, 0.9753114581108093, -1.3873659372329712, 0.8173426389694214, -0.08238504081964493, -0.5331048369407654, 0.6296145915985107, 1.285386562347412, 0.5142093300819397, -1.9664790630340576, 0.7980070114135742, -0.9015630483627319, 0.7896861433982849, 0.6895591616630554, 0.7955651879310608, 0.18610815703868866, 0.8071007132530212, -1.2885957956314087, -1.0395088195800781, -0.6438408493995667, -0.6243488192558289, 1.8822928667068481, -0.2730294167995453, 0.5738126635551453, -0.2046230286359787, -1.2356650829315186, 0.014230507425963879, 0.6827044486999512, 0.34651613235473633, -0.3703862428665161, 0.77469402551651, -0.678469181060791, -1.1185603141784668, -1.353232741355896, -0.46342965960502625, -0.9529945254325867, -0.8913672566413879, 0.966742992401123, 0.6880244612693787, 0.43708327412605286, 1.8808257579803467, 0.695073664188385, 0.26380908489227295, -2.6952385902404785, 0.8878792524337769, 0.3415018618106842, 0.015677042305469513, 0.9808418154716492, 0.28999659419059753, 1.1533432006835938, -0.03904681280255318, 0.5458530783653259, -2.4038355350494385, 2.3508174419403076, -0.2662392556667328, 0.7585653066635132, -0.050486642867326736, -0.16992758214473724, 1.037133812904358, 0.5713945031166077, 0.525587797164917, -1.1236432790756226, 0.750221312046051, -0.5725351572036743, 1.1932421922683716, 0.8481850624084473, -0.8972967267036438, 0.07940800487995148, 1.2430232763290405, 0.4599861800670624, -0.39603835344314575, -0.9666668176651001, -0.8381800055503845, 0.9062142372131348, 1.8090903759002686, -0.0441400408744812, 0.08647625893354416, 0.9017331004142761, 0.638100802898407, -1.426541805267334, 0.00013242196291685104, -0.6858607530593872, -0.7706409096717834, 1.7407398223876953, 2.062878370285034, 0.0009140660986304283, -0.36005517840385437, -0.7163732051849365, -1.2791175842285156, 0.8426095247268677, 0.047784823924303055, 0.18529513478279114, 0.6205079555511475, -0.7219846844673157, 1.1816767454147339, 0.7329311966896057, 0.935238778591156, 0.12782642245292664, 0.25593405961990356, 0.3982723355293274, -0.38142022490501404, -1.1664766073226929, -0.2507879137992859, -1.083901047706604, -2.5970659255981445, 0.4513714909553528, -0.17573490738868713, -1.4763190746307373, -0.002595299854874611, -0.9968441128730774, 0.8786340951919556, -0.518058180809021, -1.100223422050476, -1.5009585618972778, 0.19265475869178772, -0.2365625649690628, 0.8984187245368958, -1.6308262348175049, -0.2593171000480652, 1.2722193002700806, 1.0155608654022217, -0.5983486771583557, 0.9693921208381653, 0.1099969744682312, 0.9340049028396606, 0.8449584245681763, -0.42345359921455383, 0.5300650596618652, 0.13202068209648132, -1.3109703063964844, 0.3819529116153717, 1.303755283355713, 0.1889248788356781, 1.523758888244629, -0.5606070160865784, 0.026714365929365158, 0.4074324667453766, -0.37617290019989014, -0.5295022130012512, -0.624897301197052, 0.7183361649513245, 0.036675140261650085, -0.9655940532684326, -0.028714772313833237, -0.16347040235996246, -0.13296052813529968, 0.20383033156394958, -1.504271149635315, -0.16953788697719574, -0.3871018886566162, -0.6180999279022217, -1.2515348196029663, -0.024965092539787292, 1.2875170707702637, -0.8294163942337036, -0.16169826686382294, 0.47365623712539673, 0.3155774772167206, 0.6004300117492676, 0.5552920699119568, -0.7603182196617126, -0.34523510932922363, -0.2421412318944931, -0.3554203510284424, 0.39409759640693665, 1.2302144765853882, -0.08305279910564423, -1.0397275686264038, 0.6034296751022339, -0.37167713046073914, 0.19082140922546387, 2.0212461948394775, 0.032026179134845734, -0.7745323777198792, 0.2772499918937683, -0.7476106882095337, 1.8918943405151367, 1.6268459558486938, 1.3727306127548218, -0.1815854012966156, -0.8871489763259888, 0.6680186986923218, -0.2754959166049957, -0.3543401062488556, 0.9426905512809753, 0.396587997674942, -0.21832571923732758, -1.4547343254089355, 0.6436893939971924, 1.2569690942764282, -0.9008264541625977, -0.7478727698326111, 0.07338927686214447, -0.8793832659721375, 1.1838704347610474, 0.6391345262527466, 0.3257368803024292, 0.3047528564929962, 1.6472909450531006, 0.7982895970344543, -0.5521833300590515, 0.605396032333374, 0.42648690938949585, -0.20105049014091492, -2.048665761947632, -1.0851304531097412, 0.33159682154655457, -0.4689452052116394, -1.5135725736618042, 1.4540767669677734, -1.1561638116836548, -1.037619948387146, 0.5874003767967224, 0.12194447219371796, 1.3702728748321533, 0.3168838322162628, 1.6782857179641724, 2.0734338760375977, 0.8941832184791565, 0.3302558660507202, 1.2375513315200806, -0.17267408967018127, -0.44191107153892517, 1.7994771003723145, -0.5127322673797607, 0.5239189863204956, 1.0113685131072998, -0.3585480749607086, -1.1098151206970215, -0.8221057057380676, -1.1863354444503784, -0.768487811088562, 1.2081258296966553, 0.08734840154647827, -1.0404130220413208, 0.2369958609342575, 1.6420137882232666, 0.03280438110232353, -0.27087801694869995, 0.683533251285553, 0.4066425561904907, -0.7972245216369629, -0.117705337703228, -0.9146260619163513, 0.5034512877464294, -0.13430501520633698, -0.3188026249408722, 0.17986737191677094, 0.5815766453742981, 1.242319107055664, -0.00006918050348758698, 0.1074427142739296, 1.3305723667144775, -1.3460781574249268, 1.470076322555542, -0.7525100708007812, 0.2662337124347687, -2.411851406097412, 1.4235000610351562, -0.8040664196014404, 1.9076157808303833, -2.562729597091675, 0.45930662751197815, -0.5152584314346313, -0.41876301169395447, 0.20185190439224243, -0.3324708938598633, 0.21974065899848938, -0.17706310749053955, -0.963599443435669, -0.23243100941181183, -0.794225811958313, 0.5854416489601135, 1.2005953788757324, 1.3647853136062622, -0.9919480681419373, -0.19162091612815857, -1.6593430042266846, -0.20517827570438385, -0.7019341588020325, 0.28993749618530273, -1.9153379201889038, -0.2970398962497711, -1.9651883840560913, -2.3778836727142334, -1.2903494834899902, -0.8227494359016418, 1.17964506149292, 0.20095303654670715, -0.9549611806869507, 1.1504600048065186, -0.38213875889778137, -1.7507189512252808, 1.159833550453186, -2.223281145095825 ]
https://github.com/huggingface/datasets/issues/5880
load_dataset from s3 file system through streaming can't not iterate data
I tried `storage_options` before, but it doesn't work, I checked our source code and I found that we even didn't pass this parameter to the following process. if I use `storage_options` instead of `use_auth_token`, then I also need to change another place of the code. the last line of `streaming_download_manager.py`. our code only passes the `use_auth_token` to the following handler, but does nothing to the `storage_options` <img width="1050" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/5be90933-3331-4ecf-9e11-34f9852d8f92">
### Describe the bug I have a JSON file in my s3 file system(minio), I can use load_dataset to get the file link, but I can't iterate it <img width="816" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/cc0778d3-36f3-45b5-ac68-4e7c664c2ed0"> <img width="1144" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/76872af3-8b3c-42ff-9f55-528c920a7af1"> we can change 4 lines to fix this bug, you can check whether it is ok for us. <img width="941" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/5a22155a-ece7-496c-8506-047e5c235cd3"> ### Steps to reproduce the bug 1. storage a file in you s3 file system 2. use load_dataset to read it through streaming 3. iterate it ### Expected behavior can iterate it successfully ### Environment info - `datasets` version: 2.12.0 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.8.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1
128
70
load_dataset from s3 file system through streaming can't not iterate data ### Describe the bug I have a JSON file in my s3 file system(minio), I can use load_dataset to get the file link, but I can't iterate it <img width="816" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/cc0778d3-36f3-45b5-ac68-4e7c664c2ed0"> <img width="1144" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/76872af3-8b3c-42ff-9f55-528c920a7af1"> we can change 4 lines to fix this bug, you can check whether it is ok for us. <img width="941" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/5a22155a-ece7-496c-8506-047e5c235cd3"> ### Steps to reproduce the bug 1. storage a file in you s3 file system 2. use load_dataset to read it through streaming 3. iterate it ### Expected behavior can iterate it successfully ### Environment info - `datasets` version: 2.12.0 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.8.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 I tried `storage_options` before, but it doesn't work, I checked our source code and I found that we even didn't pass this parameter to the following process. if I use `storage_options` instead of `use_auth_token`, then I also need to change another place of the code. the last line of `streaming_download_manager.py`. our code only passes the `use_auth_token` to the following handler, but does nothing to the `storage_options` <img width="1050" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/5be90933-3331-4ecf-9e11-34f9852d8f92">
[ -1.2263597249984741, -0.8742372393608093, -0.7415038347244263, 1.4532697200775146, -0.1359325349330902, -1.219426155090332, 0.15495768189430237, -1.0393755435943604, 1.6624791622161865, -0.733460545539856, 0.30071067810058594, -1.664687156677246, -0.032264478504657745, -0.519792914390564, -0.7113350033760071, -0.8573119640350342, -0.39782488346099854, -0.7533938884735107, 1.0707896947860718, 2.5309555530548096, 1.2221165895462036, -1.3363828659057617, 2.717975616455078, 0.6376760601997375, -0.21708504855632782, -0.9606953859329224, 0.5005013346672058, 0.008851181715726852, -1.2839839458465576, -0.37527140974998474, -0.845450758934021, -0.024784144014120102, -0.5365822315216064, -0.4606113135814667, 0.017169088125228882, 0.46336209774017334, -0.28928467631340027, -0.41812655329704285, -0.549884021282196, -0.7404635548591614, 0.47767338156700134, -0.4066397547721863, 0.9254351258277893, -0.3481345474720001, 1.7813395261764526, -0.5314744710922241, 0.4636257290840149, 0.7484886646270752, 1.3274571895599365, 0.1856204867362976, 0.09264206886291504, 0.24519053101539612, 0.3588893711566925, -0.11369609832763672, 0.46216148138046265, 1.2039986848831177, 0.5747592449188232, 0.44943052530288696, 0.687796413898468, -2.182283878326416, 1.2957611083984375, -0.8789199590682983, 0.2372119426727295, 1.3955378532409668, -0.947877049446106, 0.39304429292678833, -1.8867701292037964, -0.033192846924066544, 0.4568277597427368, -2.2626144886016846, 0.33260276913642883, -1.2424647808074951, -0.5008461475372314, 0.940522313117981, 0.24904778599739075, -1.2568262815475464, 0.1378069669008255, -0.4856967329978943, 1.0368446111679077, 0.44849517941474915, 1.1925686597824097, -1.700063705444336, -0.07657913863658905, -0.22911852598190308, 0.17502406239509583, -1.3082270622253418, -1.5677753686904907, 0.5074810981750488, 0.5866959691047668, 0.661388099193573, -0.061309102922677994, 0.9623063206672668, -1.0313977003097534, 0.7995493412017822, -0.9214164614677429, -1.6574844121932983, -1.395965337753296, -2.349255323410034, -2.290623903274536, 0.7729671597480774, -0.3774946630001068, -0.4724275469779968, 2.0251054763793945, -1.0798407793045044, -1.722691297531128, 1.0551397800445557, 0.2665468454360962, -0.051085811108350754, 2.405724048614502, 0.26666733622550964, -0.8102026581764221, 0.5191227197647095, -0.7496078014373779, 0.7215216755867004, -0.4170352518558502, 1.3268465995788574, 0.40155816078186035, -1.006205439567566, 1.5977777242660522, -0.42231085896492004, 0.6168158054351807, -0.7195900082588196, -0.4679727554321289, -0.7713138461112976, 0.2284039855003357, 1.890486240386963, -0.29648131132125854, 1.5167171955108643, -0.2658710479736328, -1.5742825269699097, -1.570556402206421, 0.8880937099456787, 0.539700984954834, -0.7090320587158203, 0.0964379608631134, -0.37616240978240967, 0.10195659101009369, -0.03786580264568329, 0.9870707988739014, 1.2549368143081665, 0.7482509016990662, -0.26324862241744995, -0.9040586948394775, 0.22549203038215637, -0.07287463545799255, -0.6487417221069336, -1.7606209516525269, -0.2744884788990021, 0.21877658367156982, 0.6309148669242859, -1.322064757347107, 1.817142128944397, 0.8768763542175293, 1.9762768745422363, 1.0203927755355835, -0.3759984076023102, 1.5836790800094604, 0.08247062563896179, 1.8639569282531738, -0.3864394426345825, 0.62140953540802, -0.2878142297267914, -1.2067787647247314, 0.7581245303153992, -0.3460277020931244, -2.0109894275665283, -0.7030105590820312, -0.7897433638572693, -0.1629917323589325, -0.7876387238502502, 0.9088115096092224, -0.3123432695865631, -1.431630253791809, 0.26870980858802795, -0.6273928880691528, 0.15629298985004425, -1.3081080913543701, 0.270548015832901, 0.6981188058853149, -0.6475277543067932, 0.06616909801959991, -0.22094115614891052, -1.2799476385116577, -0.47235628962516785, 0.3407262861728668, 1.8422355651855469, -0.6616459488868713, 0.9364244937896729, 1.0635732412338257, -0.6737772226333618, -0.02226334810256958, 0.4001341760158539, -0.33203378319740295, 0.859869658946991, -1.0810648202896118, -0.3910744786262512, 1.1597026586532593, -0.24395939707756042, -0.6094948649406433, 1.4092838764190674, 0.7604656219482422, -1.0134402513504028, -0.23479610681533813, -0.10771101713180542, -0.8058621883392334, 0.034264203161001205, -1.6379936933517456, -0.11491219699382782, 0.3832133114337921, -1.459725260734558, -0.4901467263698578, -0.2014397531747818, 1.3008418083190918, -0.1712011843919754, 1.4196950197219849, -0.2780270576477051, -0.11362110078334808, -0.4163489043712616, -0.5089900493621826, 0.1417553573846817, -0.1998041868209839, -0.6197996139526367, 0.23243798315525055, -0.7523823976516724, 0.3202240467071533, 1.4487254619598389, 0.33721262216567993, 0.021470271050930023, 0.501843273639679, 1.121705412864685, 0.3743506073951721, -0.1271582543849945, -0.8639538884162903, -1.5359055995941162, 1.9912954568862915, -1.4766901731491089, 2.0407474040985107, 0.8588443994522095, -0.1322469413280487, -1.7812552452087402, -1.9155566692352295, 1.343170166015625, 1.1289865970611572, 2.4375479221343994, 0.574583113193512, 0.4461851119995117, -0.7797819972038269, -0.7254365682601929, 0.26822197437286377, -0.9939964413642883, -0.7524564266204834, 0.18195895850658417, 2.3917107582092285, 1.743132472038269, -0.4416300356388092, -0.19516411423683167, -1.0176939964294434, 1.303041696548462, -0.1498381495475769, 0.210979163646698, 2.0042576789855957, -0.20588251948356628, -1.0780199766159058, 1.3082722425460815, -2.2872631549835205, 0.202671080827713, 1.9658364057540894, 0.3036697208881378, 0.11979016661643982, -1.3849931955337524, -0.7102513909339905, -0.24847650527954102, -0.43857187032699585, -1.1995338201522827, 0.5368875861167908, -0.31080612540245056, -0.7848588824272156, -1.455957055091858, 0.13798192143440247, -1.158682942390442, -1.682252049446106, 0.3081195056438446, 1.8671199083328247, 2.0930356979370117, -0.861460268497467, 1.420646071434021, -0.23947139084339142, 0.12150181829929352, 1.2019845247268677, 1.261033296585083, 3.173015594482422, 1.8312897682189941, -1.3006962537765503, 0.6747553944587708, -0.16359761357307434, -0.437762051820755, 1.1461251974105835, -1.126257061958313, 1.2376868724822998, -0.16813838481903076, -1.2206073999404907, -1.1607531309127808, 0.958760142326355, 0.5334731936454773, 0.05223985016345978, -0.47323891520500183, 1.1499159336090088, 0.14365431666374207, 1.3712939023971558, 0.5440117716789246, -0.2579679489135742, 0.6361165642738342, -0.35569891333580017, -0.4807783365249634, 1.6060082912445068, 0.10331039130687714, -1.5420986413955688, -2.3669605255126953, -0.26914161443710327, -0.8594567775726318, 0.01379409059882164, -0.6621016263961792, -1.0705504417419434, 1.5924479961395264, 0.41800960898399353, -1.138234257698059, -0.25778061151504517, -0.36389246582984924, -0.6369674801826477, 2.6678664684295654, -1.430516242980957, -0.1967816948890686, -0.9970312714576721, -0.5745382905006409, 1.5875585079193115, -1.132705569267273, -0.21418650448322296, -1.0352073907852173, -0.5405767560005188, -1.3363310098648071, -0.5161688327789307, 0.045698489993810654, -0.8669119477272034, 0.7789760828018188, 0.25517234206199646, -1.1530088186264038, -0.27343398332595825, -0.9737048745155334, 0.9060312509536743, -0.14104822278022766, 0.20750349760055542, 1.798827886581421, 0.40539804100990295, -0.40494030714035034, 0.7365710735321045, 1.1797019243240356, 0.5798011422157288, -0.6326079964637756, 0.136964350938797, -0.6925591826438904, 0.3330182731151581, -1.309718132019043, 0.28914549946784973, -2.825235605239868, 0.674896776676178, -0.10006968677043915, -0.09772557020187378, 0.007179157808423042, -1.2340141534805298, 1.114776372909546, 2.5947744846343994, -1.1626574993133545, 0.565509557723999, 0.4089350998401642, 1.208532452583313, -1.661804437637329, 0.21330156922340393, -0.44717609882354736, 2.070366621017456, 0.09441927075386047, 1.238147258758545, -0.5515141487121582, -2.3566339015960693, 0.5740041732788086, -1.2723795175552368, -1.1668503284454346, 0.8188856244087219, -0.8896691203117371, 0.11705541610717773, -1.3149182796478271, -0.2353932112455368, -0.9249773025512695, -1.1960450410842896, 0.6624845266342163, 0.11399400234222412, 0.518478512763977, -0.6036981344223022, 0.37162619829177856, -2.216033935546875, -1.3358079195022583, -0.22055937349796295, -0.9807231426239014, 0.4811193645000458, -0.38590455055236816, 0.725719153881073, -0.17193655669689178, -0.010852585546672344, 0.3069668710231781, 1.448002815246582, 3.2986385822296143, 0.1471577286720276, 0.32730427384376526, -0.162934809923172, -0.9886928200721741, 1.476657509803772, 0.9110081195831299, -0.11813324689865112, -0.6590040922164917, -1.0777902603149414, 1.2107270956039429, 1.9531234502792358, 1.1188815832138062, 0.03770821541547775, -0.8297188878059387, -0.7739164233207703, -0.03024115227162838, 0.16720567643642426, 0.5028100609779358, 0.9947562217712402, 0.018454834818840027, 0.0668548047542572, 1.395082712173462, 1.2264763116836548, -0.37709134817123413, 0.332060843706131, -0.8138443231582642, -0.4057061970233917, 0.4548479914665222, 0.2811965346336365, 0.034430358558893204, 0.3918580710887909, -1.078882098197937, -0.2127808928489685, -0.36414864659309387, -0.9440803527832031, -0.7420904040336609, -0.383058100938797, -0.3090763986110687, 1.691980242729187, 0.0798523873090744, -0.46293580532073975, 0.026420585811138153, -0.7585977911949158, -0.08071774244308472, -1.0899795293807983, 0.2260853797197342, -0.15492357313632965, -0.017891868948936462, -0.093170166015625, 1.7130604982376099, -0.966646134853363, -2.156675338745117, 0.13385914266109467, 0.24739977717399597, -0.35948604345321655, 0.18511582911014557, 1.676279067993164, 0.5457298755645752, 1.4190711975097656, 1.3590996265411377, 0.972541868686676, -0.7424192428588867, -1.2747759819030762, 0.7085578441619873, 0.9519650936126709, -1.3758245706558228, 0.8281862735748291, -0.03855505585670471, -0.5662669539451599, 0.6408822536468506, 1.2990880012512207, 0.49119824171066284, -2.00264573097229, 0.7856729626655579, -0.9249215722084045, 0.7759764790534973, 0.6990777254104614, 0.7879400253295898, 0.19228050112724304, 0.8335884213447571, -1.2664183378219604, -1.075308918952942, -0.6764365434646606, -0.6358659267425537, 1.8970288038253784, -0.25686216354370117, 0.5591204762458801, -0.2003607153892517, -1.2470767498016357, -0.03889492526650429, 0.6815212965011597, 0.34300804138183594, -0.3604738712310791, 0.7521290183067322, -0.737538754940033, -1.1111273765563965, -1.3481671810150146, -0.4630011022090912, -0.9702909588813782, -0.9087910652160645, 0.9884439706802368, 0.7078554034233093, 0.4080723226070404, 1.8830116987228394, 0.6994802355766296, 0.23908430337905884, -2.6678988933563232, 0.8783922791481018, 0.3555459678173065, -0.0006455406546592712, 0.9577640891075134, 0.2960836887359619, 1.1346203088760376, -0.017648538574576378, 0.5496294498443604, -2.4190030097961426, 2.321727752685547, -0.26231372356414795, 0.7427279949188232, -0.06264655292034149, -0.1927984207868576, 1.0565149784088135, 0.5822523236274719, 0.525661051273346, -1.1070753335952759, 0.7716656923294067, -0.5827789902687073, 1.198494553565979, 0.8712823987007141, -0.898979127407074, 0.09385071694850922, 1.267906904220581, 0.47101351618766785, -0.40904682874679565, -0.9814417958259583, -0.8739177584648132, 0.9051377773284912, 1.8182592391967773, -0.04578203335404396, 0.0685330331325531, 0.8603153824806213, 0.6680764555931091, -1.3930165767669678, 0.0018989341333508492, -0.7048479914665222, -0.7693873047828674, 1.7442198991775513, 2.0553529262542725, -0.03952910006046295, -0.31514397263526917, -0.7128958702087402, -1.2866804599761963, 0.8127481341362, 0.04818075895309448, 0.17003846168518066, 0.6330418586730957, -0.729475736618042, 1.165403962135315, 0.7369093894958496, 0.9172912836074829, 0.14391237497329712, 0.24280673265457153, 0.39244821667671204, -0.3851029574871063, -1.142545223236084, -0.2507767081260681, -1.0974297523498535, -2.599675178527832, 0.43900781869888306, -0.17578671872615814, -1.4960590600967407, 0.007292533293366432, -0.9826228022575378, 0.8791386485099792, -0.5115602016448975, -1.106964349746704, -1.4782085418701172, 0.2049848884344101, -0.19580377638339996, 0.8751910924911499, -1.6242742538452148, -0.22781386971473694, 1.2587307691574097, 0.9903101325035095, -0.6003227233886719, 0.972931981086731, 0.13669832050800323, 0.9667730927467346, 0.8394194841384888, -0.45662567019462585, 0.5116812586784363, 0.11251328885555267, -1.3302427530288696, 0.39794859290122986, 1.274773359298706, 0.15951387584209442, 1.5041213035583496, -0.5304386019706726, 0.0321221649646759, 0.40492135286331177, -0.4039410650730133, -0.5585672855377197, -0.6057308316230774, 0.7134791612625122, 0.0015127966180443764, -0.9509795308113098, -0.01044247392565012, -0.1510896384716034, -0.15075500309467316, 0.21754693984985352, -1.5173643827438354, -0.1851547509431839, -0.4104224443435669, -0.6263302564620972, -1.267076015472412, -0.0061217257753014565, 1.3206424713134766, -0.7970577478408813, -0.19248241186141968, 0.4705192446708679, 0.32676365971565247, 0.5498949289321899, 0.5419206023216248, -0.7558820247650146, -0.34572821855545044, -0.23256324231624603, -0.37307167053222656, 0.3677063584327698, 1.2467516660690308, -0.10410307347774506, -1.0345611572265625, 0.595747709274292, -0.40396302938461304, 0.16622358560562134, 1.9941517114639282, 0.04682841897010803, -0.7725743055343628, 0.28728440403938293, -0.7606139183044434, 1.8879237174987793, 1.6463180780410767, 1.3604576587677002, -0.17131660878658295, -0.8808656334877014, 0.6629087924957275, -0.2760542035102844, -0.3613952398300171, 0.9507461190223694, 0.38746386766433716, -0.234670028090477, -1.4744787216186523, 0.6512997150421143, 1.2537895441055298, -0.8753972053527832, -0.7548620104789734, 0.05488145723938942, -0.8906176090240479, 1.1877834796905518, 0.6414243578910828, 0.33759036660194397, 0.29817861318588257, 1.6555095911026, 0.7831306457519531, -0.5373513698577881, 0.6057894229888916, 0.43487241864204407, -0.18551327288150787, -2.0814619064331055, -1.1049121618270874, 0.29108908772468567, -0.44325315952301025, -1.5275001525878906, 1.4405357837677002, -1.158280849456787, -1.029950499534607, 0.5613483190536499, 0.13095104694366455, 1.3416399955749512, 0.3392711281776428, 1.6496965885162354, 2.075439214706421, 0.8896618485450745, 0.3399794101715088, 1.2177314758300781, -0.18521550297737122, -0.4535072445869446, 1.8226114511489868, -0.4893762767314911, 0.5175709128379822, 1.0347706079483032, -0.37627193331718445, -1.114729642868042, -0.8200048208236694, -1.17792546749115, -0.7470980286598206, 1.2135205268859863, 0.06944894790649414, -1.0639375448226929, 0.2369164079427719, 1.618382215499878, 0.05261342227458954, -0.2627440094947815, 0.697261393070221, 0.4360678791999817, -0.7934423685073853, -0.10154564678668976, -0.9171764254570007, 0.5128337740898132, -0.15688417851924896, -0.34477952122688293, 0.2299388349056244, 0.5863490104675293, 1.2550705671310425, -0.007734799757599831, 0.10618160665035248, 1.309798002243042, -1.356867790222168, 1.4681410789489746, -0.749868631362915, 0.255418598651886, -2.4115796089172363, 1.4070589542388916, -0.8187122344970703, 1.936073660850525, -2.566049337387085, 0.4474591016769409, -0.53720623254776, -0.4325372576713562, 0.22246600687503815, -0.35199275612831116, 0.18734368681907654, -0.14650510251522064, -0.9841220378875732, -0.18417197465896606, -0.774162769317627, 0.5923019051551819, 1.1990021467208862, 1.395180344581604, -1.0090458393096924, -0.1813354641199112, -1.680181622505188, -0.20622369647026062, -0.7169022560119629, 0.31434401869773865, -1.9396471977233887, -0.2963193356990814, -1.9742921590805054, -2.368847608566284, -1.287904143333435, -0.8534858822822571, 1.1602115631103516, 0.20520725846290588, -0.9480533599853516, 1.1577351093292236, -0.3912690579891205, -1.757681965827942, 1.1491212844848633, -2.208996295928955 ]
https://github.com/huggingface/datasets/issues/5880
load_dataset from s3 file system through streaming can't not iterate data
Cloud storage support is still experimental indeed and you can expect some bugs. I think we need to pass the storage options anywhere use_auth_token is passed in indeed. Let me know if you'd be interested in contributing a fix !
### Describe the bug I have a JSON file in my s3 file system(minio), I can use load_dataset to get the file link, but I can't iterate it <img width="816" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/cc0778d3-36f3-45b5-ac68-4e7c664c2ed0"> <img width="1144" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/76872af3-8b3c-42ff-9f55-528c920a7af1"> we can change 4 lines to fix this bug, you can check whether it is ok for us. <img width="941" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/5a22155a-ece7-496c-8506-047e5c235cd3"> ### Steps to reproduce the bug 1. storage a file in you s3 file system 2. use load_dataset to read it through streaming 3. iterate it ### Expected behavior can iterate it successfully ### Environment info - `datasets` version: 2.12.0 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.8.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1
128
40
load_dataset from s3 file system through streaming can't not iterate data ### Describe the bug I have a JSON file in my s3 file system(minio), I can use load_dataset to get the file link, but I can't iterate it <img width="816" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/cc0778d3-36f3-45b5-ac68-4e7c664c2ed0"> <img width="1144" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/76872af3-8b3c-42ff-9f55-528c920a7af1"> we can change 4 lines to fix this bug, you can check whether it is ok for us. <img width="941" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/5a22155a-ece7-496c-8506-047e5c235cd3"> ### Steps to reproduce the bug 1. storage a file in you s3 file system 2. use load_dataset to read it through streaming 3. iterate it ### Expected behavior can iterate it successfully ### Environment info - `datasets` version: 2.12.0 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.8.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 Cloud storage support is still experimental indeed and you can expect some bugs. I think we need to pass the storage options anywhere use_auth_token is passed in indeed. Let me know if you'd be interested in contributing a fix !
[ -1.225001573562622, -0.8621222972869873, -0.7543970346450806, 1.471557378768921, -0.12334568053483963, -1.189012050628662, 0.13160213828086853, -1.0054593086242676, 1.6431200504302979, -0.7410125732421875, 0.31084689497947693, -1.67832350730896, -0.05089005455374718, -0.4980211853981018, -0.6928905844688416, -0.8836595416069031, -0.39588430523872375, -0.7517310976982117, 1.0738534927368164, 2.547794818878174, 1.2314592599868774, -1.3436572551727295, 2.7246365547180176, 0.6259592771530151, -0.21803465485572815, -0.9434136152267456, 0.5386439561843872, 0.03581765294075012, -1.319718599319458, -0.3755449056625366, -0.8597090244293213, -0.01727708801627159, -0.5214408040046692, -0.4170927107334137, 0.029856964945793152, 0.419408917427063, -0.27687251567840576, -0.40555453300476074, -0.5393281579017639, -0.7436321973800659, 0.46676191687583923, -0.4215746521949768, 0.9255228042602539, -0.34507331252098083, 1.7584751844406128, -0.5195772051811218, 0.47034820914268494, 0.7486446499824524, 1.2744308710098267, 0.2081882655620575, 0.09280062466859818, 0.2562234103679657, 0.3552241623401642, -0.1389060914516449, 0.4827037751674652, 1.21164071559906, 0.5939041972160339, 0.4314180314540863, 0.670525074005127, -2.168252944946289, 1.3341004848480225, -0.8577471971511841, 0.23229974508285522, 1.3814327716827393, -0.938948929309845, 0.41298800706863403, -1.8846735954284668, -0.06195288151502609, 0.45655956864356995, -2.28387451171875, 0.3263530731201172, -1.263953447341919, -0.5284041166305542, 0.9574993252754211, 0.24199765920639038, -1.2667739391326904, 0.1120912954211235, -0.48913997411727905, 1.0293174982070923, 0.430680513381958, 1.2010698318481445, -1.6911307573318481, -0.1064317524433136, -0.24297747015953064, 0.13453590869903564, -1.3292614221572876, -1.5837657451629639, 0.48462629318237305, 0.5789446830749512, 0.672219455242157, -0.03820408508181572, 0.945989191532135, -1.0185123682022095, 0.8010697960853577, -0.9129624366760254, -1.657508373260498, -1.411324143409729, -2.3696908950805664, -2.2855160236358643, 0.786182165145874, -0.37916088104248047, -0.4732968211174011, 2.0081145763397217, -1.0957388877868652, -1.7131978273391724, 1.0690052509307861, 0.27590233087539673, -0.0418674573302269, 2.438962697982788, 0.2849804162979126, -0.8329498171806335, 0.5221827626228333, -0.7419114112854004, 0.7193524837493896, -0.4181695878505707, 1.3296451568603516, 0.40413951873779297, -0.998986542224884, 1.6010490655899048, -0.44516465067863464, 0.5815868377685547, -0.7164543271064758, -0.47847646474838257, -0.7684029340744019, 0.20773792266845703, 1.8875054121017456, -0.30324479937553406, 1.5183520317077637, -0.2674018442630768, -1.5976922512054443, -1.5652326345443726, 0.8333800435066223, 0.5539495944976807, -0.7216987013816833, 0.08320575952529907, -0.35501354932785034, 0.0764511376619339, 0.001279161311686039, 0.9607105255126953, 1.2529782056808472, 0.7350815534591675, -0.2675802409648895, -0.9351529479026794, 0.22542396187782288, -0.0835643857717514, -0.633430540561676, -1.7344427108764648, -0.27828356623649597, 0.22517281770706177, 0.6362284421920776, -1.3908190727233887, 1.7812485694885254, 0.8927334547042847, 1.9786953926086426, 1.019385576248169, -0.403435081243515, 1.6041988134384155, 0.08437082916498184, 1.8402427434921265, -0.3944927155971527, 0.6272684335708618, -0.2614469826221466, -1.1836134195327759, 0.7450923919677734, -0.3589865565299988, -2.0165138244628906, -0.7296215295791626, -0.7818271517753601, -0.14949733018875122, -0.7967350482940674, 0.9091306924819946, -0.32261136174201965, -1.4042365550994873, 0.2989684045314789, -0.6631494164466858, 0.16575613617897034, -1.32073974609375, 0.25725242495536804, 0.6965911984443665, -0.626732349395752, 0.04664445295929909, -0.20308372378349304, -1.2919955253601074, -0.46514657139778137, 0.3146609961986542, 1.8318908214569092, -0.6489669680595398, 0.9206228852272034, 1.0669970512390137, -0.669875979423523, -0.006887643598020077, 0.3715122640132904, -0.3385503888130188, 0.9148091673851013, -1.083078384399414, -0.39801502227783203, 1.1458202600479126, -0.21204176545143127, -0.615154504776001, 1.4113823175430298, 0.7585388422012329, -1.0244733095169067, -0.2624867856502533, -0.0821947306394577, -0.8115110397338867, 0.02623032033443451, -1.6584824323654175, -0.126177579164505, 0.36765021085739136, -1.4508663415908813, -0.465566486120224, -0.20163288712501526, 1.3080434799194336, -0.1777862012386322, 1.4251976013183594, -0.2846609950065613, -0.10538429021835327, -0.4298214614391327, -0.5128606557846069, 0.15413790941238403, -0.20877665281295776, -0.6140246391296387, 0.2686708867549896, -0.7651938796043396, 0.2930290997028351, 1.4587266445159912, 0.37773597240448, 0.028404131531715393, 0.4867236614227295, 1.1080589294433594, 0.3813055157661438, -0.15572816133499146, -0.8265912532806396, -1.5597692728042603, 2.023751974105835, -1.4665753841400146, 2.020812749862671, 0.8744019865989685, -0.11186238378286362, -1.8040192127227783, -1.9388068914413452, 1.3115168809890747, 1.1025192737579346, 2.4526870250701904, 0.5551394820213318, 0.45798537135124207, -0.7515134811401367, -0.7690355181694031, 0.27340570092201233, -1.0041743516921997, -0.7758007645606995, 0.20448744297027588, 2.3982019424438477, 1.7190502882003784, -0.41113874316215515, -0.16680315136909485, -0.9955769181251526, 1.2889244556427002, -0.12579360604286194, 0.1961982250213623, 1.9909805059432983, -0.1741671860218048, -1.1103955507278442, 1.278340220451355, -2.2712080478668213, 0.17984601855278015, 1.9326465129852295, 0.32956790924072266, 0.12550446391105652, -1.3942618370056152, -0.7293667197227478, -0.272865891456604, -0.44675904512405396, -1.2094523906707764, 0.5311805009841919, -0.29795414209365845, -0.8154327869415283, -1.4494279623031616, 0.10563857108354568, -1.2000172138214111, -1.6885555982589722, 0.30474957823753357, 1.8391294479370117, 2.1290743350982666, -0.9062821269035339, 1.4240432977676392, -0.21832698583602905, 0.08749950677156448, 1.1693482398986816, 1.2467565536499023, 3.1611735820770264, 1.8355772495269775, -1.31795072555542, 0.6736251711845398, -0.13595986366271973, -0.4472551643848419, 1.133858561515808, -1.1247079372406006, 1.2441563606262207, -0.15241441130638123, -1.2418429851531982, -1.1212449073791504, 0.9741580486297607, 0.5227290391921997, 0.033077631145715714, -0.48955780267715454, 1.1429396867752075, 0.12993136048316956, 1.4034559726715088, 0.5371648669242859, -0.2427321970462799, 0.6244468688964844, -0.3688141107559204, -0.4914385676383972, 1.6059808731079102, 0.09529859572649002, -1.5373636484146118, -2.37284517288208, -0.2804020345211029, -0.8490853905677795, -0.01062153372913599, -0.6608750820159912, -1.0951082706451416, 1.6006239652633667, 0.4212895333766937, -1.1416822671890259, -0.3062356114387512, -0.3673633337020874, -0.6057621240615845, 2.67999267578125, -1.458436131477356, -0.14342227578163147, -0.9826964139938354, -0.562253475189209, 1.5541473627090454, -1.145238995552063, -0.21620148420333862, -1.0202479362487793, -0.5618821978569031, -1.3369475603103638, -0.5071207284927368, 0.02925300970673561, -0.8768121004104614, 0.7461594939231873, 0.2657657563686371, -1.1148463487625122, -0.2589341104030609, -0.9948294162750244, 0.8871563673019409, -0.1291087567806244, 0.19412699341773987, 1.7694141864776611, 0.4080088138580322, -0.38515764474868774, 0.7382751107215881, 1.175549030303955, 0.5822244882583618, -0.6455491185188293, 0.11035463213920593, -0.7169001698493958, 0.34114575386047363, -1.2957813739776611, 0.2648114264011383, -2.833861827850342, 0.6572109460830688, -0.11266201734542847, -0.10213466733694077, 0.007332799956202507, -1.214476466178894, 1.1510447263717651, 2.5621163845062256, -1.1464444398880005, 0.5997238159179688, 0.4010739326477051, 1.180489420890808, -1.683044195175171, 0.22343653440475464, -0.4669043719768524, 2.072659730911255, 0.10431201756000519, 1.2356171607971191, -0.5752416849136353, -2.3343071937561035, 0.5825085639953613, -1.2751262187957764, -1.1096185445785522, 0.8047742247581482, -0.9043828845024109, 0.15547096729278564, -1.2891960144042969, -0.2487938404083252, -0.909475564956665, -1.195205569267273, 0.6337372660636902, 0.09611053019762039, 0.5071094632148743, -0.5660184025764465, 0.38118496537208557, -2.2209465503692627, -1.337863564491272, -0.23454642295837402, -0.998393177986145, 0.4982931613922119, -0.3866889178752899, 0.7244679927825928, -0.14581316709518433, -0.009239168837666512, 0.3119931221008301, 1.3921864032745361, 3.283144950866699, 0.1536436676979065, 0.33175355195999146, -0.138370543718338, -1.0113487243652344, 1.46204674243927, 0.9344043731689453, -0.11074541509151459, -0.6868994235992432, -1.0948164463043213, 1.2415419816970825, 1.9495339393615723, 1.0944043397903442, 0.048059288412332535, -0.8251025080680847, -0.8070355653762817, -0.012032439932227135, 0.18535038828849792, 0.4904172122478485, 1.0020074844360352, -0.005784282460808754, 0.08340278267860413, 1.425154209136963, 1.2605230808258057, -0.35679271817207336, 0.33278608322143555, -0.819785475730896, -0.40371859073638916, 0.44151753187179565, 0.24426868557929993, 0.023844491690397263, 0.4046631455421448, -1.0635805130004883, -0.21191853284835815, -0.3402181565761566, -0.9597783088684082, -0.746303379535675, -0.38126522302627563, -0.3097684979438782, 1.7126346826553345, 0.07307756692171097, -0.4450891315937042, 0.04430023580789566, -0.7424336671829224, -0.0867343321442604, -1.1018285751342773, 0.24604105949401855, -0.15510186553001404, -0.007069192361086607, -0.08702047169208527, 1.7472288608551025, -0.9577441811561584, -2.157428026199341, 0.12288723140954971, 0.24611833691596985, -0.3454737365245819, 0.16362792253494263, 1.6904489994049072, 0.5516143441200256, 1.4242416620254517, 1.3414231538772583, 0.965167760848999, -0.7448316216468811, -1.2865383625030518, 0.6812857985496521, 0.981697678565979, -1.3749420642852783, 0.8388915657997131, -0.09977007657289505, -0.5667812824249268, 0.6349249482154846, 1.2993799448013306, 0.4853893518447876, -1.9740594625473022, 0.8278555274009705, -0.9022814035415649, 0.7938268780708313, 0.691311776638031, 0.812022864818573, 0.1738920509815216, 0.8259891271591187, -1.2891805171966553, -1.0628256797790527, -0.6770188808441162, -0.6440943479537964, 1.8957774639129639, -0.2781405746936798, 0.5636575818061829, -0.19633182883262634, -1.2389280796051025, -0.0016806148923933506, 0.6838518977165222, 0.3304314911365509, -0.3536682724952698, 0.7831238508224487, -0.6939530968666077, -1.139750599861145, -1.3894093036651611, -0.44668829441070557, -0.960334837436676, -0.8722547292709351, 0.98670494556427, 0.704632043838501, 0.40913280844688416, 1.8752713203430176, 0.6934879422187805, 0.26184019446372986, -2.6998000144958496, 0.8867547512054443, 0.34129300713539124, 0.01317046768963337, 0.9843587875366211, 0.27968454360961914, 1.1432839632034302, -0.025025879964232445, 0.521559476852417, -2.4061007499694824, 2.328338146209717, -0.27208128571510315, 0.7886633276939392, -0.06357188522815704, -0.16558751463890076, 1.0439865589141846, 0.5791530609130859, 0.5577455759048462, -1.1120041608810425, 0.7670524716377258, -0.5636933445930481, 1.1784602403640747, 0.8498576879501343, -0.8931270837783813, 0.09102417528629303, 1.247251033782959, 0.4454362094402313, -0.4040575325489044, -0.981869637966156, -0.8308234214782715, 0.9126922488212585, 1.8304672241210938, -0.0366121381521225, 0.08320765942335129, 0.8688971400260925, 0.6459354758262634, -1.424818754196167, -0.014023051597177982, -0.6991437673568726, -0.767275869846344, 1.7578097581863403, 2.077519416809082, -0.009109055623412132, -0.3420596420764923, -0.6968911290168762, -1.3010201454162598, 0.8301060795783997, 0.048145171254873276, 0.20359960198402405, 0.6299932599067688, -0.7441856861114502, 1.1746684312820435, 0.7242910265922546, 0.9196149110794067, 0.13725179433822632, 0.2308577001094818, 0.3960840106010437, -0.3537184000015259, -1.1386394500732422, -0.23678794503211975, -1.0906788110733032, -2.607306718826294, 0.43125107884407043, -0.17410987615585327, -1.4803403615951538, -0.0054563782177865505, -0.9736491441726685, 0.8843949437141418, -0.5188291072845459, -1.0964221954345703, -1.4686541557312012, 0.21696129441261292, -0.2222682535648346, 0.8849822878837585, -1.6371945142745972, -0.260161429643631, 1.2818716764450073, 1.027780532836914, -0.558136522769928, 0.9785254001617432, 0.13137465715408325, 0.9440803527832031, 0.8355998396873474, -0.4283565282821655, 0.5137355327606201, 0.11916057020425797, -1.3044962882995605, 0.39046579599380493, 1.306117057800293, 0.18022695183753967, 1.499252438545227, -0.5648027062416077, 0.02672591432929039, 0.4179198145866394, -0.37303686141967773, -0.5136329531669617, -0.5936174392700195, 0.7206796407699585, 0.033691830933094025, -0.9705938100814819, -0.029754841700196266, -0.17131862044334412, -0.12960733473300934, 0.1955356001853943, -1.4992879629135132, -0.19824451208114624, -0.4064795970916748, -0.6002061367034912, -1.2681092023849487, -0.022729963064193726, 1.295507550239563, -0.8453666567802429, -0.17466434836387634, 0.47651758790016174, 0.3261761963367462, 0.5941694378852844, 0.5660291910171509, -0.7746532559394836, -0.34014323353767395, -0.22443947196006775, -0.35109683871269226, 0.36695030331611633, 1.2289159297943115, -0.09596599638462067, -1.013766884803772, 0.5943750143051147, -0.374366819858551, 0.18201982975006104, 2.012113571166992, 0.05115345120429993, -0.7753856182098389, 0.2913253605365753, -0.7613791823387146, 1.8909448385238647, 1.6438899040222168, 1.377590298652649, -0.16460838913917542, -0.884943962097168, 0.6647083163261414, -0.26319026947021484, -0.3527785837650299, 0.9585898518562317, 0.4326748549938202, -0.2203441560268402, -1.4698656797409058, 0.6201645135879517, 1.2273836135864258, -0.8912863731384277, -0.716545045375824, 0.05741672217845917, -0.8860215544700623, 1.2071398496627808, 0.6622371673583984, 0.3261558711528778, 0.2909992039203644, 1.6413793563842773, 0.7924826741218567, -0.5652868151664734, 0.5938052535057068, 0.438203901052475, -0.2145000398159027, -2.0558135509490967, -1.0750744342803955, 0.31166189908981323, -0.4395556151866913, -1.4944491386413574, 1.4390019178390503, -1.141734004020691, -1.0215449333190918, 0.5705347657203674, 0.11614788323640823, 1.3701239824295044, 0.3196081519126892, 1.6787102222442627, 2.074730157852173, 0.9152838587760925, 0.30822011828422546, 1.2383759021759033, -0.1767038106918335, -0.41820821166038513, 1.813415765762329, -0.49358507990837097, 0.5184767842292786, 0.994523823261261, -0.39853477478027344, -1.0886543989181519, -0.7978773713111877, -1.148149013519287, -0.7671719789505005, 1.200242042541504, 0.08556555211544037, -1.0243031978607178, 0.21692219376564026, 1.620681643486023, 0.03720150515437126, -0.2796551585197449, 0.6686826348304749, 0.4371657073497772, -0.7610024809837341, -0.13126157224178314, -0.9348241090774536, 0.4970357418060303, -0.13550013303756714, -0.32815876603126526, 0.18474522233009338, 0.5640685558319092, 1.247052550315857, 0.009458273649215698, 0.10897265374660492, 1.3321847915649414, -1.3648409843444824, 1.4538758993148804, -0.7657871842384338, 0.25524982810020447, -2.3996479511260986, 1.42361319065094, -0.8142218589782715, 1.9317572116851807, -2.5667078495025635, 0.474284291267395, -0.5379236936569214, -0.4314435124397278, 0.22819757461547852, -0.33899301290512085, 0.20470744371414185, -0.16828182339668274, -0.9778143167495728, -0.2285674512386322, -0.7838453650474548, 0.5815505385398865, 1.193772315979004, 1.3431726694107056, -0.990155041217804, -0.1794583797454834, -1.6480754613876343, -0.2039545774459839, -0.7269145846366882, 0.28845837712287903, -1.938334345817566, -0.2866218090057373, -1.966536521911621, -2.369497537612915, -1.3134843111038208, -0.8552395701408386, 1.1939254999160767, 0.22313347458839417, -0.968727707862854, 1.1521031856536865, -0.3801458775997162, -1.7729861736297607, 1.1740745306015015, -2.238185167312622 ]
https://github.com/huggingface/datasets/issues/5880
load_dataset from s3 file system through streaming can't not iterate data
Oh, that's great, I really like to fix it. because datasets is really useful and most of our projects need to use it, but we can store our data on the internet due to security reasons. fix it not only make our own work more efficient but also can benefit others who use it.
### Describe the bug I have a JSON file in my s3 file system(minio), I can use load_dataset to get the file link, but I can't iterate it <img width="816" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/cc0778d3-36f3-45b5-ac68-4e7c664c2ed0"> <img width="1144" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/76872af3-8b3c-42ff-9f55-528c920a7af1"> we can change 4 lines to fix this bug, you can check whether it is ok for us. <img width="941" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/5a22155a-ece7-496c-8506-047e5c235cd3"> ### Steps to reproduce the bug 1. storage a file in you s3 file system 2. use load_dataset to read it through streaming 3. iterate it ### Expected behavior can iterate it successfully ### Environment info - `datasets` version: 2.12.0 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.8.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1
128
54
load_dataset from s3 file system through streaming can't not iterate data ### Describe the bug I have a JSON file in my s3 file system(minio), I can use load_dataset to get the file link, but I can't iterate it <img width="816" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/cc0778d3-36f3-45b5-ac68-4e7c664c2ed0"> <img width="1144" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/76872af3-8b3c-42ff-9f55-528c920a7af1"> we can change 4 lines to fix this bug, you can check whether it is ok for us. <img width="941" alt="image" src="https://github.com/huggingface/datasets/assets/59083384/5a22155a-ece7-496c-8506-047e5c235cd3"> ### Steps to reproduce the bug 1. storage a file in you s3 file system 2. use load_dataset to read it through streaming 3. iterate it ### Expected behavior can iterate it successfully ### Environment info - `datasets` version: 2.12.0 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.8.16 - Huggingface_hub version: 0.14.1 - PyArrow version: 12.0.0 - Pandas version: 2.0.1 Oh, that's great, I really like to fix it. because datasets is really useful and most of our projects need to use it, but we can store our data on the internet due to security reasons. fix it not only make our own work more efficient but also can benefit others who use it.
[ -1.199043869972229, -0.8818606734275818, -0.7442376017570496, 1.4534943103790283, -0.13025470077991486, -1.184510350227356, 0.1491757333278656, -1.0294132232666016, 1.646620273590088, -0.7275968194007874, 0.2905788719654083, -1.6825969219207764, -0.027691878378391266, -0.4982556700706482, -0.7023550271987915, -0.8867042064666748, -0.41863662004470825, -0.7777020335197449, 1.057472586631775, 2.560556650161743, 1.2203582525253296, -1.3496662378311157, 2.7203919887542725, 0.6068546772003174, -0.21300001442432404, -0.9385535717010498, 0.5344935059547424, 0.04641905426979065, -1.3264652490615845, -0.36639371514320374, -0.8347621560096741, -0.051013655960559845, -0.5492856502532959, -0.43092241883277893, 0.05003838986158371, 0.4024410843849182, -0.2599416673183441, -0.3808106482028961, -0.564120888710022, -0.734432578086853, 0.4876449406147003, -0.4510537087917328, 0.9342387914657593, -0.3600446581840515, 1.7955443859100342, -0.5073301196098328, 0.4842558801174164, 0.7429177761077881, 1.2943226099014282, 0.22487230598926544, 0.09098201990127563, 0.25706565380096436, 0.35006222128868103, -0.1215430200099945, 0.4537028968334198, 1.2142215967178345, 0.5909189581871033, 0.44799262285232544, 0.685154914855957, -2.1486477851867676, 1.3142646551132202, -0.8638117909431458, 0.25232768058776855, 1.3894071578979492, -0.921296238899231, 0.4204571843147278, -1.892148494720459, -0.0671144351363182, 0.48337408900260925, -2.27506947517395, 0.314531147480011, -1.2477320432662964, -0.5411449074745178, 0.9736518263816833, 0.24250441789627075, -1.259924292564392, 0.11062656342983246, -0.4998038113117218, 1.0174176692962646, 0.44135668873786926, 1.2253990173339844, -1.7198034524917603, -0.08516037464141846, -0.23157471418380737, 0.1596393585205078, -1.3312889337539673, -1.5757560729980469, 0.515238344669342, 0.5838459134101868, 0.6689486503601074, -0.03700493276119232, 0.9413383603096008, -1.0292575359344482, 0.7998226284980774, -0.9187294840812683, -1.6591144800186157, -1.3884745836257935, -2.356522560119629, -2.310553550720215, 0.7919216752052307, -0.3539937436580658, -0.4582195281982422, 2.026268243789673, -1.0686794519424438, -1.71449613571167, 1.0582486391067505, 0.24880000948905945, -0.06410864740610123, 2.4349403381347656, 0.2711518704891205, -0.8163379430770874, 0.5168687701225281, -0.7280266880989075, 0.732481837272644, -0.3791087567806244, 1.3207910060882568, 0.40965765714645386, -1.0124694108963013, 1.5901457071304321, -0.43359148502349854, 0.5799221992492676, -0.6998641490936279, -0.48073387145996094, -0.7491649985313416, 0.2015972137451172, 1.9016755819320679, -0.2900557816028595, 1.525108814239502, -0.2601960301399231, -1.6102532148361206, -1.5769988298416138, 0.8657357692718506, 0.5624415874481201, -0.7055445909500122, 0.062315091490745544, -0.3525823950767517, 0.07770448923110962, 0.015516787767410278, 0.9654426574707031, 1.235685110092163, 0.7641172409057617, -0.254915326833725, -0.9310246109962463, 0.2098526805639267, -0.08556002378463745, -0.6505141854286194, -1.74502432346344, -0.2922443151473999, 0.19979487359523773, 0.6217607259750366, -1.3967297077178955, 1.7890686988830566, 0.8877033591270447, 1.9809068441390991, 1.0410157442092896, -0.40005168318748474, 1.589687466621399, 0.08296535909175873, 1.8385676145553589, -0.38752481341362, 0.6346033215522766, -0.3079839050769806, -1.181045651435852, 0.7424616813659668, -0.3461379110813141, -2.011847972869873, -0.7446110248565674, -0.7864784598350525, -0.1531982421875, -0.8009079694747925, 0.9025601744651794, -0.3175358474254608, -1.4052139520645142, 0.2904033362865448, -0.6532495021820068, 0.13997158408164978, -1.3257068395614624, 0.26628169417381287, 0.7019843459129333, -0.6681786775588989, 0.048538558185100555, -0.2309400886297226, -1.2906115055084229, -0.4850849211215973, 0.2770976424217224, 1.8547221422195435, -0.6350374221801758, 0.9289252161979675, 1.0534780025482178, -0.6786237359046936, -0.01895667053759098, 0.3941974341869354, -0.3351428806781769, 0.8845887780189514, -1.0986276865005493, -0.40572068095207214, 1.1430115699768066, -0.2070492058992386, -0.616564154624939, 1.4214848279953003, 0.7559977769851685, -1.0194953680038452, -0.2585955262184143, -0.07234146445989609, -0.7863284945487976, 0.03512745350599289, -1.635825514793396, -0.11060614883899689, 0.35710346698760986, -1.4404881000518799, -0.4850408136844635, -0.21358053386211395, 1.276577115058899, -0.16388776898384094, 1.3880598545074463, -0.28999125957489014, -0.13878397643566132, -0.43699121475219727, -0.5284720659255981, 0.12170727550983429, -0.20750334858894348, -0.6355560421943665, 0.2652680575847626, -0.7638174295425415, 0.3094133734703064, 1.468117117881775, 0.3641437888145447, 0.026019880548119545, 0.4963224530220032, 1.102526068687439, 0.3983868956565857, -0.1502842903137207, -0.8462620973587036, -1.539858341217041, 2.0148942470550537, -1.4731229543685913, 2.013275146484375, 0.8934447765350342, -0.15509483218193054, -1.7863942384719849, -1.9275892972946167, 1.3191925287246704, 1.1251353025436401, 2.447000026702881, 0.5756726861000061, 0.4768460988998413, -0.7547441124916077, -0.7641382217407227, 0.27275723218917847, -0.9916485548019409, -0.7943520545959473, 0.20785865187644958, 2.3960416316986084, 1.7240798473358154, -0.42099788784980774, -0.17080488801002502, -1.0192533731460571, 1.276379942893982, -0.13016033172607422, 0.18656089901924133, 2.0247015953063965, -0.19277620315551758, -1.1262969970703125, 1.2861599922180176, -2.24017333984375, 0.18442800641059875, 1.941048264503479, 0.3540583550930023, 0.11178182065486908, -1.4013110399246216, -0.7342796921730042, -0.26536259055137634, -0.4374120533466339, -1.1886619329452515, 0.5357496738433838, -0.30832716822624207, -0.8127347826957703, -1.4682729244232178, 0.11558078974485397, -1.1967086791992188, -1.658107042312622, 0.326781302690506, 1.8289350271224976, 2.139673948287964, -0.8677863478660583, 1.3930118083953857, -0.22847160696983337, 0.08790990710258484, 1.1625810861587524, 1.2298011779785156, 3.1752336025238037, 1.8314634561538696, -1.2795851230621338, 0.6621732115745544, -0.12390546500682831, -0.4277183711528778, 1.1082963943481445, -1.1248739957809448, 1.2345218658447266, -0.19460685551166534, -1.2405204772949219, -1.1355313062667847, 0.9810805916786194, 0.5009387135505676, 0.04193199425935745, -0.4675678610801697, 1.1397149562835693, 0.11522652208805084, 1.3880181312561035, 0.5410380959510803, -0.22772175073623657, 0.6249679923057556, -0.37555748224258423, -0.49709799885749817, 1.6318907737731934, 0.10622942447662354, -1.5670039653778076, -2.376812219619751, -0.2785542905330658, -0.8450828194618225, 0.014479143545031548, -0.6610192656517029, -1.0856044292449951, 1.598215103149414, 0.4167550504207611, -1.1542556285858154, -0.28964510560035706, -0.3648780882358551, -0.6500487327575684, 2.670804500579834, -1.471616506576538, -0.17412085831165314, -0.9895012974739075, -0.5648087859153748, 1.5737141370773315, -1.121298909187317, -0.19333888590335846, -1.0058796405792236, -0.5363253951072693, -1.338692545890808, -0.4939563274383545, 0.031386904418468475, -0.8732016682624817, 0.7632540464401245, 0.2618819773197174, -1.0927823781967163, -0.2617746591567993, -0.9861428141593933, 0.8965973854064941, -0.1389262080192566, 0.20167353749275208, 1.7802027463912964, 0.45063453912734985, -0.3736168444156647, 0.7046744227409363, 1.1838618516921997, 0.6029937863349915, -0.6799678206443787, 0.10572666674852371, -0.7105885744094849, 0.3415811061859131, -1.3056107759475708, 0.2869705557823181, -2.8108091354370117, 0.6675373315811157, -0.0986664742231369, -0.1041112095117569, 0.03814559429883957, -1.1963542699813843, 1.1228796243667603, 2.5808486938476562, -1.1568810939788818, 0.5851398706436157, 0.4012697637081146, 1.175502061843872, -1.6702483892440796, 0.21990972757339478, -0.4494808614253998, 2.058743953704834, 0.1052541509270668, 1.2262336015701294, -0.5823021531105042, -2.322154998779297, 0.6085537672042847, -1.2842941284179688, -1.1511119604110718, 0.8068217635154724, -0.9099977016448975, 0.13131849467754364, -1.2937999963760376, -0.23558194935321808, -0.8967124819755554, -1.2087230682373047, 0.664921760559082, 0.09262339770793915, 0.5130512118339539, -0.5540536642074585, 0.3891965448856354, -2.233532190322876, -1.3596282005310059, -0.24582216143608093, -1.0045253038406372, 0.48093774914741516, -0.40472835302352905, 0.7389717698097229, -0.16430601477622986, -0.004294182173907757, 0.3246976137161255, 1.4003169536590576, 3.2873711585998535, 0.15656906366348267, 0.3107661306858063, -0.1401759535074234, -1.0112931728363037, 1.4497370719909668, 0.942559540271759, -0.1072564348578453, -0.6699448823928833, -1.0976790189743042, 1.219940423965454, 1.9636915922164917, 1.1281195878982544, 0.04087234288454056, -0.8236048817634583, -0.7826535105705261, -0.011207609437406063, 0.21013231575489044, 0.49838900566101074, 0.9794160723686218, -0.010650512762367725, 0.10508981347084045, 1.447374701499939, 1.2672456502914429, -0.3667849600315094, 0.3307235836982727, -0.7918062210083008, -0.42434537410736084, 0.46954530477523804, 0.24597719311714172, 0.027576250955462456, 0.3929596245288849, -1.1059834957122803, -0.21838021278381348, -0.36374640464782715, -0.9794614315032959, -0.7400572896003723, -0.39731279015541077, -0.30447569489479065, 1.7069181203842163, 0.06450115889310837, -0.4320955276489258, 0.05289159715175629, -0.7609929442405701, -0.08538603782653809, -1.116947054862976, 0.2411162406206131, -0.15917733311653137, -0.04393176734447479, -0.10674256086349487, 1.7698736190795898, -0.9907008409500122, -2.1642558574676514, 0.13640350103378296, 0.237003892660141, -0.3663768172264099, 0.18236030638217926, 1.6542925834655762, 0.5503323674201965, 1.4266459941864014, 1.3371622562408447, 0.95071941614151, -0.7349604964256287, -1.314613938331604, 0.6630758047103882, 0.9844898581504822, -1.369295597076416, 0.8038302659988403, -0.0774390697479248, -0.584870457649231, 0.6480514407157898, 1.2901654243469238, 0.5000086426734924, -1.9629876613616943, 0.8095427751541138, -0.907038688659668, 0.7843621373176575, 0.6892493367195129, 0.8080368041992188, 0.18011219799518585, 0.811826229095459, -1.3049347400665283, -1.0564351081848145, -0.6750019788742065, -0.6190863847732544, 1.8894718885421753, -0.2451062798500061, 0.5595299005508423, -0.19379419088363647, -1.223471999168396, -0.011176830157637596, 0.666043221950531, 0.34670647978782654, -0.3601784408092499, 0.7645909190177917, -0.7023987174034119, -1.1433115005493164, -1.3855671882629395, -0.4423357844352722, -0.9656814932823181, -0.8745346069335938, 1.027799129486084, 0.6930870413780212, 0.41766345500946045, 1.8851232528686523, 0.7018662691116333, 0.23425209522247314, -2.696295976638794, 0.8723706007003784, 0.3317382037639618, -0.005233293399214745, 0.9629032015800476, 0.2878909409046173, 1.1347299814224243, -0.02513839863240719, 0.5159253478050232, -2.4077677726745605, 2.3272922039031982, -0.25344401597976685, 0.7741064429283142, -0.03920597583055496, -0.14163027703762054, 1.0588356256484985, 0.6132633090019226, 0.5424202680587769, -1.1094428300857544, 0.7442257404327393, -0.5667259097099304, 1.1788911819458008, 0.8421239852905273, -0.8896166682243347, 0.09457448869943619, 1.241626501083374, 0.4711427092552185, -0.39045652747154236, -0.9768154621124268, -0.8311572074890137, 0.8887907862663269, 1.8527337312698364, -0.06215979903936386, 0.08116481453180313, 0.8816226720809937, 0.6449320912361145, -1.4264812469482422, -0.02786218374967575, -0.7091482877731323, -0.7862094640731812, 1.7466638088226318, 2.0755531787872314, -0.006302856840193272, -0.3407771587371826, -0.7096026539802551, -1.275843858718872, 0.8474416136741638, 0.036919005215168, 0.20033378899097443, 0.6408878564834595, -0.7392676472663879, 1.1923654079437256, 0.776440441608429, 0.922980785369873, 0.15403564274311066, 0.24928030371665955, 0.3864423334598541, -0.3671220541000366, -1.1564974784851074, -0.23285003006458282, -1.0713196992874146, -2.5907886028289795, 0.4363376498222351, -0.1868399828672409, -1.4760839939117432, -0.002799061592668295, -0.9748537540435791, 0.8906278014183044, -0.5149288177490234, -1.0733267068862915, -1.5035837888717651, 0.21472439169883728, -0.21997353434562683, 0.9250597953796387, -1.64803946018219, -0.24710005521774292, 1.2551782131195068, 1.0296010971069336, -0.5527352690696716, 0.9591193199157715, 0.13458900153636932, 0.9226067066192627, 0.8306189179420471, -0.4342561960220337, 0.5168437361717224, 0.14901946485042572, -1.300645351409912, 0.37124985456466675, 1.2791918516159058, 0.18141329288482666, 1.485777497291565, -0.5587117671966553, 0.03319501131772995, 0.38583657145500183, -0.35715436935424805, -0.5174732208251953, -0.601189136505127, 0.7086604833602905, 0.022834477946162224, -0.9669447541236877, -0.022223804146051407, -0.17586025595664978, -0.14020493626594543, 0.2035580724477768, -1.4802404642105103, -0.19630859792232513, -0.4234461784362793, -0.6214098334312439, -1.2568310499191284, -0.023960992693901062, 1.3085352182388306, -0.839601457118988, -0.16051167249679565, 0.4764363765716553, 0.343963623046875, 0.5710107088088989, 0.5695717930793762, -0.773176372051239, -0.35885298252105713, -0.2091812938451767, -0.35588884353637695, 0.3425248861312866, 1.2637696266174316, -0.11278724670410156, -1.048080325126648, 0.6156983971595764, -0.36961016058921814, 0.18582700192928314, 1.9977117776870728, 0.05316488444805145, -0.7857397198677063, 0.28722381591796875, -0.7802764773368835, 1.9034101963043213, 1.645492434501648, 1.3755278587341309, -0.1841423064470291, -0.8723904490470886, 0.6362791061401367, -0.2680118978023529, -0.3413379490375519, 0.9370454549789429, 0.40085890889167786, -0.2234276682138443, -1.4658434391021729, 0.6275816559791565, 1.2471644878387451, -0.8725339770317078, -0.7303538918495178, 0.05995029956102371, -0.8755415081977844, 1.1800092458724976, 0.6396943926811218, 0.3682652711868286, 0.2819144129753113, 1.6359786987304688, 0.8051746487617493, -0.5624444484710693, 0.6015443205833435, 0.4317767024040222, -0.18352068960666656, -2.0686755180358887, -1.1044871807098389, 0.3050515651702881, -0.4486008584499359, -1.5153570175170898, 1.4146976470947266, -1.126962661743164, -1.0147322416305542, 0.5789642930030823, 0.10681331902742386, 1.3755908012390137, 0.3244270384311676, 1.670737624168396, 2.0645413398742676, 0.9264593124389648, 0.30099761486053467, 1.2496942281723022, -0.1618594378232956, -0.3977886438369751, 1.8289539813995361, -0.49378958344459534, 0.5164337158203125, 1.010772943496704, -0.36871907114982605, -1.0876860618591309, -0.7943117022514343, -1.1608302593231201, -0.7701507210731506, 1.176647424697876, 0.07556819170713425, -1.0516200065612793, 0.20912963151931763, 1.6192878484725952, 0.04409509897232056, -0.25290054082870483, 0.6657891869544983, 0.40135160088539124, -0.7895641922950745, -0.11527162045240402, -0.9324495792388916, 0.5053379535675049, -0.14592158794403076, -0.33256056904792786, 0.19437125325202942, 0.5543784499168396, 1.251654028892517, -0.004753468558192253, 0.09434498846530914, 1.3473625183105469, -1.3414736986160278, 1.461756706237793, -0.7468410730361938, 0.245690256357193, -2.412409543991089, 1.4267748594284058, -0.793566107749939, 1.9034265279769897, -2.559490203857422, 0.44571393728256226, -0.5262246131896973, -0.413242906332016, 0.20917226374149323, -0.32509854435920715, 0.22695378959178925, -0.17036770284175873, -0.9501609802246094, -0.22559337317943573, -0.7760237455368042, 0.5811835527420044, 1.1960766315460205, 1.3728153705596924, -0.9693498611450195, -0.19529521465301514, -1.6763873100280762, -0.1996932327747345, -0.6961267590522766, 0.29070666432380676, -1.9273622035980225, -0.316876083612442, -1.972851037979126, -2.367323398590088, -1.3075578212738037, -0.8464328050613403, 1.2032244205474854, 0.20034493505954742, -0.9733268022537231, 1.156217336654663, -0.4016304314136505, -1.7544324398040771, 1.1624606847763062, -2.238694667816162 ]
https://github.com/huggingface/datasets/issues/5878
Prefetching for IterableDataset
Very cool! Do you have a link to the code that you're using to eagerly fetch the data? Would also be interested in hacking around something here for pre-fetching iterable datasets
### Feature request Add support for prefetching the next n batches through iterabledataset to reduce batch loading bottleneck in training loop. ### Motivation The primary motivation behind this is to use hardware accelerators alongside a streaming dataset. This is required when you are in a low ram or low disk space setting as well as quick iteration where you're iterating though different accelerator environments (e.x changing ec2 instances quickly to figure out batch/sec for a particular architecture). Currently, using the IterableDataset results in accelerators becoming basically useless due to the massive bottleneck induced by the dataset lazy loading/transform/mapping. I've considered two alternatives: PyTorch dataloader that handles this. However, I'm using jax, and I believe this is a piece of functionality that should live in the stream class. Replicating the "num_workers" part of the PyTorch DataLoader to eagerly load batches and apply the transform so Arrow caching will automatically cache results and make them accessible. ### Your contribution I may or may not have time to do this. Currently, I've written the basic multiprocessor approach to handle the eager DataLoader for my own use case with code that's not integrated to datasets. I'd definitely see this as being the default over the regular Dataset for most people given that they wouldn't have to wait on the datasets while also not worrying about performance.
129
31
Prefetching for IterableDataset ### Feature request Add support for prefetching the next n batches through iterabledataset to reduce batch loading bottleneck in training loop. ### Motivation The primary motivation behind this is to use hardware accelerators alongside a streaming dataset. This is required when you are in a low ram or low disk space setting as well as quick iteration where you're iterating though different accelerator environments (e.x changing ec2 instances quickly to figure out batch/sec for a particular architecture). Currently, using the IterableDataset results in accelerators becoming basically useless due to the massive bottleneck induced by the dataset lazy loading/transform/mapping. I've considered two alternatives: PyTorch dataloader that handles this. However, I'm using jax, and I believe this is a piece of functionality that should live in the stream class. Replicating the "num_workers" part of the PyTorch DataLoader to eagerly load batches and apply the transform so Arrow caching will automatically cache results and make them accessible. ### Your contribution I may or may not have time to do this. Currently, I've written the basic multiprocessor approach to handle the eager DataLoader for my own use case with code that's not integrated to datasets. I'd definitely see this as being the default over the regular Dataset for most people given that they wouldn't have to wait on the datasets while also not worrying about performance. Very cool! Do you have a link to the code that you're using to eagerly fetch the data? Would also be interested in hacking around something here for pre-fetching iterable datasets
[ -1.271242380142212, -1.0044522285461426, -0.8621823191642761, 1.4644501209259033, -0.1576962172985077, -1.225904107093811, 0.038981225341558456, -1.155659556388855, 1.6998405456542969, -0.8695210218429565, 0.3062356412410736, -1.6303378343582153, 0.10064545273780823, -0.5109802484512329, -0.7157911062240601, -0.9461924433708191, -0.39017510414123535, -0.8042408227920532, 1.0084736347198486, 2.5844342708587646, 1.0562111139297485, -1.4448981285095215, 2.739564895629883, 0.6930904984474182, -0.14789526164531708, -1.0006914138793945, 0.5094729065895081, 0.03306317329406738, -1.2319812774658203, -0.48722365498542786, -0.976029098033905, -0.07856704294681549, -0.5604651570320129, -0.48156091570854187, 0.031180119141936302, 0.3001284897327423, -0.18075844645500183, -0.42303037643432617, -0.5432606339454651, -0.7168996930122375, 0.4023333787918091, -0.39614057540893555, 1.010812520980835, -0.35706254839897156, 1.8196114301681519, -0.392647922039032, 0.3852323293685913, 0.6863974332809448, 1.3886586427688599, 0.22453005611896515, 0.0069685219787061214, 0.21619190275669098, 0.4315274953842163, -0.09182688593864441, 0.42056676745414734, 1.027976632118225, 0.6148764491081238, 0.517683744430542, 0.7291271686553955, -2.1755244731903076, 1.3336414098739624, -1.0428897142410278, 0.34981587529182434, 1.343328833580017, -0.9851022362709045, 0.41310468316078186, -1.800282597541809, -0.06234128028154373, 0.5610198974609375, -2.2328126430511475, 0.14433403313159943, -1.2300899028778076, -0.5015634298324585, 1.0166664123535156, 0.17988336086273193, -1.2882270812988281, 0.20511962473392487, -0.46326175332069397, 0.9972796440124512, 0.5420966744422913, 1.226786732673645, -1.7272237539291382, 0.040307361632585526, -0.2732795774936676, 0.09569618105888367, -1.350393295288086, -1.5065075159072876, 0.5229324698448181, 0.6385698318481445, 0.43026483058929443, -0.07294870167970657, 0.9990911483764648, -1.0466018915176392, 0.7933225631713867, -0.8898882269859314, -1.6553720235824585, -1.3869832754135132, -2.3123700618743896, -2.3714609146118164, 0.7879229187965393, -0.5397705435752869, -0.5293682813644409, 2.0724523067474365, -1.038618803024292, -1.7544127702713013, 1.1877120733261108, 0.2819375991821289, 0.08830626308917999, 2.412949800491333, 0.17099890112876892, -0.6893092393875122, 0.3999071717262268, -0.6987651586532593, 0.7647079825401306, -0.5360091328620911, 1.3964616060256958, 0.44805052876472473, -0.9154251217842102, 1.6224006414413452, -0.48837557435035706, 0.5599486827850342, -0.6601648926734924, -0.5134180188179016, -0.8573907017707825, 0.4847855865955353, 1.8966761827468872, -0.3134773075580597, 1.6349883079528809, -0.40119120478630066, -1.5417072772979736, -1.6385204792022705, 0.9186220765113831, 0.46612635254859924, -0.8074195981025696, 0.09803101420402527, -0.2767237722873688, 0.1144249364733696, -0.07327283173799515, 1.055593490600586, 1.2016559839248657, 0.6641265749931335, -0.3826962113380432, -0.970879077911377, 0.22628118097782135, -0.14353728294372559, -0.6448646783828735, -1.7687925100326538, -0.34133508801460266, 0.13333077728748322, 0.6579474210739136, -1.1985727548599243, 1.6151894330978394, 0.9349903464317322, 1.8871629238128662, 1.0484768152236938, -0.3157094419002533, 1.5136165618896484, 0.10354785621166229, 1.8334156274795532, -0.4702407717704773, 0.6562327742576599, -0.3446069657802582, -1.0805193185806274, 0.6731903553009033, -0.343784362077713, -1.9966654777526855, -0.7672808766365051, -0.8198591470718384, -0.2250506728887558, -0.7149863839149475, 0.8783455491065979, -0.272235244512558, -1.3400593996047974, 0.3406296372413635, -0.6112438440322876, 0.0893724262714386, -1.2090221643447876, 0.42330384254455566, 0.756147027015686, -0.6566386818885803, 0.006459456402808428, -0.28208276629447937, -1.345441460609436, -0.4510648548603058, 0.22614222764968872, 1.928870439529419, -0.8247068524360657, 0.901927649974823, 0.9986667633056641, -0.6625681519508362, 0.007632058579474688, 0.34022974967956543, -0.26635321974754333, 0.864437997341156, -1.0350325107574463, -0.44458433985710144, 1.2180763483047485, -0.23774611949920654, -0.5481035113334656, 1.3974888324737549, 0.7148252129554749, -1.0251262187957764, -0.2206341177225113, -0.17896553874015808, -0.8794524669647217, -0.04012586921453476, -1.6144863367080688, -0.14214640855789185, 0.17973549664020538, -1.502703309059143, -0.4740290641784668, -0.2895243167877197, 1.2090978622436523, -0.08696965873241425, 1.4511725902557373, -0.3674413859844208, -0.2672271132469177, -0.40026581287384033, -0.42224934697151184, 0.19824440777301788, -0.26557743549346924, -0.6054823398590088, 0.19118048250675201, -0.8031140565872192, 0.2952021360397339, 1.4403444528579712, 0.40126654505729675, 0.04573187232017517, 0.5644801259040833, 1.0162208080291748, 0.33799809217453003, -0.0679817795753479, -0.8160304427146912, -1.4752657413482666, 2.0029006004333496, -1.4287605285644531, 1.9916361570358276, 0.823667049407959, -0.07064931839704514, -1.8228083848953247, -1.816324234008789, 1.4055556058883667, 1.1751623153686523, 2.3285326957702637, 0.583220899105072, 0.3122311234474182, -0.8386507630348206, -0.6593250632286072, 0.382792204618454, -0.9681729674339294, -0.792153000831604, 0.04147183522582054, 2.3199727535247803, 1.7944965362548828, -0.47148364782333374, -0.14775796234607697, -1.0040335655212402, 1.4121713638305664, -0.09264235198497772, 0.25093913078308105, 1.9564094543457031, -0.29477420449256897, -1.0869196653366089, 1.2314649820327759, -2.343632221221924, 0.08100952953100204, 1.9838756322860718, 0.3445938229560852, 0.06635074317455292, -1.4060815572738647, -0.64933180809021, -0.2848578691482544, -0.2750852406024933, -1.2477318048477173, 0.5875952243804932, -0.3297382593154907, -0.7475302815437317, -1.5684731006622314, 0.15447908639907837, -1.2451488971710205, -1.5963529348373413, 0.26476532220840454, 1.8767731189727783, 2.0705955028533936, -0.6897050142288208, 1.4951398372650146, -0.21888230741024017, 0.15273867547512054, 1.2445968389511108, 1.1536457538604736, 3.1695263385772705, 1.9382693767547607, -1.2553291320800781, 0.5851019024848938, -0.15724283456802368, -0.4780382215976715, 1.1318159103393555, -1.0412644147872925, 1.315664529800415, -0.16104799509048462, -1.1197400093078613, -1.1825156211853027, 0.932841956615448, 0.5467057824134827, 0.0668453574180603, -0.5194467902183533, 1.222393274307251, 0.014157099649310112, 1.3083090782165527, 0.4710470736026764, -0.40381085872650146, 0.5790353417396545, -0.45653626322746277, -0.5536466240882874, 1.6259821653366089, 0.1532265543937683, -1.4530484676361084, -2.2659552097320557, -0.20808570086956024, -0.800223171710968, -0.031813714653253555, -0.6246031522750854, -1.0202231407165527, 1.5925450325012207, 0.3984750807285309, -1.2715601921081543, -0.3770362436771393, -0.4311802387237549, -0.6899450421333313, 2.604315757751465, -1.4399696588516235, -0.28688979148864746, -0.9935625791549683, -0.5600349307060242, 1.5007433891296387, -1.2070387601852417, -0.10855533927679062, -0.9964141249656677, -0.6502779722213745, -1.360295057296753, -0.5846436619758606, -0.07540108263492584, -0.906830906867981, 0.8773031830787659, 0.2805263102054596, -1.1317909955978394, -0.28764915466308594, -0.8604656457901001, 0.7658807039260864, -0.03865755349397659, 0.3013450801372528, 1.800400733947754, 0.4558306336402893, -0.41241684556007385, 0.7240855693817139, 1.1330536603927612, 0.6696285009384155, -0.7060745358467102, 0.16467228531837463, -0.7428434491157532, 0.3907296359539032, -1.3012086153030396, 0.2675310969352722, -2.955103635787964, 0.6928091049194336, -0.09218257665634155, -0.13102534413337708, 0.027655212208628654, -1.2271103858947754, 1.010507583618164, 2.708508253097534, -1.1387020349502563, 0.4865070581436157, 0.3729081153869629, 1.1963579654693604, -1.6428544521331787, 0.37075039744377136, -0.3684103786945343, 2.102648973464966, 0.1600521355867386, 1.1392968893051147, -0.566034734249115, -2.26538348197937, 0.5993062257766724, -1.2415367364883423, -1.2434314489364624, 0.759267270565033, -0.8746846318244934, -0.02260330133140087, -1.4588513374328613, -0.13215729594230652, -0.7936106324195862, -1.330251932144165, 0.7909829616546631, 0.20145034790039062, 0.4383094906806946, -0.5873454213142395, 0.2750248908996582, -2.239776611328125, -1.3634254932403564, -0.24800492823123932, -0.9677273631095886, 0.41225969791412354, -0.39820578694343567, 0.7509039044380188, -0.1402491182088852, 0.0908188596367836, 0.3129027783870697, 1.3263869285583496, 3.44964599609375, 0.2614830732345581, 0.4553813338279724, -0.15811742842197418, -0.9342548251152039, 1.5046541690826416, 0.9468551874160767, -0.14071431756019592, -0.5493354797363281, -1.1259454488754272, 1.2596102952957153, 1.9633971452713013, 0.9153491258621216, 0.06305470317602158, -0.7443575859069824, -0.5902097821235657, -0.07009923458099365, 0.18876907229423523, 0.4762406349182129, 0.9325138330459595, -0.0404597744345665, 0.15953278541564941, 1.5113643407821655, 1.2691909074783325, -0.42463281750679016, 0.29347097873687744, -0.730018675327301, -0.45204249024391174, 0.5643896460533142, 0.33472883701324463, 0.01072336733341217, 0.29954564571380615, -0.9501342177391052, -0.2513021230697632, -0.44904980063438416, -1.0027836561203003, -0.6166543364524841, -0.45624154806137085, -0.3021254241466522, 1.6207633018493652, 0.14818918704986572, -0.4860585331916809, -0.06434489786624908, -0.7579815983772278, -0.03512474521994591, -1.0818650722503662, 0.23222993314266205, -0.04474249109625816, -0.09574009478092194, -0.07822439819574356, 1.8412225246429443, -0.9565256237983704, -2.1856985092163086, 0.27218157052993774, 0.2673238217830658, -0.3286420404911041, 0.195998415350914, 1.5924664735794067, 0.46986284852027893, 1.4940807819366455, 1.3391730785369873, 0.9302637577056885, -0.7178885340690613, -1.3102678060531616, 0.695241391658783, 0.9351863861083984, -1.3603489398956299, 0.8085207343101501, 0.01856091618537903, -0.5477198362350464, 0.7317889928817749, 1.2295793294906616, 0.39014747738838196, -1.9451786279678345, 0.8445842862129211, -0.8945059180259705, 0.7617203593254089, 0.7397130727767944, 0.7573560476303101, 0.1500142514705658, 0.7877732515335083, -1.2085031270980835, -1.214647889137268, -0.8269698023796082, -0.6317968964576721, 2.0310187339782715, -0.2028084397315979, 0.570161759853363, -0.06478067487478256, -1.354614496231079, -0.058711349964141846, 0.6906899809837341, 0.3739856481552124, -0.2984399199485779, 0.8345023989677429, -0.7382533550262451, -1.099692940711975, -1.5250840187072754, -0.37610095739364624, -0.9534705877304077, -0.8843590617179871, 1.0921322107315063, 0.8457393646240234, 0.1858341097831726, 1.8812021017074585, 0.5647860765457153, 0.28362834453582764, -2.666740894317627, 0.9028546810150146, 0.34471896290779114, -0.04688385874032974, 0.9482459425926208, 0.2685451805591583, 1.0170600414276123, 0.0727008730173111, 0.45891815423965454, -2.353123903274536, 2.2726352214813232, -0.2620837688446045, 0.8244591355323792, -0.03634127601981163, -0.1469862461090088, 1.0890583992004395, 0.5584821105003357, 0.6463201642036438, -1.106067419052124, 0.7071933746337891, -0.5640276670455933, 1.216475009918213, 0.9741424322128296, -0.7405906319618225, -0.023342156782746315, 1.3464123010635376, 0.5143376588821411, -0.5551554560661316, -0.9028417468070984, -0.9049709439277649, 0.982281506061554, 1.9058314561843872, 0.04356715828180313, 0.027297867462038994, 0.8018146753311157, 0.6233513951301575, -1.3452473878860474, 0.07955191284418106, -0.7708390355110168, -0.8026797771453857, 1.5645065307617188, 2.010390043258667, -0.08249401301145554, -0.20347854495048523, -0.6952269077301025, -1.27365243434906, 0.7074215412139893, -0.006141632329672575, 0.18252874910831451, 0.6890856027603149, -0.7014874219894409, 1.0752534866333008, 0.9378985166549683, 0.878957211971283, 0.17811280488967896, 0.2662799060344696, 0.43273136019706726, -0.24856294691562653, -1.0511541366577148, -0.22279062867164612, -1.1316322088241577, -2.4256691932678223, 0.4910767674446106, -0.14954915642738342, -1.462914228439331, 0.023836826905608177, -0.891668975353241, 0.9881247282028198, -0.4907241463661194, -1.1220382452011108, -1.6148287057876587, 0.14868634939193726, -0.11575491726398468, 0.9008672833442688, -1.564827799797058, -0.09909790009260178, 1.2356557846069336, 1.0178544521331787, -0.5505063533782959, 1.0553395748138428, 0.25790658593177795, 0.9736586809158325, 0.8217839598655701, -0.42219629883766174, 0.43298831582069397, 0.008276024833321571, -1.310206651687622, 0.4403846263885498, 1.1233547925949097, 0.27263909578323364, 1.3969078063964844, -0.6063483357429504, -0.01224903017282486, 0.3976917266845703, -0.48500683903694153, -0.4243171513080597, -0.5443345308303833, 0.7400361895561218, 0.037311408668756485, -0.8213773369789124, 0.1092473715543747, -0.18816861510276794, -0.2751964032649994, 0.18059410154819489, -1.5133379697799683, -0.24977584183216095, -0.4312610924243927, -0.5273839235305786, -1.2126601934432983, -0.03376685082912445, 1.425510287284851, -0.8365738391876221, -0.1951082944869995, 0.4933832883834839, 0.4979557991027832, 0.5201498866081238, 0.6059229969978333, -0.5829692482948303, -0.3322754502296448, -0.264527291059494, -0.32547423243522644, 0.22577643394470215, 1.3072094917297363, -0.1813240647315979, -1.0001986026763916, 0.7654094099998474, -0.3761616349220276, 0.009674295783042908, 1.9371129274368286, 0.13973799347877502, -0.7775917053222656, 0.35790520906448364, -0.7581989765167236, 1.8543272018432617, 1.7081019878387451, 1.4004859924316406, -0.10319456458091736, -0.9603555202484131, 0.6077189445495605, -0.300750195980072, -0.34111303091049194, 0.9746087193489075, 0.4926493167877197, -0.13807637989521027, -1.5005720853805542, 0.5422348380088806, 1.157211184501648, -0.8940733075141907, -0.757551372051239, 0.07390733808279037, -0.7985259890556335, 1.0294443368911743, 0.717461884021759, 0.4493445158004761, 0.21737165749073029, 1.7840495109558105, 0.7265922427177429, -0.5941582918167114, 0.4935861825942993, 0.5080245137214661, -0.14103950560092926, -2.0958402156829834, -1.0898566246032715, 0.33622241020202637, -0.4140317738056183, -1.5251059532165527, 1.3592276573181152, -1.1789079904556274, -0.8819320797920227, 0.5133472681045532, 0.07093515247106552, 1.448694109916687, 0.33944952487945557, 1.5881474018096924, 2.1601481437683105, 0.8480590581893921, 0.3549615144729614, 1.2932252883911133, -0.15032532811164856, -0.3747316300868988, 1.9301475286483765, -0.392538458108902, 0.37974387407302856, 1.0998401641845703, -0.3967666029930115, -1.0324283838272095, -0.7533273100852966, -1.140373706817627, -0.6185014247894287, 1.01094388961792, 0.06144183501601219, -1.1282480955123901, 0.20256932079792023, 1.5965861082077026, 0.08738062530755997, -0.37299609184265137, 0.558014452457428, 0.5070235729217529, -0.7413203120231628, -0.05029413104057312, -0.9222036004066467, 0.4731733500957489, -0.24339602887630463, -0.3235469162464142, 0.39368003606796265, 0.4600715637207031, 1.2607778310775757, 0.024337170645594597, 0.11499327421188354, 1.2908952236175537, -1.4292725324630737, 1.451468586921692, -0.6458966732025146, 0.27821993827819824, -2.3929593563079834, 1.4652761220932007, -0.7246748208999634, 1.8911124467849731, -2.656303644180298, 0.42245128750801086, -0.7190219163894653, -0.4334598779678345, 0.3810715973377228, -0.3562205135822296, 0.13602398335933685, -0.1799391210079193, -1.1417100429534912, -0.11997366696596146, -0.6954897046089172, 0.5627037286758423, 1.1415021419525146, 1.238669753074646, -1.0971794128417969, -0.2964669466018677, -1.667646050453186, -0.14087145030498505, -0.6708768606185913, 0.32976746559143066, -2.0132148265838623, -0.2145470380783081, -1.9192105531692505, -2.350069999694824, -1.3994086980819702, -0.7614717483520508, 1.126181960105896, 0.0994376689195633, -0.9853846430778503, 1.166534423828125, -0.3777620196342468, -1.8166989088058472, 1.1204323768615723, -2.1449174880981445 ]
https://github.com/huggingface/datasets/issues/5878
Prefetching for IterableDataset
I ended up just switching back to the pytorch dataloader and using it's multiprocessing functionality to handle this :(. I'm just not that familiar with python multiprocessing to get something to work in jupyter (kept having weird behaviors happening with zombies living after the cell finished).
### Feature request Add support for prefetching the next n batches through iterabledataset to reduce batch loading bottleneck in training loop. ### Motivation The primary motivation behind this is to use hardware accelerators alongside a streaming dataset. This is required when you are in a low ram or low disk space setting as well as quick iteration where you're iterating though different accelerator environments (e.x changing ec2 instances quickly to figure out batch/sec for a particular architecture). Currently, using the IterableDataset results in accelerators becoming basically useless due to the massive bottleneck induced by the dataset lazy loading/transform/mapping. I've considered two alternatives: PyTorch dataloader that handles this. However, I'm using jax, and I believe this is a piece of functionality that should live in the stream class. Replicating the "num_workers" part of the PyTorch DataLoader to eagerly load batches and apply the transform so Arrow caching will automatically cache results and make them accessible. ### Your contribution I may or may not have time to do this. Currently, I've written the basic multiprocessor approach to handle the eager DataLoader for my own use case with code that's not integrated to datasets. I'd definitely see this as being the default over the regular Dataset for most people given that they wouldn't have to wait on the datasets while also not worrying about performance.
129
46
Prefetching for IterableDataset ### Feature request Add support for prefetching the next n batches through iterabledataset to reduce batch loading bottleneck in training loop. ### Motivation The primary motivation behind this is to use hardware accelerators alongside a streaming dataset. This is required when you are in a low ram or low disk space setting as well as quick iteration where you're iterating though different accelerator environments (e.x changing ec2 instances quickly to figure out batch/sec for a particular architecture). Currently, using the IterableDataset results in accelerators becoming basically useless due to the massive bottleneck induced by the dataset lazy loading/transform/mapping. I've considered two alternatives: PyTorch dataloader that handles this. However, I'm using jax, and I believe this is a piece of functionality that should live in the stream class. Replicating the "num_workers" part of the PyTorch DataLoader to eagerly load batches and apply the transform so Arrow caching will automatically cache results and make them accessible. ### Your contribution I may or may not have time to do this. Currently, I've written the basic multiprocessor approach to handle the eager DataLoader for my own use case with code that's not integrated to datasets. I'd definitely see this as being the default over the regular Dataset for most people given that they wouldn't have to wait on the datasets while also not worrying about performance. I ended up just switching back to the pytorch dataloader and using it's multiprocessing functionality to handle this :(. I'm just not that familiar with python multiprocessing to get something to work in jupyter (kept having weird behaviors happening with zombies living after the cell finished).
[ -1.220917820930481, -1.014493703842163, -0.8619710206985474, 1.466491937637329, -0.16454321146011353, -1.212528944015503, 0.053945206105709076, -1.1355708837509155, 1.7046648263931274, -0.8726602792739868, 0.3192773163318634, -1.6113022565841675, 0.07884800434112549, -0.49134090542793274, -0.7334573268890381, -0.8985773921012878, -0.39278411865234375, -0.8264099359512329, 1.0675287246704102, 2.589090347290039, 1.0714929103851318, -1.4447240829467773, 2.73132586479187, 0.6850569248199463, -0.15267103910446167, -1.0191887617111206, 0.5161935091018677, 0.03891785815358162, -1.260312795639038, -0.4965284764766693, -0.9307836294174194, -0.07134134322404861, -0.5763815641403198, -0.49326908588409424, 0.03395469859242439, 0.31853097677230835, -0.18733368813991547, -0.4483184814453125, -0.565946638584137, -0.7351452708244324, 0.4116867482662201, -0.39988625049591064, 1.028542399406433, -0.3215203583240509, 1.8398433923721313, -0.4063599705696106, 0.38391807675361633, 0.7103112936019897, 1.3867213726043701, 0.20378480851650238, -0.028848037123680115, 0.22460971772670746, 0.4304158687591553, -0.0868358239531517, 0.41727131605148315, 1.0276870727539062, 0.6016152501106262, 0.511644184589386, 0.7129480838775635, -2.1921491622924805, 1.3398815393447876, -1.047353744506836, 0.3655812740325928, 1.3363733291625977, -1.0056923627853394, 0.38157737255096436, -1.7855486869812012, -0.059265751391649246, 0.5759462118148804, -2.20107102394104, 0.1712847799062729, -1.233192801475525, -0.4809102416038513, 1.0132554769515991, 0.18501166999340057, -1.2932721376419067, 0.1664755791425705, -0.4412330985069275, 0.9891862869262695, 0.4863055348396301, 1.2535933256149292, -1.7597310543060303, -0.011388245970010757, -0.27381905913352966, 0.10126594454050064, -1.3318371772766113, -1.5176011323928833, 0.47999438643455505, 0.6184415221214294, 0.4487672448158264, -0.07397320121526718, 0.9841604828834534, -1.0547404289245605, 0.7703380584716797, -0.8863496780395508, -1.6226369142532349, -1.3859955072402954, -2.3234920501708984, -2.330048084259033, 0.7637318968772888, -0.5328327417373657, -0.5610528588294983, 2.094484567642212, -1.0359970331192017, -1.7688080072402954, 1.2135578393936157, 0.2865280508995056, 0.08750224113464355, 2.3990299701690674, 0.15188783407211304, -0.6871437430381775, 0.393705815076828, -0.7125975489616394, 0.7612305879592896, -0.5189551711082458, 1.4089317321777344, 0.4167012870311737, -0.9102699160575867, 1.6057946681976318, -0.46812814474105835, 0.6007823348045349, -0.6525338888168335, -0.4809390902519226, -0.8710693120956421, 0.46897125244140625, 1.853049635887146, -0.2818114161491394, 1.6498432159423828, -0.4108041524887085, -1.558591365814209, -1.6603442430496216, 0.9419667720794678, 0.48838692903518677, -0.7836430668830872, 0.08615874499082565, -0.29213404655456543, 0.11793113499879837, -0.07357426732778549, 1.058229923248291, 1.2091752290725708, 0.6380557417869568, -0.36009156703948975, -0.9701504111289978, 0.24209970235824585, -0.16759006679058075, -0.6389902234077454, -1.7715388536453247, -0.3421606123447418, 0.12898623943328857, 0.6546037197113037, -1.2111080884933472, 1.627543330192566, 0.9405224919319153, 1.9044982194900513, 1.0137567520141602, -0.3236592411994934, 1.488295316696167, 0.14796704053878784, 1.8254938125610352, -0.4770691990852356, 0.6685331463813782, -0.3296981155872345, -1.0778566598892212, 0.7237817645072937, -0.36450761556625366, -1.9814890623092651, -0.7551698684692383, -0.8238984942436218, -0.222610205411911, -0.6853523850440979, 0.9090167880058289, -0.2695985734462738, -1.3323956727981567, 0.35931622982025146, -0.634691059589386, 0.11465160548686981, -1.1907362937927246, 0.413300096988678, 0.7377052903175354, -0.6206647753715515, 0.029770053923130035, -0.27512386441230774, -1.3753397464752197, -0.40248551964759827, 0.2532491683959961, 1.9323959350585938, -0.8513109087944031, 0.9417951107025146, 0.9989213347434998, -0.6601549386978149, 0.014950417913496494, 0.3366919755935669, -0.3234008848667145, 0.8839559555053711, -1.0502777099609375, -0.4311370849609375, 1.1825435161590576, -0.24706877768039703, -0.5454859733581543, 1.404720664024353, 0.7057520747184753, -1.0099953413009644, -0.2357092648744583, -0.15227369964122772, -0.8755782246589661, -0.03047281503677368, -1.648048996925354, -0.14302608370780945, 0.1818612515926361, -1.5089921951293945, -0.4945071339607239, -0.3156237304210663, 1.2045741081237793, -0.0912030041217804, 1.4715672731399536, -0.395126610994339, -0.24966756999492645, -0.4041244387626648, -0.42447084188461304, 0.19243836402893066, -0.2688920199871063, -0.6224638819694519, 0.21155542135238647, -0.776860237121582, 0.32018131017684937, 1.4261566400527954, 0.4300427734851837, 0.03198070079088211, 0.5453227162361145, 1.0395174026489258, 0.36458516120910645, -0.04267243668437004, -0.8394922614097595, -1.5036473274230957, 2.013786792755127, -1.4320347309112549, 2.010643243789673, 0.8712607622146606, -0.015423761680722237, -1.7953150272369385, -1.8104121685028076, 1.4126391410827637, 1.1749491691589355, 2.332407236099243, 0.5917745232582092, 0.3246332108974457, -0.818245530128479, -0.6469813585281372, 0.34253039956092834, -0.9760151505470276, -0.8048772811889648, 0.05502242222428322, 2.3462047576904297, 1.7422622442245483, -0.4554578363895416, -0.1327156275510788, -1.00596022605896, 1.4056223630905151, -0.10208049416542053, 0.2571365237236023, 1.9930434226989746, -0.26264041662216187, -1.0877306461334229, 1.2041972875595093, -2.330589771270752, 0.13072478771209717, 1.9773783683776855, 0.3215535879135132, 0.07895349711179733, -1.4099739789962769, -0.6345877051353455, -0.29247426986694336, -0.2791406214237213, -1.2438949346542358, 0.6029428243637085, -0.3075677454471588, -0.7730273008346558, -1.558226227760315, 0.172546848654747, -1.2220721244812012, -1.5986273288726807, 0.2762525677680969, 1.8896561861038208, 2.099947690963745, -0.7290422320365906, 1.4672623872756958, -0.19884182512760162, 0.1348496824502945, 1.2238030433654785, 1.1557632684707642, 3.1614584922790527, 1.9517067670822144, -1.2814979553222656, 0.5581709742546082, -0.12911272048950195, -0.5010505318641663, 1.1469228267669678, -1.0564117431640625, 1.3067998886108398, -0.15382127463817596, -1.0944453477859497, -1.1923667192459106, 0.923189103603363, 0.5539476871490479, 0.07660788297653198, -0.4688938558101654, 1.2270359992980957, 0.008922952227294445, 1.299986720085144, 0.5018707513809204, -0.36402830481529236, 0.5984882712364197, -0.4651183784008026, -0.557097852230072, 1.6203129291534424, 0.12415245920419693, -1.4534785747528076, -2.268599271774292, -0.22653049230575562, -0.7968205213546753, -0.0012640277855098248, -0.6001121401786804, -1.008352518081665, 1.5806211233139038, 0.3866320252418518, -1.2701603174209595, -0.38898155093193054, -0.4303237795829773, -0.6866142153739929, 2.590562582015991, -1.4217236042022705, -0.2918899357318878, -1.0132896900177002, -0.5704491138458252, 1.5049896240234375, -1.225982904434204, -0.14897187054157257, -1.035845160484314, -0.6494011878967285, -1.32063627243042, -0.5882071852684021, -0.06359877437353134, -0.8931220173835754, 0.8507859110832214, 0.2690187990665436, -1.125395655632019, -0.2872639298439026, -0.8888915181159973, 0.7765749096870422, -0.04757775738835335, 0.30471527576446533, 1.7821695804595947, 0.45015764236450195, -0.4156661927700043, 0.7296634912490845, 1.1271331310272217, 0.6396532654762268, -0.7215796709060669, 0.14233127236366272, -0.7396550178527832, 0.33940860629081726, -1.3130873441696167, 0.29143837094306946, -2.925374984741211, 0.6883410811424255, -0.04559249430894852, -0.12884505093097687, 0.01746242865920067, -1.2416131496429443, 1.0633267164230347, 2.6899333000183105, -1.12782621383667, 0.5087735652923584, 0.35351356863975525, 1.1981546878814697, -1.674025297164917, 0.38992223143577576, -0.3662011921405792, 2.129755735397339, 0.1808890700340271, 1.1416130065917969, -0.5410290360450745, -2.29484486579895, 0.6043575406074524, -1.2495653629302979, -1.2088348865509033, 0.7280686497688293, -0.8805976510047913, -0.02114950679242611, -1.4447729587554932, -0.16241490840911865, -0.7916477918624878, -1.3075227737426758, 0.7571310997009277, 0.1767396479845047, 0.4186844825744629, -0.5713410377502441, 0.30267244577407837, -2.241487741470337, -1.35176682472229, -0.2545545697212219, -0.9658044576644897, 0.4181654751300812, -0.39100027084350586, 0.7640883922576904, -0.16399437189102173, 0.10406140238046646, 0.27202874422073364, 1.3338513374328613, 3.48276948928833, 0.2957638204097748, 0.45654943585395813, -0.14928627014160156, -0.9346752762794495, 1.4970810413360596, 0.945726752281189, -0.14499640464782715, -0.5484069585800171, -1.1330708265304565, 1.2577571868896484, 1.9996428489685059, 0.9319241642951965, 0.05545072630047798, -0.7544848322868347, -0.6246629953384399, -0.08466333150863647, 0.17369665205478668, 0.49095314741134644, 0.9133511185646057, 0.016191277652978897, 0.15032845735549927, 1.5298463106155396, 1.2874870300292969, -0.42922502756118774, 0.3075281083583832, -0.7528752684593201, -0.4753609895706177, 0.5118788480758667, 0.32402899861335754, 0.004530234262347221, 0.2993907332420349, -0.9297858476638794, -0.24801701307296753, -0.45158785581588745, -1.0147002935409546, -0.6490124464035034, -0.41591569781303406, -0.29236292839050293, 1.6656789779663086, 0.14735840260982513, -0.5080924034118652, -0.0767451673746109, -0.7339656949043274, -0.0020620073191821575, -1.0995433330535889, 0.22296202182769775, -0.05151686072349548, -0.10443063080310822, -0.09282650798559189, 1.8011550903320312, -0.9365203976631165, -2.1684153079986572, 0.25495773553848267, 0.27844497561454773, -0.3454131782054901, 0.20051901042461395, 1.5946341753005981, 0.46410253643989563, 1.49219810962677, 1.3362184762954712, 0.9295680522918701, -0.715935468673706, -1.3510955572128296, 0.6650816798210144, 0.9371353983879089, -1.3597519397735596, 0.7726852893829346, 0.01963573321700096, -0.5579929351806641, 0.7385604977607727, 1.2717242240905762, 0.4578356146812439, -1.9861083030700684, 0.8671270608901978, -0.8882263898849487, 0.7930530905723572, 0.7173401117324829, 0.7238178253173828, 0.1631554216146469, 0.7781816124916077, -1.211326241493225, -1.1830860376358032, -0.8385642766952515, -0.6276064515113831, 2.032323122024536, -0.237119659781456, 0.5798365473747253, -0.06242973729968071, -1.3609963655471802, -0.07493850588798523, 0.6637992858886719, 0.37179261445999146, -0.29187601804733276, 0.8168813586235046, -0.7146783471107483, -1.1432770490646362, -1.5118986368179321, -0.3339892625808716, -0.9788194298744202, -0.8785743713378906, 1.0908600091934204, 0.8317534327507019, 0.20829971134662628, 1.8623414039611816, 0.5781973004341125, 0.27694937586784363, -2.64072847366333, 0.9051274657249451, 0.37240949273109436, -0.04809090867638588, 0.9340357780456543, 0.25381332635879517, 1.044695496559143, 0.044211696833372116, 0.47321319580078125, -2.3572309017181396, 2.2939159870147705, -0.25639453530311584, 0.827201783657074, -0.01561858132481575, -0.17806711792945862, 1.114658236503601, 0.5555156469345093, 0.6565846800804138, -1.1134464740753174, 0.7211230993270874, -0.5805160999298096, 1.2181974649429321, 0.966681182384491, -0.750989556312561, -0.02512499690055847, 1.362974762916565, 0.4805485010147095, -0.5794442892074585, -0.9214063286781311, -0.9398724436759949, 0.9642159342765808, 1.876559853553772, 0.010187880136072636, 0.024348992854356766, 0.7958512306213379, 0.6131221652030945, -1.3398782014846802, 0.09438759088516235, -0.7735166549682617, -0.795754075050354, 1.5768086910247803, 2.0255281925201416, -0.08314434438943863, -0.2579863369464874, -0.6762789487838745, -1.297766089439392, 0.6958346962928772, -0.005195326171815395, 0.18288004398345947, 0.6806550621986389, -0.6952595114707947, 1.069299340248108, 0.9306854009628296, 0.9009439945220947, 0.13906770944595337, 0.24114567041397095, 0.424343079328537, -0.2784387171268463, -1.0621700286865234, -0.23205673694610596, -1.1306289434432983, -2.4058315753936768, 0.46880584955215454, -0.15440477430820465, -1.466174840927124, 0.023156706243753433, -0.9181587100028992, 1.0009045600891113, -0.506417453289032, -1.1319093704223633, -1.641927719116211, 0.1458369344472885, -0.13395044207572937, 0.8859349489212036, -1.5587611198425293, -0.1286061704158783, 1.2141169309616089, 0.9879544377326965, -0.5746920704841614, 1.1030027866363525, 0.20055007934570312, 0.9499298334121704, 0.8063318133354187, -0.4030037522315979, 0.4391019940376282, 0.045998714864254, -1.3048750162124634, 0.4644106924533844, 1.091410517692566, 0.28719139099121094, 1.3999806642532349, -0.6018316149711609, 0.029216010123491287, 0.4025455713272095, -0.4782448709011078, -0.455736368894577, -0.4983709156513214, 0.7655059695243835, 0.015250342898070812, -0.8055834174156189, 0.12172023206949234, -0.18325874209403992, -0.24658648669719696, 0.19673921167850494, -1.530907392501831, -0.247148796916008, -0.408252090215683, -0.5357963442802429, -1.213584065437317, -0.061880577355623245, 1.4369614124298096, -0.812551736831665, -0.22602134943008423, 0.4812353849411011, 0.4996175169944763, 0.4878867566585541, 0.6083924174308777, -0.5656875371932983, -0.3547825217247009, -0.23955073952674866, -0.3078349828720093, 0.23874805867671967, 1.2939903736114502, -0.1597750186920166, -0.9766631126403809, 0.7574414610862732, -0.38100680708885193, 0.01822701096534729, 1.9095145463943481, 0.1263655424118042, -0.788505494594574, 0.345892071723938, -0.761905312538147, 1.8790138959884644, 1.7124301195144653, 1.401854395866394, -0.07440896332263947, -0.9900891184806824, 0.6236289739608765, -0.28434595465660095, -0.36434096097946167, 0.9784393906593323, 0.4742922782897949, -0.13346737623214722, -1.443428874015808, 0.5394576191902161, 1.1926891803741455, -0.8743096590042114, -0.7768716216087341, 0.08790694922208786, -0.8398469686508179, 1.0188757181167603, 0.6609623432159424, 0.45117929577827454, 0.19182847440242767, 1.734856128692627, 0.719060480594635, -0.6007495522499084, 0.5140552520751953, 0.5107699036598206, -0.18083219230175018, -2.0951087474823, -1.076200008392334, 0.34379124641418457, -0.41265252232551575, -1.5480695962905884, 1.3678799867630005, -1.1776450872421265, -0.8743155002593994, 0.5289516448974609, 0.07460981607437134, 1.42654287815094, 0.32473045587539673, 1.607071876525879, 2.1515355110168457, 0.8464579582214355, 0.37071818113327026, 1.2621872425079346, -0.14046740531921387, -0.42855802178382874, 1.9204120635986328, -0.3973703384399414, 0.36797481775283813, 1.1332463026046753, -0.42113515734672546, -1.0332756042480469, -0.790143609046936, -1.1192729473114014, -0.6168315410614014, 1.0518622398376465, 0.08543992042541504, -1.131121277809143, 0.18378527462482452, 1.5786629915237427, 0.12393162399530411, -0.3925357162952423, 0.5553054213523865, 0.5176033973693848, -0.7505285739898682, -0.030493587255477905, -0.9063284397125244, 0.4800943434238434, -0.2117207944393158, -0.3180585205554962, 0.39294740557670593, 0.4495936334133148, 1.2477799654006958, 0.015101459808647633, 0.1204710379242897, 1.277004599571228, -1.4187859296798706, 1.488715648651123, -0.63299959897995, 0.28064513206481934, -2.380711078643799, 1.4765543937683105, -0.7000292539596558, 1.894380807876587, -2.6296768188476562, 0.3785533010959625, -0.765765368938446, -0.40553003549575806, 0.35516291856765747, -0.3569681942462921, 0.10368305444717407, -0.1899873912334442, -1.1283055543899536, -0.11627969145774841, -0.7092592120170593, 0.550693929195404, 1.1534684896469116, 1.2367757558822632, -1.0737452507019043, -0.3237314224243164, -1.6698626279830933, -0.142525777220726, -0.6647718548774719, 0.31897515058517456, -2.0110080242156982, -0.23833106458187103, -1.921378493309021, -2.3409597873687744, -1.3708229064941406, -0.7356744408607483, 1.098475694656372, 0.09093505889177322, -0.9417269825935364, 1.1752114295959473, -0.36456000804901123, -1.8201342821121216, 1.129107117652893, -2.130328893661499 ]
https://github.com/huggingface/datasets/issues/5878
Prefetching for IterableDataset
Ultimately settled on using webdataset to circumvent huggingface datasets entirely. Would definitely switch back if: https://github.com/huggingface/datasets/issues/5337 was resolved.
### Feature request Add support for prefetching the next n batches through iterabledataset to reduce batch loading bottleneck in training loop. ### Motivation The primary motivation behind this is to use hardware accelerators alongside a streaming dataset. This is required when you are in a low ram or low disk space setting as well as quick iteration where you're iterating though different accelerator environments (e.x changing ec2 instances quickly to figure out batch/sec for a particular architecture). Currently, using the IterableDataset results in accelerators becoming basically useless due to the massive bottleneck induced by the dataset lazy loading/transform/mapping. I've considered two alternatives: PyTorch dataloader that handles this. However, I'm using jax, and I believe this is a piece of functionality that should live in the stream class. Replicating the "num_workers" part of the PyTorch DataLoader to eagerly load batches and apply the transform so Arrow caching will automatically cache results and make them accessible. ### Your contribution I may or may not have time to do this. Currently, I've written the basic multiprocessor approach to handle the eager DataLoader for my own use case with code that's not integrated to datasets. I'd definitely see this as being the default over the regular Dataset for most people given that they wouldn't have to wait on the datasets while also not worrying about performance.
129
18
Prefetching for IterableDataset ### Feature request Add support for prefetching the next n batches through iterabledataset to reduce batch loading bottleneck in training loop. ### Motivation The primary motivation behind this is to use hardware accelerators alongside a streaming dataset. This is required when you are in a low ram or low disk space setting as well as quick iteration where you're iterating though different accelerator environments (e.x changing ec2 instances quickly to figure out batch/sec for a particular architecture). Currently, using the IterableDataset results in accelerators becoming basically useless due to the massive bottleneck induced by the dataset lazy loading/transform/mapping. I've considered two alternatives: PyTorch dataloader that handles this. However, I'm using jax, and I believe this is a piece of functionality that should live in the stream class. Replicating the "num_workers" part of the PyTorch DataLoader to eagerly load batches and apply the transform so Arrow caching will automatically cache results and make them accessible. ### Your contribution I may or may not have time to do this. Currently, I've written the basic multiprocessor approach to handle the eager DataLoader for my own use case with code that's not integrated to datasets. I'd definitely see this as being the default over the regular Dataset for most people given that they wouldn't have to wait on the datasets while also not worrying about performance. Ultimately settled on using webdataset to circumvent huggingface datasets entirely. Would definitely switch back if: https://github.com/huggingface/datasets/issues/5337 was resolved.
[ -1.2153074741363525, -1.0027732849121094, -0.8529353141784668, 1.4697754383087158, -0.14214149117469788, -1.2302048206329346, 0.02512100152671337, -1.108525276184082, 1.6868127584457397, -0.8382995128631592, 0.31414374709129333, -1.641073226928711, 0.05381225049495697, -0.5148860216140747, -0.7184773683547974, -0.9516433477401733, -0.38544952869415283, -0.8251222968101501, 1.0237635374069214, 2.576244831085205, 1.0850131511688232, -1.422884464263916, 2.7456562519073486, 0.6673163771629333, -0.14994992315769196, -1.0096708536148071, 0.5271673202514648, 0.05612342804670334, -1.2314269542694092, -0.49067506194114685, -0.9340231418609619, -0.05768600106239319, -0.562913715839386, -0.4825156331062317, 0.058598004281520844, 0.3268626630306244, -0.17309781908988953, -0.4168566167354584, -0.5648071765899658, -0.7401416301727295, 0.41066715121269226, -0.38433757424354553, 0.9961881637573242, -0.34486278891563416, 1.8287328481674194, -0.4140353798866272, 0.37285834550857544, 0.67952561378479, 1.3734453916549683, 0.2288089096546173, 0.02878451906144619, 0.200431227684021, 0.4274235665798187, -0.08677884936332703, 0.4119293987751007, 1.041751503944397, 0.6254038214683533, 0.5116533041000366, 0.7087321281433105, -2.1887428760528564, 1.3259530067443848, -1.0076837539672852, 0.33533766865730286, 1.345123052597046, -0.9867780208587646, 0.39225879311561584, -1.7968077659606934, -0.07221806049346924, 0.5766990184783936, -2.2406344413757324, 0.14586611092090607, -1.2445787191390991, -0.4680081903934479, 1.0147463083267212, 0.17878851294517517, -1.3024265766143799, 0.2078791707754135, -0.46286651492118835, 1.0011802911758423, 0.5337222814559937, 1.2388547658920288, -1.7319899797439575, 0.01980683021247387, -0.24165162444114685, 0.0882970318198204, -1.3448530435562134, -1.5049538612365723, 0.5082550644874573, 0.6270496845245361, 0.4789344370365143, -0.0984785258769989, 0.9726340770721436, -1.028544306755066, 0.7923634052276611, -0.8910210132598877, -1.660186529159546, -1.407213568687439, -2.3556900024414062, -2.3878653049468994, 0.8078894019126892, -0.5194792151451111, -0.5287071466445923, 2.054095983505249, -1.027177095413208, -1.7688583135604858, 1.1654267311096191, 0.28799769282341003, 0.09121932089328766, 2.3929836750030518, 0.18766415119171143, -0.6993115544319153, 0.3909849524497986, -0.7272896766662598, 0.7342299818992615, -0.49246054887771606, 1.4207689762115479, 0.4734530448913574, -0.9257254600524902, 1.6245062351226807, -0.5046579837799072, 0.5590938329696655, -0.6776620149612427, -0.5060794949531555, -0.8611811995506287, 0.4480842053890228, 1.8938239812850952, -0.2970409691333771, 1.6296744346618652, -0.4119550883769989, -1.554880976676941, -1.6237225532531738, 0.9123468995094299, 0.4651731848716736, -0.7975257039070129, 0.06812848150730133, -0.31371358036994934, 0.12060921639204025, -0.05237962305545807, 1.0494489669799805, 1.1856764554977417, 0.6491650342941284, -0.3826737403869629, -0.9624932408332825, 0.2588905096054077, -0.12019886821508408, -0.6408792734146118, -1.788069725036621, -0.3399565517902374, 0.18260401487350464, 0.6559812426567078, -1.2228788137435913, 1.6117079257965088, 0.9351924657821655, 1.9111969470977783, 1.0264371633529663, -0.35033509135246277, 1.4971474409103394, 0.09179939329624176, 1.8384523391723633, -0.4824478030204773, 0.6537138819694519, -0.31939589977264404, -1.1087846755981445, 0.6939102411270142, -0.33876898884773254, -1.9925124645233154, -0.7967440485954285, -0.8382384777069092, -0.20654989778995514, -0.7220787405967712, 0.9123615622520447, -0.2830609381198883, -1.353875994682312, 0.3012033700942993, -0.6243371367454529, 0.1035623699426651, -1.2074882984161377, 0.37405258417129517, 0.759376049041748, -0.6660256385803223, -0.012045387178659439, -0.27195343375205994, -1.3607770204544067, -0.44097617268562317, 0.27018481492996216, 1.9367141723632812, -0.8147438168525696, 0.9307907819747925, 1.0034009218215942, -0.6650025248527527, 0.05093470960855484, 0.3146420121192932, -0.29518479108810425, 0.8806049823760986, -1.0217196941375732, -0.4222423732280731, 1.2038302421569824, -0.23216688632965088, -0.5658694505691528, 1.4226269721984863, 0.7457906007766724, -1.037522554397583, -0.23452652990818024, -0.1571854054927826, -0.8359116315841675, -0.04365383833646774, -1.6150370836257935, -0.1494336724281311, 0.1817057728767395, -1.4747246503829956, -0.4955567419528961, -0.2972352206707001, 1.2396255731582642, -0.11525358259677887, 1.4359959363937378, -0.3634744882583618, -0.2625539004802704, -0.4031568765640259, -0.40811753273010254, 0.20897209644317627, -0.2730571925640106, -0.6362683176994324, 0.2394198328256607, -0.8085853457450867, 0.30382126569747925, 1.4180184602737427, 0.4214039742946625, 0.040548861026763916, 0.5556567311286926, 1.0498106479644775, 0.3488492965698242, -0.05862598866224289, -0.8398787379264832, -1.5003188848495483, 2.0366039276123047, -1.4217687845230103, 1.9982901811599731, 0.8337949514389038, -0.05230715125799179, -1.7934563159942627, -1.8206517696380615, 1.3905439376831055, 1.15776789188385, 2.3753459453582764, 0.5772624015808105, 0.3324180543422699, -0.8251466155052185, -0.6407907009124756, 0.35816603899002075, -0.9741532206535339, -0.7758684754371643, 0.06690260022878647, 2.3385446071624756, 1.7809102535247803, -0.49645817279815674, -0.1487041860818863, -1.0257575511932373, 1.399758219718933, -0.11744228005409241, 0.242639422416687, 1.9929560422897339, -0.27801042795181274, -1.0728342533111572, 1.2296003103256226, -2.3365776538848877, 0.12269604951143265, 1.9946764707565308, 0.32855942845344543, 0.0700346827507019, -1.4385465383529663, -0.6601094007492065, -0.3033911883831024, -0.31533384323120117, -1.2304176092147827, 0.5880401730537415, -0.3129073679447174, -0.7865608334541321, -1.5594189167022705, 0.13195908069610596, -1.2077831029891968, -1.6307543516159058, 0.27972614765167236, 1.866525411605835, 2.056041955947876, -0.7203498482704163, 1.4708220958709717, -0.21924017369747162, 0.130402609705925, 1.2580349445343018, 1.179721474647522, 3.1689376831054688, 1.9185594320297241, -1.2695790529251099, 0.6224995255470276, -0.15225662291049957, -0.49635934829711914, 1.1295387744903564, -1.032333493232727, 1.294612169265747, -0.17568320035934448, -1.1229770183563232, -1.205233097076416, 0.9411766529083252, 0.5570610761642456, 0.08525610715150833, -0.5126595497131348, 1.2170112133026123, 0.032113365828990936, 1.3280482292175293, 0.482388973236084, -0.39036843180656433, 0.5972146987915039, -0.4551013112068176, -0.5433369874954224, 1.6049084663391113, 0.16667601466178894, -1.481077790260315, -2.2815678119659424, -0.21143664419651031, -0.8047376275062561, -0.07677523046731949, -0.5847428441047668, -1.021987795829773, 1.5824834108352661, 0.406080961227417, -1.2796449661254883, -0.3676329553127289, -0.41072821617126465, -0.6847237348556519, 2.6091456413269043, -1.410951018333435, -0.2566661238670349, -0.9994244575500488, -0.5590758323669434, 1.517464518547058, -1.2019060850143433, -0.12000985443592072, -1.0312644243240356, -0.6781262755393982, -1.3444368839263916, -0.5967162847518921, -0.04982074350118637, -0.9129858016967773, 0.830711305141449, 0.2415013462305069, -1.1308083534240723, -0.2762914299964905, -0.8840741515159607, 0.8084251284599304, -0.04150576889514923, 0.2929231524467468, 1.7935874462127686, 0.45905861258506775, -0.4119289219379425, 0.708385169506073, 1.1144182682037354, 0.6384263634681702, -0.7101428508758545, 0.1651952564716339, -0.7257053852081299, 0.350381463766098, -1.322130799293518, 0.2603614032268524, -2.945986747741699, 0.6954647302627563, -0.0836908370256424, -0.1222863644361496, 0.0064008599147200584, -1.2025325298309326, 1.0871578454971313, 2.6848857402801514, -1.1615382432937622, 0.5161147713661194, 0.38948121666908264, 1.1737393140792847, -1.6360504627227783, 0.3922039270401001, -0.3643152117729187, 2.121480703353882, 0.1667887419462204, 1.1481267213821411, -0.5557706356048584, -2.2101218700408936, 0.604515790939331, -1.247739553451538, -1.209755778312683, 0.7525168657302856, -0.8841443061828613, 0.02626766823232174, -1.4385837316513062, -0.12557488679885864, -0.7812647223472595, -1.3419703245162964, 0.7753906846046448, 0.17754751443862915, 0.4099888801574707, -0.5685650110244751, 0.3002331852912903, -2.238675832748413, -1.3645524978637695, -0.24466541409492493, -1.00075101852417, 0.4161008894443512, -0.3936792016029358, 0.7433493733406067, -0.1247883215546608, 0.07634198665618896, 0.29696202278137207, 1.3422805070877075, 3.4638254642486572, 0.268293172121048, 0.4360480010509491, -0.10648161172866821, -0.9613734483718872, 1.5039312839508057, 0.9368054866790771, -0.1410590559244156, -0.5159353613853455, -1.096603274345398, 1.2806665897369385, 1.9788414239883423, 0.9763970375061035, 0.05908289551734924, -0.7581800818443298, -0.6446017622947693, -0.042018212378025055, 0.17886322736740112, 0.4989728033542633, 0.9353949427604675, -0.05431097745895386, 0.1317431926727295, 1.521078109741211, 1.2621673345565796, -0.43492215871810913, 0.32467493414878845, -0.7654138207435608, -0.44571223855018616, 0.5238006114959717, 0.313578337430954, 0.030180549249053, 0.3437516689300537, -0.9863558411598206, -0.2448258399963379, -0.4093661308288574, -0.9864981174468994, -0.6476390361785889, -0.4681061804294586, -0.32102611660957336, 1.6379345655441284, 0.1289297193288803, -0.4770945906639099, -0.04218705743551254, -0.7608938217163086, -0.03979317098855972, -1.0633618831634521, 0.23742790520191193, -0.02306264638900757, -0.08532719314098358, -0.09299790114164352, 1.7937448024749756, -0.9663605690002441, -2.1880831718444824, 0.2624175548553467, 0.28075793385505676, -0.3432532250881195, 0.18835584819316864, 1.598368525505066, 0.476990282535553, 1.4633398056030273, 1.3046233654022217, 0.9307532906532288, -0.7082207202911377, -1.341050624847412, 0.6857871413230896, 0.9512599110603333, -1.3552066087722778, 0.835466742515564, -0.009454184211790562, -0.5497531890869141, 0.7090615630149841, 1.2538474798202515, 0.40403077006340027, -1.9389541149139404, 0.8414349555969238, -0.8626887202262878, 0.7646614909172058, 0.705112099647522, 0.7532885670661926, 0.13293839991092682, 0.7883575558662415, -1.2164355516433716, -1.1875923871994019, -0.8322871923446655, -0.6207838654518127, 2.018662691116333, -0.17124125361442566, 0.5517399311065674, -0.10040159523487091, -1.3502768278121948, -0.06871748715639114, 0.6794062256813049, 0.3778703212738037, -0.3231019675731659, 0.8576634526252747, -0.7050607204437256, -1.1253987550735474, -1.4990856647491455, -0.38720110058784485, -0.9629070162773132, -0.8911842107772827, 1.0729680061340332, 0.8236958384513855, 0.19317202270030975, 1.8846731185913086, 0.546208381652832, 0.27611255645751953, -2.6693406105041504, 0.9117377996444702, 0.35309773683547974, -0.024961240589618683, 0.9428479075431824, 0.2413078248500824, 1.051902174949646, 0.04590752720832825, 0.5049325823783875, -2.36588716506958, 2.242300510406494, -0.2517569661140442, 0.7798746228218079, -0.007903562858700752, -0.1745045781135559, 1.0977445840835571, 0.565112292766571, 0.6670761108398438, -1.1209571361541748, 0.7405931353569031, -0.567004919052124, 1.177149772644043, 0.9689141511917114, -0.7638444304466248, -0.019910989329218864, 1.348530888557434, 0.5052112936973572, -0.5137747526168823, -0.9188294410705566, -0.8937126398086548, 0.9772975444793701, 1.8533782958984375, 0.03507019579410553, 0.008282613009214401, 0.8301581144332886, 0.6003655791282654, -1.3499424457550049, 0.06407807022333145, -0.7777175307273865, -0.7662888169288635, 1.5924924612045288, 2.037789821624756, -0.09066645801067352, -0.2500995397567749, -0.7105481624603271, -1.249750018119812, 0.7081259489059448, -0.024557650089263916, 0.1872931271791458, 0.703338623046875, -0.6860381364822388, 1.0925894975662231, 0.8916665315628052, 0.9031100273132324, 0.15264718234539032, 0.2508736550807953, 0.4186986982822418, -0.2579774558544159, -1.075849175453186, -0.2345798760652542, -1.1479469537734985, -2.4224467277526855, 0.46637460589408875, -0.15928767621517181, -1.433924913406372, 0.04862213134765625, -0.9423930644989014, 0.9860460758209229, -0.5124883055686951, -1.099440097808838, -1.5892479419708252, 0.15341557562351227, -0.12733344733715057, 0.8908906579017639, -1.5718584060668945, -0.1059291735291481, 1.2647761106491089, 0.980683445930481, -0.5523205399513245, 1.054760217666626, 0.23235580325126648, 0.9732041954994202, 0.7931478023529053, -0.41215780377388, 0.4439491033554077, 0.03342922776937485, -1.3361090421676636, 0.418710321187973, 1.1162612438201904, 0.269706666469574, 1.3977818489074707, -0.6002138257026672, 0.04733351618051529, 0.43678855895996094, -0.5259919166564941, -0.458803653717041, -0.5166584849357605, 0.7629434466362, 0.036272622644901276, -0.8510021567344666, 0.11201273649930954, -0.18785060942173004, -0.23785994946956635, 0.21059511601924896, -1.5275919437408447, -0.2836493253707886, -0.39981651306152344, -0.5222030282020569, -1.2065849304199219, -0.047263287007808685, 1.405104398727417, -0.8538687825202942, -0.2226162850856781, 0.4976818263530731, 0.4770217537879944, 0.5313590168952942, 0.6164975762367249, -0.5738524794578552, -0.3231850862503052, -0.2819593846797943, -0.310853511095047, 0.22683076560497284, 1.2926515340805054, -0.1583542376756668, -1.0000298023223877, 0.7841641902923584, -0.394949346780777, 0.04551961272954941, 1.9648356437683105, 0.09175070375204086, -0.8085757493972778, 0.3381737768650055, -0.7537432909011841, 1.8427555561065674, 1.6837605237960815, 1.3876986503601074, -0.09182743728160858, -0.9441462755203247, 0.5997277498245239, -0.27392351627349854, -0.3516841530799866, 0.9730895757675171, 0.48287898302078247, -0.1442752629518509, -1.4602973461151123, 0.529230535030365, 1.204208254814148, -0.8965412378311157, -0.7686331272125244, 0.07340855896472931, -0.8353614807128906, 1.0627191066741943, 0.7256194949150085, 0.43966010212898254, 0.20177888870239258, 1.727582573890686, 0.7123366594314575, -0.5643158555030823, 0.47598913311958313, 0.49244967103004456, -0.17816083133220673, -2.0872974395751953, -1.0583393573760986, 0.32606032490730286, -0.40987735986709595, -1.5315310955047607, 1.3308744430541992, -1.171678900718689, -0.8869374394416809, 0.5107657313346863, 0.08364716172218323, 1.4423792362213135, 0.3285922706127167, 1.6216408014297485, 2.159510612487793, 0.8493657112121582, 0.3235503137111664, 1.2469422817230225, -0.12418700754642487, -0.39784181118011475, 1.913035273551941, -0.37954485416412354, 0.43522948026657104, 1.09092378616333, -0.4082505702972412, -1.0301870107650757, -0.7657449245452881, -1.148341417312622, -0.6045466065406799, 1.0585061311721802, 0.09886670857667923, -1.132307529449463, 0.18522736430168152, 1.5815057754516602, 0.10178980976343155, -0.3474544584751129, 0.5975567698478699, 0.5168232917785645, -0.7372395992279053, -0.03196807578206062, -0.9081446528434753, 0.4586065113544464, -0.2142656296491623, -0.32475534081459045, 0.36658552289009094, 0.4712294638156891, 1.2692923545837402, 0.02171427384018898, 0.1511630117893219, 1.2877483367919922, -1.393509030342102, 1.4874879121780396, -0.6439586877822876, 0.2722042202949524, -2.4049956798553467, 1.4555059671401978, -0.7270228862762451, 1.8841187953948975, -2.641024589538574, 0.39852723479270935, -0.6963617205619812, -0.42969948053359985, 0.36081966757774353, -0.3781403601169586, 0.13822659850120544, -0.16415439546108246, -1.1130950450897217, -0.11743306368589401, -0.7304575443267822, 0.5567251443862915, 1.1554549932479858, 1.2506301403045654, -1.0836488008499146, -0.29174545407295227, -1.7009326219558716, -0.16299237310886383, -0.7107964158058167, 0.3344607949256897, -1.9781951904296875, -0.19790270924568176, -1.911021113395691, -2.3701062202453613, -1.3715912103652954, -0.7723730206489563, 1.0966607332229614, 0.120265893638134, -0.9610487818717957, 1.1678012609481812, -0.3571154773235321, -1.8150771856307983, 1.1024571657180786, -2.159867763519287 ]
https://github.com/huggingface/datasets/issues/5878
Prefetching for IterableDataset
Hi! You can combine `datasets` with `torchdata` to prefetch `IterableDataset`'s samples: ```python from datasets import load_dataset from torchdata.datapipes.iter import IterableWrapper, HuggingFaceHubReader from torch.utils.data import DataLoader ds = load_dataset("sst", split="train", streaming=True) # processing... dp = IterableWrapper(ds) dp = dp.prefetch(100) dl = DataLoader(dp, batch_size=8) i = iter(dl) next(i) ```
### Feature request Add support for prefetching the next n batches through iterabledataset to reduce batch loading bottleneck in training loop. ### Motivation The primary motivation behind this is to use hardware accelerators alongside a streaming dataset. This is required when you are in a low ram or low disk space setting as well as quick iteration where you're iterating though different accelerator environments (e.x changing ec2 instances quickly to figure out batch/sec for a particular architecture). Currently, using the IterableDataset results in accelerators becoming basically useless due to the massive bottleneck induced by the dataset lazy loading/transform/mapping. I've considered two alternatives: PyTorch dataloader that handles this. However, I'm using jax, and I believe this is a piece of functionality that should live in the stream class. Replicating the "num_workers" part of the PyTorch DataLoader to eagerly load batches and apply the transform so Arrow caching will automatically cache results and make them accessible. ### Your contribution I may or may not have time to do this. Currently, I've written the basic multiprocessor approach to handle the eager DataLoader for my own use case with code that's not integrated to datasets. I'd definitely see this as being the default over the regular Dataset for most people given that they wouldn't have to wait on the datasets while also not worrying about performance.
129
47
Prefetching for IterableDataset ### Feature request Add support for prefetching the next n batches through iterabledataset to reduce batch loading bottleneck in training loop. ### Motivation The primary motivation behind this is to use hardware accelerators alongside a streaming dataset. This is required when you are in a low ram or low disk space setting as well as quick iteration where you're iterating though different accelerator environments (e.x changing ec2 instances quickly to figure out batch/sec for a particular architecture). Currently, using the IterableDataset results in accelerators becoming basically useless due to the massive bottleneck induced by the dataset lazy loading/transform/mapping. I've considered two alternatives: PyTorch dataloader that handles this. However, I'm using jax, and I believe this is a piece of functionality that should live in the stream class. Replicating the "num_workers" part of the PyTorch DataLoader to eagerly load batches and apply the transform so Arrow caching will automatically cache results and make them accessible. ### Your contribution I may or may not have time to do this. Currently, I've written the basic multiprocessor approach to handle the eager DataLoader for my own use case with code that's not integrated to datasets. I'd definitely see this as being the default over the regular Dataset for most people given that they wouldn't have to wait on the datasets while also not worrying about performance. Hi! You can combine `datasets` with `torchdata` to prefetch `IterableDataset`'s samples: ```python from datasets import load_dataset from torchdata.datapipes.iter import IterableWrapper, HuggingFaceHubReader from torch.utils.data import DataLoader ds = load_dataset("sst", split="train", streaming=True) # processing... dp = IterableWrapper(ds) dp = dp.prefetch(100) dl = DataLoader(dp, batch_size=8) i = iter(dl) next(i) ```
[ -1.236557126045227, -1.0223301649093628, -0.8090670108795166, 1.4817537069320679, -0.21855345368385315, -1.2067079544067383, 0.1435498297214508, -1.1029400825500488, 1.7522799968719482, -0.8647782802581787, 0.3381252884864807, -1.6300641298294067, 0.05214397609233856, -0.4805092513561249, -0.7356054186820984, -0.9164462685585022, -0.40687885880470276, -0.799547553062439, 1.0437841415405273, 2.5533344745635986, 1.1423633098602295, -1.3942488431930542, 2.7129993438720703, 0.659869909286499, -0.1585376113653183, -1.0208286046981812, 0.4792148172855377, 0.03229294717311859, -1.298301100730896, -0.4861779808998108, -1.0100500583648682, -0.06146550923585892, -0.5721823573112488, -0.5120835304260254, 0.07225491106510162, 0.32638296484947205, -0.21606944501399994, -0.4933563768863678, -0.5415452718734741, -0.7078951597213745, 0.44149622321128845, -0.40226706862449646, 1.0455726385116577, -0.3315306305885315, 1.8426026105880737, -0.4347064197063446, 0.4242282807826996, 0.7204304337501526, 1.3271162509918213, 0.2568444013595581, -0.03949965536594391, 0.24371303617954254, 0.42738738656044006, -0.03577972203493118, 0.4710099697113037, 1.0923457145690918, 0.6312256455421448, 0.5218508839607239, 0.7396986484527588, -2.2175142765045166, 1.283174991607666, -1.047753930091858, 0.38248544931411743, 1.30007803440094, -1.0127867460250854, 0.3461393117904663, -1.8137485980987549, -0.08235930651426315, 0.5952617526054382, -2.1983184814453125, 0.2264348268508911, -1.308105707168579, -0.4959120750427246, 1.0936017036437988, 0.21252168715000153, -1.2511649131774902, 0.1526951640844345, -0.41543394327163696, 0.9794132709503174, 0.4712294936180115, 1.2019742727279663, -1.7496006488800049, -0.005844065919518471, -0.29744184017181396, 0.14798302948474884, -1.29051673412323, -1.5168662071228027, 0.5526708960533142, 0.6641750335693359, 0.47698697447776794, -0.15401826798915863, 1.103877305984497, -1.025658130645752, 0.7621163725852966, -0.9309176206588745, -1.707561731338501, -1.4472765922546387, -2.26491641998291, -2.3530943393707275, 0.742003858089447, -0.47384679317474365, -0.5268954038619995, 2.101351737976074, -1.0366997718811035, -1.7451999187469482, 1.1438406705856323, 0.22057068347930908, 0.0555528923869133, 2.34022855758667, 0.1905823051929474, -0.6897507905960083, 0.4159030318260193, -0.7273311018943787, 0.747100830078125, -0.41514578461647034, 1.4013221263885498, 0.4059910178184509, -0.9653005003929138, 1.6214373111724854, -0.4195127487182617, 0.5538166761398315, -0.6256413459777832, -0.49679699540138245, -0.81015545129776, 0.3722052276134491, 1.9332013130187988, -0.2920782268047333, 1.5775704383850098, -0.38938507437705994, -1.5934847593307495, -1.6630008220672607, 0.8861407041549683, 0.4609004259109497, -0.7199835777282715, 0.04254402220249176, -0.3017093539237976, 0.14649739861488342, -0.020978853106498718, 1.093064308166504, 1.1905443668365479, 0.6912341117858887, -0.34996554255485535, -0.9438924789428711, 0.23462247848510742, -0.1052107959985733, -0.6720004081726074, -1.719234824180603, -0.37823963165283203, 0.08303959667682648, 0.691977858543396, -1.1312953233718872, 1.6694145202636719, 0.915778398513794, 1.8767075538635254, 1.019208550453186, -0.29662764072418213, 1.5073528289794922, 0.14574097096920013, 1.8297183513641357, -0.45849210023880005, 0.6255136132240295, -0.3792136609554291, -1.1184982061386108, 0.717045783996582, -0.35790079832077026, -1.9969314336776733, -0.7388787865638733, -0.7863925695419312, -0.19792933762073517, -0.7277661561965942, 0.9018882513046265, -0.27976736426353455, -1.419999599456787, 0.3046010732650757, -0.6438179612159729, 0.11244429647922516, -1.1863315105438232, 0.4148975610733032, 0.7190704941749573, -0.6832528114318848, 0.06839095056056976, -0.29277709126472473, -1.3005626201629639, -0.4346611797809601, 0.23956331610679626, 1.9434478282928467, -0.7946887612342834, 0.9416651725769043, 1.0284653902053833, -0.7021661400794983, 0.014022748917341232, 0.2962263524532318, -0.2781580984592438, 0.8373414278030396, -1.0683834552764893, -0.40673592686653137, 1.2350517511367798, -0.23577120900154114, -0.5312305688858032, 1.4101721048355103, 0.6858646273612976, -1.0241366624832153, -0.22311827540397644, -0.11155220866203308, -0.8309289813041687, -0.00020682811737060547, -1.618415355682373, -0.09057780355215073, 0.3114524185657501, -1.5095916986465454, -0.5134859085083008, -0.2816663980484009, 1.2111202478408813, -0.10062211751937866, 1.439972162246704, -0.32142555713653564, -0.23416711390018463, -0.37610405683517456, -0.34337127208709717, 0.17128121852874756, -0.2450481355190277, -0.6414303779602051, 0.21511179208755493, -0.783358633518219, 0.3216027617454529, 1.4665489196777344, 0.3394758999347687, -0.01070032361894846, 0.5458159446716309, 1.0703614950180054, 0.4103180170059204, -0.05515929311513901, -0.8120036125183105, -1.5163676738739014, 1.9783189296722412, -1.4243876934051514, 1.9600690603256226, 0.798437237739563, -0.0303785540163517, -1.7950695753097534, -1.8253055810928345, 1.405226230621338, 1.152753472328186, 2.4231109619140625, 0.5951356291770935, 0.3293192684650421, -0.8001636862754822, -0.5970973372459412, 0.37861067056655884, -0.968806803226471, -0.8006661534309387, 0.13561439514160156, 2.349067449569702, 1.7777386903762817, -0.4642822742462158, -0.14464841783046722, -1.0169380903244019, 1.3868889808654785, -0.1447567492723465, 0.25953352451324463, 1.9686940908432007, -0.2795892059803009, -1.1006569862365723, 1.266040563583374, -2.3197555541992188, 0.07905810326337814, 2.0004804134368896, 0.31501126289367676, 0.05091649293899536, -1.4521368741989136, -0.6078206300735474, -0.27738240361213684, -0.332643061876297, -1.2671585083007812, 0.5619780421257019, -0.29918625950813293, -0.7466740012168884, -1.5411713123321533, 0.17330807447433472, -1.186827301979065, -1.6131962537765503, 0.18347781896591187, 1.894538402557373, 2.0205745697021484, -0.7191908955574036, 1.49308443069458, -0.2942504286766052, 0.18388821184635162, 1.2210670709609985, 1.186009407043457, 3.1656417846679688, 1.9580250978469849, -1.2905701398849487, 0.647950291633606, -0.14021331071853638, -0.5003211498260498, 1.169797658920288, -1.1251404285430908, 1.2917802333831787, -0.13783064484596252, -1.1455307006835938, -1.168494701385498, 0.892547070980072, 0.5480468273162842, 0.05144941061735153, -0.46566441655158997, 1.2150496244430542, 0.038197897374629974, 1.2766791582107544, 0.49346789717674255, -0.40467268228530884, 0.6568797826766968, -0.45468392968177795, -0.47813600301742554, 1.569644570350647, 0.18281973898410797, -1.3891528844833374, -2.255204200744629, -0.17381244897842407, -0.8443431854248047, 0.012117138132452965, -0.6148369908332825, -0.9760960340499878, 1.6358181238174438, 0.3424772620201111, -1.2805707454681396, -0.3095579147338867, -0.3934660255908966, -0.6395081877708435, 2.6181445121765137, -1.3536605834960938, -0.2828211486339569, -1.027554988861084, -0.6355488896369934, 1.5410884618759155, -1.1941990852355957, -0.17650189995765686, -1.0444467067718506, -0.6080175638198853, -1.315360426902771, -0.6345083117485046, 0.02782520093023777, -0.8819631338119507, 0.8867726922035217, 0.2465699464082718, -1.180168628692627, -0.32101356983184814, -0.8868967890739441, 0.8347898125648499, -0.07562928646802902, 0.2307584583759308, 1.8278560638427734, 0.3853732645511627, -0.44299808144569397, 0.6905177235603333, 1.1156368255615234, 0.6559417843818665, -0.6863979697227478, 0.23250865936279297, -0.7832619547843933, 0.32530659437179565, -1.3162063360214233, 0.2797607183456421, -2.9177606105804443, 0.6538811922073364, -0.051327407360076904, -0.1161053478717804, 0.03515968471765518, -1.2491297721862793, 1.018105149269104, 2.668221950531006, -1.1394962072372437, 0.5006254315376282, 0.33798083662986755, 1.2004830837249756, -1.6256659030914307, 0.3364364802837372, -0.40864434838294983, 2.0816490650177, 0.23362380266189575, 1.1926060914993286, -0.5155094265937805, -2.245645523071289, 0.6251767873764038, -1.2533799409866333, -1.2289525270462036, 0.7706046104431152, -0.8945493102073669, 0.010007644072175026, -1.4019619226455688, -0.20571208000183105, -0.7871003150939941, -1.262337327003479, 0.7769786715507507, 0.20076966285705566, 0.4385538399219513, -0.5783392786979675, 0.33048999309539795, -2.226562023162842, -1.325918436050415, -0.23621083796024323, -1.0267884731292725, 0.4029681384563446, -0.39024752378463745, 0.7216301560401917, -0.17401474714279175, 0.03307776153087616, 0.34910422563552856, 1.388084888458252, 3.4492013454437256, 0.2345045506954193, 0.37905970215797424, -0.14658640325069427, -0.9508993625640869, 1.5100188255310059, 0.9198454022407532, -0.13931229710578918, -0.5456111431121826, -1.1807208061218262, 1.193527340888977, 1.951061725616455, 0.937548041343689, 0.06802570819854736, -0.7622796297073364, -0.6903548836708069, -0.07602763921022415, 0.1585843563079834, 0.4572840929031372, 0.9091159701347351, 0.061076946556568146, 0.14287787675857544, 1.4923434257507324, 1.2030385732650757, -0.4016067385673523, 0.3069123923778534, -0.7664390802383423, -0.48760613799095154, 0.5748432278633118, 0.28270718455314636, 0.011510223150253296, 0.25832533836364746, -1.0043189525604248, -0.2192939817905426, -0.42981642484664917, -0.9884473085403442, -0.6499796509742737, -0.4280852675437927, -0.2791660726070404, 1.6389204263687134, 0.0701116994023323, -0.5005515217781067, -0.08743007481098175, -0.7455929517745972, -0.025763744488358498, -1.0672610998153687, 0.22841790318489075, -0.0646786168217659, -0.1104736402630806, -0.10173197835683823, 1.7806851863861084, -0.8886235952377319, -2.1208338737487793, 0.2782176733016968, 0.2203913927078247, -0.27824336290359497, 0.24391283094882965, 1.593822956085205, 0.5288512706756592, 1.4334079027175903, 1.365546464920044, 0.948097288608551, -0.6386635899543762, -1.3756213188171387, 0.6950165033340454, 0.901400625705719, -1.367328405380249, 0.8167764544487, -0.012297064997255802, -0.5275316834449768, 0.6751191020011902, 1.1909030675888062, 0.4458593726158142, -1.9836361408233643, 0.8220709562301636, -0.899733304977417, 0.7368123531341553, 0.7473214864730835, 0.7661467790603638, 0.13090628385543823, 0.8006353974342346, -1.1545366048812866, -1.1854430437088013, -0.7535916566848755, -0.6704543232917786, 2.0292489528656006, -0.2024870663881302, 0.605384111404419, -0.14872004091739655, -1.375927209854126, -0.07352404296398163, 0.6589570045471191, 0.3507610261440277, -0.41512155532836914, 0.8262528777122498, -0.7054951190948486, -1.0941451787948608, -1.4501516819000244, -0.4295857846736908, -1.047383189201355, -0.8949137926101685, 1.0768102407455444, 0.7888762950897217, 0.24662832915782928, 1.872726321220398, 0.592779278755188, 0.30040138959884644, -2.6754543781280518, 0.905071496963501, 0.32933247089385986, -0.02814476564526558, 0.9114163517951965, 0.28183063864707947, 1.044094204902649, 0.01605740375816822, 0.505466639995575, -2.3970415592193604, 2.2973382472991943, -0.21912473440170288, 0.7910354733467102, -0.022373579442501068, -0.1850637048482895, 1.084399938583374, 0.5632510781288147, 0.6206494569778442, -1.0630569458007812, 0.695056140422821, -0.6099163293838501, 1.2054115533828735, 0.9217202067375183, -0.7826829552650452, -0.029466750100255013, 1.3813459873199463, 0.49096450209617615, -0.5271794199943542, -0.9060559868812561, -0.9590029716491699, 0.9946894645690918, 1.8476338386535645, 0.02906578965485096, -0.001560969278216362, 0.8207431435585022, 0.6354627013206482, -1.301653265953064, 0.041845329105854034, -0.7561817765235901, -0.7848294973373413, 1.591695785522461, 2.002417802810669, -0.14099831879138947, -0.27745142579078674, -0.7058124542236328, -1.2311464548110962, 0.7394418716430664, 0.022827597334980965, 0.1509837955236435, 0.7369377017021179, -0.6880877017974854, 1.088037371635437, 0.9538698196411133, 0.9158805012702942, 0.20322276651859283, 0.2805047929286957, 0.42651575803756714, -0.2945229113101959, -1.1309940814971924, -0.20946194231510162, -1.0972845554351807, -2.4519991874694824, 0.498473197221756, -0.12921851873397827, -1.431918740272522, 0.07042030245065689, -0.9819245338439941, 0.9804398417472839, -0.5381308794021606, -1.128116250038147, -1.626899242401123, 0.12564617395401, -0.0813785195350647, 0.9348734617233276, -1.6051236391067505, -0.09718140214681625, 1.2210018634796143, 1.0093715190887451, -0.6019065380096436, 1.0199363231658936, 0.21377599239349365, 0.982012152671814, 0.8659040927886963, -0.37995609641075134, 0.4854312837123871, 0.048099830746650696, -1.328079104423523, 0.41363438963890076, 1.112362027168274, 0.2675154507160187, 1.4322575330734253, -0.6141791343688965, -0.0016288915649056435, 0.4216441214084625, -0.5165792107582092, -0.4312828481197357, -0.5606617331504822, 0.7191598415374756, 0.003200193867087364, -0.8494222164154053, 0.04864932596683502, -0.14028728008270264, -0.22530436515808105, 0.17834308743476868, -1.5173734426498413, -0.20239534974098206, -0.35905128717422485, -0.5620532631874084, -1.2160542011260986, -0.1011200025677681, 1.4266248941421509, -0.8276057243347168, -0.19745343923568726, 0.4900282323360443, 0.4305304288864136, 0.48326900601387024, 0.5607070922851562, -0.626859188079834, -0.328278124332428, -0.19448889791965485, -0.3918141722679138, 0.2526465356349945, 1.3917601108551025, -0.1475578248500824, -1.0045063495635986, 0.7139314413070679, -0.35348498821258545, 0.06236080825328827, 1.8979231119155884, 0.10201521962881088, -0.7902591228485107, 0.2897440791130066, -0.7447195053100586, 1.8715122938156128, 1.7376192808151245, 1.4017621278762817, -0.10321611166000366, -0.9540591239929199, 0.5932003855705261, -0.36894747614860535, -0.3945521414279938, 0.9357801079750061, 0.4310823082923889, -0.1403592824935913, -1.4280182123184204, 0.6476243138313293, 1.2378625869750977, -0.9203933477401733, -0.7616108655929565, 0.11414802819490433, -0.7744069695472717, 1.0453373193740845, 0.6959013938903809, 0.40586939454078674, 0.20290011167526245, 1.682324767112732, 0.7429575324058533, -0.4856599271297455, 0.5964997410774231, 0.4802291989326477, -0.11330974102020264, -2.150306463241577, -1.1159006357192993, 0.36796873807907104, -0.4531322717666626, -1.553393840789795, 1.3661484718322754, -1.153770923614502, -0.8903584480285645, 0.5212448835372925, 0.09050852805376053, 1.4797123670578003, 0.39501968026161194, 1.575527310371399, 2.1496236324310303, 0.8626043200492859, 0.3559623658657074, 1.2504189014434814, -0.144966721534729, -0.4013209640979767, 1.8959479331970215, -0.4347078204154968, 0.4316134750843048, 1.0686216354370117, -0.3398573398590088, -1.0448044538497925, -0.7997671365737915, -1.2547043561935425, -0.6793942451477051, 0.9975807666778564, 0.055846430361270905, -1.1484001874923706, 0.23078298568725586, 1.5492626428604126, 0.08180362731218338, -0.3291933834552765, 0.6474839448928833, 0.4139612317085266, -0.7695720791816711, -0.04517383128404617, -0.8762556910514832, 0.4551277458667755, -0.2587853670120239, -0.3568548560142517, 0.34105896949768066, 0.4933724105358124, 1.3065153360366821, 0.049066945910453796, 0.07289305329322815, 1.2641973495483398, -1.3989354372024536, 1.497435212135315, -0.7262400388717651, 0.2978258430957794, -2.3986072540283203, 1.4450922012329102, -0.7908645868301392, 1.8723433017730713, -2.6784512996673584, 0.42270928621292114, -0.642937958240509, -0.44985145330429077, 0.30988410115242004, -0.33837589621543884, 0.15008234977722168, -0.17484022676944733, -1.1366534233093262, -0.07427366077899933, -0.6858252882957458, 0.5877684354782104, 1.0997127294540405, 1.282813310623169, -1.1448782682418823, -0.3373470604419708, -1.7450145483016968, -0.12360857427120209, -0.6521061062812805, 0.32946842908859253, -2.0064125061035156, -0.2178635150194168, -1.8928263187408447, -2.382081985473633, -1.2878384590148926, -0.7577124834060669, 1.1205675601959229, 0.11213827133178711, -0.945313036441803, 1.1953977346420288, -0.3163551986217499, -1.844799280166626, 1.0646297931671143, -2.182959794998169 ]
https://github.com/huggingface/datasets/issues/5878
Prefetching for IterableDataset
Hey @mariosasko! Thanks for the tip here - introducing prefetch with `torchdata` didn't really give me any performance difference vs not prefetching, but the concept is definitely one that could be really beneficial. Are there any benchmarks that show the speed-up you can get with `torchdata`'s prefetch just for comparison?
### Feature request Add support for prefetching the next n batches through iterabledataset to reduce batch loading bottleneck in training loop. ### Motivation The primary motivation behind this is to use hardware accelerators alongside a streaming dataset. This is required when you are in a low ram or low disk space setting as well as quick iteration where you're iterating though different accelerator environments (e.x changing ec2 instances quickly to figure out batch/sec for a particular architecture). Currently, using the IterableDataset results in accelerators becoming basically useless due to the massive bottleneck induced by the dataset lazy loading/transform/mapping. I've considered two alternatives: PyTorch dataloader that handles this. However, I'm using jax, and I believe this is a piece of functionality that should live in the stream class. Replicating the "num_workers" part of the PyTorch DataLoader to eagerly load batches and apply the transform so Arrow caching will automatically cache results and make them accessible. ### Your contribution I may or may not have time to do this. Currently, I've written the basic multiprocessor approach to handle the eager DataLoader for my own use case with code that's not integrated to datasets. I'd definitely see this as being the default over the regular Dataset for most people given that they wouldn't have to wait on the datasets while also not worrying about performance.
129
50
Prefetching for IterableDataset ### Feature request Add support for prefetching the next n batches through iterabledataset to reduce batch loading bottleneck in training loop. ### Motivation The primary motivation behind this is to use hardware accelerators alongside a streaming dataset. This is required when you are in a low ram or low disk space setting as well as quick iteration where you're iterating though different accelerator environments (e.x changing ec2 instances quickly to figure out batch/sec for a particular architecture). Currently, using the IterableDataset results in accelerators becoming basically useless due to the massive bottleneck induced by the dataset lazy loading/transform/mapping. I've considered two alternatives: PyTorch dataloader that handles this. However, I'm using jax, and I believe this is a piece of functionality that should live in the stream class. Replicating the "num_workers" part of the PyTorch DataLoader to eagerly load batches and apply the transform so Arrow caching will automatically cache results and make them accessible. ### Your contribution I may or may not have time to do this. Currently, I've written the basic multiprocessor approach to handle the eager DataLoader for my own use case with code that's not integrated to datasets. I'd definitely see this as being the default over the regular Dataset for most people given that they wouldn't have to wait on the datasets while also not worrying about performance. Hey @mariosasko! Thanks for the tip here - introducing prefetch with `torchdata` didn't really give me any performance difference vs not prefetching, but the concept is definitely one that could be really beneficial. Are there any benchmarks that show the speed-up you can get with `torchdata`'s prefetch just for comparison?
[ -1.2148624658584595, -0.9804335236549377, -0.8782618641853333, 1.4629179239273071, -0.17375557124614716, -1.1947301626205444, 0.0796777680516243, -1.1399915218353271, 1.6754252910614014, -0.8502100110054016, 0.3184136748313904, -1.6461998224258423, 0.08585613965988159, -0.5049746632575989, -0.7333661913871765, -0.8932499289512634, -0.3917401134967804, -0.8044233918190002, 1.045890212059021, 2.5504837036132812, 1.0997259616851807, -1.4122968912124634, 2.7187447547912598, 0.6783865094184875, -0.1722472757101059, -1.0070892572402954, 0.4894942343235016, 0.019503852352499962, -1.24335777759552, -0.48543182015419006, -0.9667545557022095, -0.058833785355091095, -0.584850013256073, -0.4694501757621765, 0.02235461212694645, 0.326987087726593, -0.2192993313074112, -0.4090706408023834, -0.5594261288642883, -0.7381581664085388, 0.42258626222610474, -0.3775181174278259, 1.0252571105957031, -0.310143381357193, 1.8797757625579834, -0.4002338647842407, 0.3613082468509674, 0.7017700672149658, 1.3367419242858887, 0.19831888377666473, -0.011531783267855644, 0.21234920620918274, 0.42761221528053284, -0.1148080825805664, 0.4317111670970917, 1.0788516998291016, 0.6155217289924622, 0.5446191430091858, 0.6961111426353455, -2.1806447505950928, 1.344459056854248, -1.0329196453094482, 0.35541677474975586, 1.3744056224822998, -1.0154284238815308, 0.39474207162857056, -1.7786918878555298, -0.03843973949551582, 0.5586897134780884, -2.215505361557007, 0.16734221577644348, -1.2694027423858643, -0.4986579716205597, 1.0204064846038818, 0.18755167722702026, -1.2803153991699219, 0.2166396528482437, -0.4193621873855591, 1.0278774499893188, 0.4821670353412628, 1.2197957038879395, -1.7383123636245728, 0.015789523720741272, -0.2902425527572632, 0.09506361931562424, -1.3491841554641724, -1.541954755783081, 0.5044875741004944, 0.6732101440429688, 0.4230934679508209, -0.12463845312595367, 1.0226601362228394, -1.042664647102356, 0.7785093784332275, -0.8844555020332336, -1.6281272172927856, -1.4036465883255005, -2.31050968170166, -2.338623285293579, 0.7882072925567627, -0.5217834115028381, -0.5292465686798096, 2.0756990909576416, -1.0343750715255737, -1.7688273191452026, 1.1954548358917236, 0.29694342613220215, 0.0523066371679306, 2.3795268535614014, 0.19024081528186798, -0.649836003780365, 0.3729023039340973, -0.7344564199447632, 0.7658204436302185, -0.5159129500389099, 1.4056615829467773, 0.42347946763038635, -0.946786642074585, 1.6236305236816406, -0.4914300739765167, 0.5493811964988708, -0.6535886526107788, -0.49878355860710144, -0.8365131616592407, 0.4124261140823364, 1.8970006704330444, -0.31312260031700134, 1.6019784212112427, -0.4219711124897003, -1.5426291227340698, -1.6695855855941772, 0.896416962146759, 0.45756202936172485, -0.8121311664581299, 0.09236254543066025, -0.2692924737930298, 0.14835360646247864, -0.06808498501777649, 1.0921485424041748, 1.217931866645813, 0.638124942779541, -0.3515753448009491, -0.9670597910881042, 0.2466721087694168, -0.1426953673362732, -0.6470993757247925, -1.7463736534118652, -0.3355781137943268, 0.1168321967124939, 0.6611097455024719, -1.1871693134307861, 1.6336631774902344, 0.9250773191452026, 1.883996605873108, 1.0204859972000122, -0.3575887680053711, 1.5237756967544556, 0.12721295654773712, 1.829796314239502, -0.47327888011932373, 0.6538015604019165, -0.35463765263557434, -1.1247453689575195, 0.7026156187057495, -0.3125443756580353, -1.9606523513793945, -0.733699381351471, -0.8607394099235535, -0.23686426877975464, -0.7173527479171753, 0.8847106099128723, -0.27712905406951904, -1.341806411743164, 0.3484126627445221, -0.6142094731330872, 0.10028896480798721, -1.216810703277588, 0.41978591680526733, 0.75138258934021, -0.6238383650779724, 0.03695055842399597, -0.2566685378551483, -1.3368421792984009, -0.40273913741111755, 0.2631409764289856, 1.9334577322006226, -0.8051257133483887, 0.9395737648010254, 0.9943320751190186, -0.6747188568115234, 0.028026578947901726, 0.3321273922920227, -0.2943040132522583, 0.8813647031784058, -1.0294939279556274, -0.46721771359443665, 1.1937519311904907, -0.24156440794467926, -0.5136188268661499, 1.3821061849594116, 0.6793555021286011, -1.0223278999328613, -0.24555978178977966, -0.15739306807518005, -0.8576836585998535, -0.00856167171150446, -1.6379940509796143, -0.14420901238918304, 0.23214499652385712, -1.5131654739379883, -0.5129873752593994, -0.2845352292060852, 1.2113171815872192, -0.13943229615688324, 1.4411476850509644, -0.37517356872558594, -0.22450736165046692, -0.38739731907844543, -0.4057129919528961, 0.19643667340278625, -0.2484111785888672, -0.6012340784072876, 0.1934889554977417, -0.8031927347183228, 0.3043702244758606, 1.4118624925613403, 0.3625853657722473, 0.018532300367951393, 0.5267518758773804, 1.0587611198425293, 0.37402573227882385, -0.048411302268505096, -0.8607709407806396, -1.472357988357544, 2.011484384536743, -1.425049066543579, 1.996028184890747, 0.8281036615371704, -0.007176737766712904, -1.7800729274749756, -1.8242496252059937, 1.4265450239181519, 1.1785452365875244, 2.3401637077331543, 0.5752069354057312, 0.342232346534729, -0.8150364756584167, -0.6169443130493164, 0.38202258944511414, -0.9880160689353943, -0.8058000206947327, 0.09426229447126389, 2.3386571407318115, 1.7379652261734009, -0.47734877467155457, -0.15303058922290802, -1.0195764303207397, 1.3949497938156128, -0.11859123408794403, 0.2109822779893875, 2.002530097961426, -0.2816332280635834, -1.1076053380966187, 1.2101646661758423, -2.3509984016418457, 0.11710292845964432, 1.9863122701644897, 0.34277984499931335, 0.08446580171585083, -1.4189600944519043, -0.6171472668647766, -0.2533705234527588, -0.2859809994697571, -1.2600312232971191, 0.5654639601707458, -0.31039491295814514, -0.7601974010467529, -1.5839563608169556, 0.17330235242843628, -1.2157189846038818, -1.6003096103668213, 0.24409310519695282, 1.9267364740371704, 2.050232410430908, -0.7311144471168518, 1.4914140701293945, -0.22125563025474548, 0.12288659065961838, 1.2497773170471191, 1.1430363655090332, 3.1648542881011963, 1.9615137577056885, -1.2724157571792603, 0.5876924395561218, -0.15077346563339233, -0.45778191089630127, 1.1465680599212646, -1.0507019758224487, 1.32634699344635, -0.1358107030391693, -1.1289849281311035, -1.188531517982483, 0.9182376265525818, 0.5558404922485352, 0.054300472140312195, -0.45856454968452454, 1.2434769868850708, 0.0646103098988533, 1.3125497102737427, 0.5040261745452881, -0.39920297265052795, 0.6245619654655457, -0.44176435470581055, -0.5070760846138, 1.5936167240142822, 0.1770399659872055, -1.415953278541565, -2.2685153484344482, -0.2111065834760666, -0.7670625448226929, -0.01909036748111248, -0.6229742765426636, -1.025528073310852, 1.6017086505889893, 0.39221882820129395, -1.2840629816055298, -0.35565292835235596, -0.43568354845046997, -0.6590406894683838, 2.582132339477539, -1.4386295080184937, -0.27498164772987366, -1.0097440481185913, -0.5736276507377625, 1.4995384216308594, -1.2070420980453491, -0.16389217972755432, -1.0030624866485596, -0.6449081897735596, -1.3004481792449951, -0.5901355743408203, -0.04613971710205078, -0.8775560855865479, 0.8236284255981445, 0.28094178438186646, -1.1440643072128296, -0.31946492195129395, -0.9006534218788147, 0.7532832622528076, -0.06118635833263397, 0.2995852530002594, 1.821941614151001, 0.44520968198776245, -0.41787612438201904, 0.7215437889099121, 1.1253705024719238, 0.651290237903595, -0.6849127411842346, 0.2044336348772049, -0.715420126914978, 0.3636653423309326, -1.3174363374710083, 0.2880576252937317, -2.936204671859741, 0.6705065965652466, -0.0750436782836914, -0.10196276754140854, 0.015430117025971413, -1.2705492973327637, 1.0492161512374878, 2.6278345584869385, -1.1240006685256958, 0.506481409072876, 0.30770111083984375, 1.2126476764678955, -1.6723322868347168, 0.3671846091747284, -0.3719748854637146, 2.137179374694824, 0.19046881794929504, 1.1335034370422363, -0.5280455946922302, -2.2786059379577637, 0.5935304760932922, -1.242449402809143, -1.2341350317001343, 0.769348680973053, -0.8404639959335327, -0.0511024072766304, -1.445914387702942, -0.18230633437633514, -0.7959933876991272, -1.3166455030441284, 0.7954545617103577, 0.1782473623752594, 0.4651812016963959, -0.6086314916610718, 0.2865290641784668, -2.2556474208831787, -1.3684875965118408, -0.18901261687278748, -0.9973270893096924, 0.40859517455101013, -0.41896164417266846, 0.7429450750350952, -0.1264255791902542, 0.07210779190063477, 0.3029603958129883, 1.377954125404358, 3.4818801879882812, 0.27290403842926025, 0.44975829124450684, -0.14964750409126282, -0.9659438133239746, 1.4955388307571411, 0.9246248602867126, -0.12199456989765167, -0.5505927205085754, -1.1613832712173462, 1.239759087562561, 1.936711072921753, 0.8997907042503357, 0.04466842859983444, -0.7435110807418823, -0.6497374773025513, -0.0663868859410286, 0.19531366229057312, 0.4834878444671631, 0.9139524698257446, 0.020589806139469147, 0.13767173886299133, 1.4736056327819824, 1.2390985488891602, -0.42456457018852234, 0.32825684547424316, -0.7597973942756653, -0.4858260154724121, 0.5180097222328186, 0.31289976835250854, 0.016662372276186943, 0.262069970369339, -0.9421656727790833, -0.24179650843143463, -0.44097140431404114, -0.9749852418899536, -0.6627537608146667, -0.4429526627063751, -0.31276556849479675, 1.6547958850860596, 0.13325083255767822, -0.5040012001991272, -0.08124840259552002, -0.7760754823684692, -0.015942145138978958, -1.0659469366073608, 0.2120247334241867, -0.05396987497806549, -0.12281224131584167, -0.06982006132602692, 1.8106343746185303, -0.9314922094345093, -2.144167184829712, 0.2539581060409546, 0.26188260316848755, -0.32598790526390076, 0.19264580309391022, 1.597381830215454, 0.47107505798339844, 1.4754160642623901, 1.3361754417419434, 0.9389246702194214, -0.6913347244262695, -1.366173505783081, 0.6910362243652344, 0.9146258234977722, -1.3719778060913086, 0.7879881262779236, 0.013344261795282364, -0.49976852536201477, 0.6963993906974792, 1.254292368888855, 0.44810032844543457, -1.9687628746032715, 0.8466652631759644, -0.912668764591217, 0.7617261409759521, 0.7723053693771362, 0.7700226306915283, 0.16212782263755798, 0.7797504663467407, -1.190441608428955, -1.1954739093780518, -0.7630486488342285, -0.6292021870613098, 2.01773738861084, -0.22499404847621918, 0.5726482272148132, -0.09246305376291275, -1.3730733394622803, -0.0711561068892479, 0.7064650058746338, 0.3615327775478363, -0.341440349817276, 0.8099736571311951, -0.7375459671020508, -1.1083385944366455, -1.5098748207092285, -0.37254688143730164, -0.9814932942390442, -0.9218303561210632, 1.0678343772888184, 0.8326650261878967, 0.1976282149553299, 1.8699893951416016, 0.5474069714546204, 0.29750877618789673, -2.657860279083252, 0.9212830066680908, 0.3722231686115265, -0.06990649551153183, 0.9529004096984863, 0.28120744228363037, 1.0416021347045898, 0.05301349610090256, 0.46614718437194824, -2.3834140300750732, 2.3067991733551025, -0.25059211254119873, 0.8222469687461853, -0.04514399170875549, -0.18734534084796906, 1.116436243057251, 0.5595868229866028, 0.6213802099227905, -1.1221787929534912, 0.7539240121841431, -0.581566572189331, 1.1760857105255127, 0.9876393675804138, -0.7745755910873413, -0.05194313824176788, 1.3662627935409546, 0.5296022295951843, -0.5706643462181091, -0.8648203015327454, -0.9448190927505493, 0.9408895373344421, 1.9072574377059937, 0.0384291335940361, 0.05309237539768219, 0.7791737914085388, 0.6092771291732788, -1.327720046043396, 0.11526758968830109, -0.7867730259895325, -0.7896202802658081, 1.5824393033981323, 1.986293077468872, -0.12258721888065338, -0.2559185028076172, -0.697449266910553, -1.2790480852127075, 0.6955771446228027, 0.019757742062211037, 0.17104673385620117, 0.6836815476417542, -0.7221980094909668, 1.087196707725525, 0.9341703653335571, 0.9109097123146057, 0.1658077836036682, 0.26079803705215454, 0.42941907048225403, -0.30486467480659485, -1.0606399774551392, -0.2021942138671875, -1.1359409093856812, -2.4672439098358154, 0.4950792193412781, -0.1372106671333313, -1.4325039386749268, 0.028444962576031685, -0.9214075803756714, 0.977418065071106, -0.5262705087661743, -1.1304959058761597, -1.6400200128555298, 0.14633826911449432, -0.08651500195264816, 0.8959483504295349, -1.592344880104065, -0.1272640973329544, 1.2458906173706055, 1.0080468654632568, -0.5827640295028687, 1.0525538921356201, 0.2181418240070343, 0.9843092560768127, 0.8389665484428406, -0.40765491127967834, 0.44611790776252747, 0.03404713422060013, -1.3289035558700562, 0.4258884787559509, 1.1027175188064575, 0.2402045726776123, 1.4525964260101318, -0.6066257357597351, 0.02564091421663761, 0.4125198721885681, -0.49629950523376465, -0.4616786539554596, -0.5035913586616516, 0.7211390733718872, 0.029105929657816887, -0.8162116408348083, 0.12311358004808426, -0.18271838128566742, -0.22670084238052368, 0.1557772010564804, -1.5215424299240112, -0.24405933916568756, -0.396388441324234, -0.5425018668174744, -1.242727279663086, -0.057336948812007904, 1.4367830753326416, -0.7761646509170532, -0.20683132112026215, 0.48878973722457886, 0.5048683881759644, 0.5037581920623779, 0.6012269258499146, -0.5691898465156555, -0.3606506884098053, -0.2389720231294632, -0.3265414535999298, 0.23309117555618286, 1.326243281364441, -0.18467865884304047, -0.9706041216850281, 0.7104098200798035, -0.38547980785369873, 0.009718764573335648, 1.898330807685852, 0.11101320385932922, -0.8211620450019836, 0.33123689889907837, -0.7260584235191345, 1.8893097639083862, 1.7271970510482788, 1.371785283088684, -0.06705808639526367, -0.9771760106086731, 0.6509925723075867, -0.308015376329422, -0.3576281666755676, 0.9903053641319275, 0.46667590737342834, -0.16369536519050598, -1.4782506227493286, 0.5818993449211121, 1.2344788312911987, -0.9056380391120911, -0.7771574854850769, 0.09522822499275208, -0.7791087031364441, 1.0253832340240479, 0.6776461601257324, 0.44301196932792664, 0.23544567823410034, 1.7250213623046875, 0.7324329018592834, -0.553786039352417, 0.558759868144989, 0.46153029799461365, -0.1645524501800537, -2.1078317165374756, -1.0909754037857056, 0.3497328460216522, -0.43104061484336853, -1.536163091659546, 1.3841012716293335, -1.1627492904663086, -0.9217712879180908, 0.521795928478241, 0.07638568431138992, 1.4254357814788818, 0.35310235619544983, 1.5825309753417969, 2.167990207672119, 0.8314578533172607, 0.3477512001991272, 1.2984682321548462, -0.1347825527191162, -0.3939691483974457, 1.8960233926773071, -0.42989110946655273, 0.3822053372859955, 1.0993285179138184, -0.3653762638568878, -1.0236233472824097, -0.7768146991729736, -1.1567432880401611, -0.6541184782981873, 1.0081005096435547, 0.08780767768621445, -1.1160047054290771, 0.24464111030101776, 1.598465085029602, 0.08531317114830017, -0.3648838400840759, 0.5881722569465637, 0.5287002921104431, -0.7497371435165405, -0.050883591175079346, -0.899543285369873, 0.5084327459335327, -0.26186805963516235, -0.34505805373191833, 0.40794676542282104, 0.4215371608734131, 1.2951719760894775, 0.03578897565603256, 0.08420164883136749, 1.242707371711731, -1.4484511613845825, 1.5094865560531616, -0.6399385929107666, 0.2915736734867096, -2.3928279876708984, 1.4475297927856445, -0.701926589012146, 1.9147350788116455, -2.6191391944885254, 0.41376346349716187, -0.717111349105835, -0.41835737228393555, 0.3741423189640045, -0.3432357907295227, 0.17306868731975555, -0.18827980756759644, -1.1322765350341797, -0.137003093957901, -0.7211719751358032, 0.5304442048072815, 1.1431670188903809, 1.252761960029602, -1.0947054624557495, -0.2998018264770508, -1.6738277673721313, -0.11598137021064758, -0.6250209212303162, 0.2891479432582855, -2.0135536193847656, -0.27013683319091797, -1.9214787483215332, -2.371046304702759, -1.3322808742523193, -0.7415719032287598, 1.0961670875549316, 0.06415387243032455, -0.9451256394386292, 1.1991899013519287, -0.34140607714653015, -1.855523943901062, 1.0776382684707642, -2.1247735023498535 ]
https://github.com/huggingface/datasets/issues/5877
Request for text deduplication feature
The "exact match" deduplication will be possible when we resolve https://github.com/huggingface/datasets/issues/2514 (first, https://github.com/apache/arrow/issues/30950 needs to be addressed on the Arrow side). In the meantime, you can use Polars or DuckDB (e.g., via [datasets-sql](https://github.com/mariosasko/datasets_sql)). Fuzzy deduplication is out-of-scope for now ([splink](https://github.com/moj-analytical-services/splink) is probably the best tool for it).
### Feature request It would be great if there would be support for high performance, highly scalable text deduplication algorithms as part of the datasets library. ### Motivation Motivated by this blog post https://huggingface.co/blog/dedup and this library https://github.com/google-research/deduplicate-text-datasets, but slightly frustrated by how its not very easy to work with these tools I am proposing this feature. ### Your contribution I would be happy to contribute to the development effort of this feature. would love to collaborate with others in the development effort.
130
47
Request for text deduplication feature ### Feature request It would be great if there would be support for high performance, highly scalable text deduplication algorithms as part of the datasets library. ### Motivation Motivated by this blog post https://huggingface.co/blog/dedup and this library https://github.com/google-research/deduplicate-text-datasets, but slightly frustrated by how its not very easy to work with these tools I am proposing this feature. ### Your contribution I would be happy to contribute to the development effort of this feature. would love to collaborate with others in the development effort. The "exact match" deduplication will be possible when we resolve https://github.com/huggingface/datasets/issues/2514 (first, https://github.com/apache/arrow/issues/30950 needs to be addressed on the Arrow side). In the meantime, you can use Polars or DuckDB (e.g., via [datasets-sql](https://github.com/mariosasko/datasets_sql)). Fuzzy deduplication is out-of-scope for now ([splink](https://github.com/moj-analytical-services/splink) is probably the best tool for it).
[ -1.1709834337234497, -0.9297122955322266, -0.8974321484565735, 1.5005226135253906, -0.10602199286222458, -1.307770848274231, 0.10306137800216675, -0.9186413884162903, 1.5724055767059326, -0.7990024089813232, 0.34464287757873535, -1.7102205753326416, 0.00363814365118742, -0.5331831574440002, -0.8363550305366516, -0.8811909556388855, -0.33967530727386475, -0.7623445391654968, 1.0050344467163086, 2.560931921005249, 1.300070881843567, -1.3830523490905762, 2.6677682399749756, 0.5934280157089233, -0.1853172332048416, -1.0555317401885986, 0.5785197615623474, 0.023237857967615128, -1.2056126594543457, -0.43789076805114746, -1.0083497762680054, 0.0406387560069561, -0.4907473921775818, -0.42600521445274353, 0.05532225966453552, 0.3713606894016266, -0.22737465798854828, -0.2984422743320465, -0.5340251922607422, -0.7428340911865234, 0.5088142156600952, -0.3518888056278229, 0.9538223147392273, -0.30658069252967834, 1.8766179084777832, -0.5977309942245483, 0.3597702383995056, 0.6040933728218079, 1.3614073991775513, 0.21459007263183594, -0.057738229632377625, 0.2850658893585205, 0.4006808400154114, 0.00968776922672987, 0.49677130579948425, 1.206111192703247, 0.6654193997383118, 0.48659950494766235, 0.6944594383239746, -2.157848834991455, 1.2686455249786377, -0.942486047744751, 0.26806873083114624, 1.352785587310791, -1.0631883144378662, 0.35303884744644165, -1.8550628423690796, -0.17054785788059235, 0.5757606029510498, -2.307924509048462, 0.16396860778331757, -1.2476556301116943, -0.4611629247665405, 0.9525046348571777, 0.16611464321613312, -1.3653473854064941, 0.19634751975536346, -0.5187377333641052, 1.0289933681488037, 0.5631635785102844, 1.1830949783325195, -1.6031185388565063, 0.024717289954423904, -0.1752041131258011, 0.16029810905456543, -1.3203701972961426, -1.5590784549713135, 0.4742925763130188, 0.6886641383171082, 0.6064944267272949, -0.1294766366481781, 0.8695356249809265, -1.0092434883117676, 0.9297457337379456, -0.8229979872703552, -1.7033801078796387, -1.4628522396087646, -2.342036485671997, -2.3050713539123535, 0.8466688394546509, -0.42057329416275024, -0.48206549882888794, 1.9508686065673828, -1.0764867067337036, -1.8099137544631958, 1.1334542036056519, 0.3202134370803833, 0.06520521640777588, 2.4216058254241943, 0.20934218168258667, -0.7674295902252197, 0.5099966526031494, -0.7078410983085632, 0.7601463794708252, -0.5155333280563354, 1.3676784038543701, 0.5789284706115723, -1.0427175760269165, 1.694244146347046, -0.511318027973175, 0.38262420892715454, -0.6948943734169006, -0.3909761309623718, -0.8061815500259399, 0.29738813638687134, 1.8544126749038696, -0.42869096994400024, 1.6165310144424438, -0.2763366103172302, -1.510416030883789, -1.495840072631836, 0.7954257130622864, 0.4632118344306946, -0.8420486450195312, 0.09258190542459488, -0.4326498508453369, 0.0940677672624588, -0.010531891137361526, 1.0217039585113525, 1.1783486604690552, 0.5556473135948181, -0.3102976381778717, -0.8678903579711914, 0.33340737223625183, -0.10022938251495361, -0.5347155332565308, -1.872859001159668, -0.3220198154449463, 0.2521069049835205, 0.6532055735588074, -1.213625431060791, 1.7424331903457642, 0.8145217895507812, 1.9272385835647583, 0.955305278301239, -0.43076327443122864, 1.4999022483825684, -0.04413698986172676, 1.877231478691101, -0.48407912254333496, 0.6717150807380676, -0.27731865644454956, -1.1834630966186523, 0.7588809132575989, -0.37719857692718506, -1.9215432405471802, -0.7643560171127319, -0.8856045007705688, -0.1366569697856903, -0.7987176775932312, 1.0029441118240356, -0.22724750638008118, -1.3723095655441284, 0.2588784992694855, -0.741925835609436, 0.03517637774348259, -1.339030146598816, 0.24722331762313843, 0.8031575083732605, -0.6745894551277161, -0.035381168127059937, -0.2423451840877533, -1.3583805561065674, -0.47340264916419983, 0.3347400724887848, 1.9237374067306519, -0.6853686571121216, 0.9268273115158081, 0.8722292184829712, -0.6865132451057434, 0.0811799094080925, 0.36924776434898376, -0.443192720413208, 0.8698644042015076, -0.986086368560791, -0.4296990931034088, 1.1764479875564575, -0.17775249481201172, -0.6665727496147156, 1.4337234497070312, 0.8013840317726135, -0.9421953558921814, -0.2420673668384552, -0.162093386054039, -0.792752742767334, -0.0458470843732357, -1.5752700567245483, -0.1370709389448166, 0.28324663639068604, -1.4414567947387695, -0.4850529432296753, -0.19010064005851746, 1.3368865251541138, -0.17130139470100403, 1.5118885040283203, -0.2865983545780182, -0.24966995418071747, -0.39747384190559387, -0.4516574740409851, 0.16238106787204742, -0.20440024137496948, -0.676314651966095, 0.3894166648387909, -0.8009377121925354, 0.32137808203697205, 1.4566056728363037, 0.4692205786705017, 0.05813636630773544, 0.6163772940635681, 1.1007434129714966, 0.33201372623443604, -0.1190548986196518, -0.9329720139503479, -1.618157148361206, 2.052208662033081, -1.3535760641098022, 2.0239675045013428, 0.8114350438117981, -0.06023760885000229, -1.7947286367416382, -1.8278460502624512, 1.3265998363494873, 1.1889631748199463, 2.48152756690979, 0.5655009746551514, 0.3909739553928375, -0.7723103165626526, -0.6909340023994446, 0.3242654800415039, -1.05385422706604, -0.823179304599762, 0.1332091987133026, 2.3333375453948975, 1.8172602653503418, -0.48969846963882446, -0.22706250846385956, -1.0865283012390137, 1.3256304264068604, -0.16175997257232666, 0.1750871241092682, 2.012136697769165, -0.2814610004425049, -1.0195186138153076, 1.2860000133514404, -2.355198383331299, 0.26470816135406494, 2.02609920501709, 0.2902176082134247, 0.005114349536597729, -1.5073761940002441, -0.6783670783042908, -0.3000471889972687, -0.4337729215621948, -1.2032159566879272, 0.5748244524002075, -0.28693851828575134, -0.9938114285469055, -1.3958278894424438, -0.004400358535349369, -1.1131778955459595, -1.7353346347808838, 0.4021543264389038, 1.7951505184173584, 2.093500852584839, -0.7340892553329468, 1.4222320318222046, -0.12350278347730637, 0.1748446673154831, 1.3335024118423462, 1.2707405090332031, 3.199291229248047, 1.9188988208770752, -1.3039696216583252, 0.7248378396034241, -0.1593305468559265, -0.47526922821998596, 1.2028744220733643, -1.1478033065795898, 1.155600905418396, -0.2590788006782532, -1.3253474235534668, -1.2021962404251099, 1.0525028705596924, 0.4745640456676483, -0.0025959727354347706, -0.5687673687934875, 1.2409759759902954, 0.10708284378051758, 1.3124933242797852, 0.6606820821762085, -0.39951786398887634, 0.508765459060669, -0.35014715790748596, -0.528728187084198, 1.6249432563781738, 0.13688908517360687, -1.5215381383895874, -2.328728675842285, -0.14456573128700256, -0.8793321251869202, -0.14462652802467346, -0.5732837915420532, -1.0831378698349, 1.6001497507095337, 0.4867768883705139, -1.2244125604629517, -0.3223651051521301, -0.37348848581314087, -0.6698160171508789, 2.6309778690338135, -1.474990725517273, -0.18717212975025177, -1.03304123878479, -0.4807176887989044, 1.608332872390747, -1.1465177536010742, -0.1890813559293747, -1.0309878587722778, -0.7070227861404419, -1.4176501035690308, -0.6453387141227722, -0.039054013788700104, -0.7956286072731018, 0.6234334111213684, 0.033362917602062225, -1.0851247310638428, -0.31427767872810364, -0.8816149830818176, 0.8375762701034546, -0.07808574289083481, 0.2741365432739258, 1.8721356391906738, 0.40081241726875305, -0.47234293818473816, 0.6533766984939575, 1.1797335147857666, 0.5988415479660034, -0.6034048199653625, 0.26207032799720764, -0.6761565804481506, 0.32532528042793274, -1.352097988128662, 0.22602158784866333, -2.8877065181732178, 0.7698949575424194, -0.15035177767276764, -0.07468181848526001, -0.048498138785362244, -1.2556167840957642, 1.1978230476379395, 2.497628927230835, -1.1913610696792603, 0.46115759015083313, 0.3529798984527588, 1.2144663333892822, -1.6666772365570068, 0.25451987981796265, -0.4376976191997528, 2.1033501625061035, 0.1944071501493454, 1.200756311416626, -0.4995146691799164, -2.0340559482574463, 0.5837628245353699, -1.2013015747070312, -0.9799671173095703, 0.9365231990814209, -0.8148213624954224, 0.15557675063610077, -1.431503415107727, -0.053276289254426956, -0.8832274079322815, -1.2944586277008057, 0.776681661605835, 0.012372362427413464, 0.4357832670211792, -0.5466061234474182, 0.2871198356151581, -2.080005168914795, -1.339758276939392, -0.15909670293331146, -1.023146390914917, 0.3726334273815155, -0.3034023344516754, 0.7072145342826843, -0.06414139270782471, 0.029162533581256866, 0.24274128675460815, 1.3631386756896973, 3.3815958499908447, 0.2214515209197998, 0.42039698362350464, -0.017136458307504654, -1.000028133392334, 1.514296531677246, 0.9779558181762695, -0.16002315282821655, -0.5413937568664551, -0.9221433401107788, 1.3417515754699707, 1.8325233459472656, 1.0962998867034912, 0.23446545004844666, -0.8336001634597778, -0.7493714094161987, 0.017047077417373657, 0.13383330404758453, 0.5026918649673462, 0.9891800880432129, -0.07978256046772003, 0.13087958097457886, 1.4160298109054565, 1.2744224071502686, -0.4334321916103363, 0.5283173322677612, -0.886004626750946, -0.34841692447662354, 0.4206565022468567, 0.29985949397087097, 0.04173094034194946, 0.47787877917289734, -1.0657545328140259, -0.2642972469329834, -0.3381851315498352, -1.0059763193130493, -0.6918452382087708, -0.45897066593170166, -0.31764742732048035, 1.6538952589035034, 0.07927051931619644, -0.439617782831192, 0.06535311043262482, -0.8528358936309814, -0.14011572301387787, -1.0278044939041138, 0.18534353375434875, -0.08775491267442703, -0.04961501061916351, -0.06990005820989609, 1.7661365270614624, -0.9631112217903137, -2.253901481628418, 0.25400984287261963, 0.290171355009079, -0.37776029109954834, 0.14272405207157135, 1.6335370540618896, 0.4256759583950043, 1.397760033607483, 1.3345465660095215, 0.9875624775886536, -0.7118573188781738, -1.2239757776260376, 0.7494260668754578, 0.9842035174369812, -1.447278380393982, 0.9143670201301575, -0.15296299755573273, -0.49102982878685, 0.6211429238319397, 1.2820332050323486, 0.26140615344047546, -1.921795129776001, 0.8254531025886536, -0.8198860883712769, 0.7068583369255066, 0.6375556588172913, 0.7801198363304138, 0.26297539472579956, 0.8239356875419617, -1.326168179512024, -1.1117600202560425, -0.7942919135093689, -0.5817915797233582, 1.9051443338394165, -0.07202006876468658, 0.5420290231704712, -0.0967746451497078, -1.3474680185317993, -0.10615576058626175, 0.72135990858078, 0.3060886561870575, -0.3680911958217621, 0.9416263103485107, -0.6512035131454468, -0.9760079979896545, -1.3474419116973877, -0.47565653920173645, -0.9886409640312195, -0.9338076710700989, 1.0933781862258911, 0.8124574422836304, 0.2716275453567505, 1.8870916366577148, 0.5307276844978333, 0.21970348060131073, -2.701061248779297, 0.9224299192428589, 0.3328467905521393, 0.05909767001867294, 0.9161483645439148, 0.22499212622642517, 1.1674858331680298, -0.021529648452997208, 0.5097424983978271, -2.399735689163208, 2.124445676803589, -0.2853424549102783, 0.6876125335693359, 0.03575117886066437, -0.24077126383781433, 1.1661239862442017, 0.5856940746307373, 0.6409568190574646, -1.2072862386703491, 0.7958688139915466, -0.5816226601600647, 1.1407408714294434, 0.9693257808685303, -0.9365275502204895, 0.054563067853450775, 1.3396294116973877, 0.4738844931125641, -0.33976826071739197, -0.9556299448013306, -0.7234293818473816, 0.9529843926429749, 1.7248610258102417, 0.08518259972333908, 0.07343672215938568, 0.9478127360343933, 0.6026740670204163, -1.3640961647033691, 0.10205525904893875, -0.7789345383644104, -0.6564839482307434, 1.765689492225647, 2.067805767059326, -0.061567749828100204, -0.2555517852306366, -0.7828295826911926, -1.3200292587280273, 0.6928353309631348, -0.0038266717456281185, 0.1673891693353653, 0.7877031564712524, -0.7474872469902039, 1.1264097690582275, 0.6861975193023682, 0.8974281549453735, 0.10052522271871567, 0.23558294773101807, 0.3440685570240021, -0.27326980233192444, -1.1663445234298706, -0.30755698680877686, -1.2614213228225708, -2.507986068725586, 0.4485509693622589, -0.30364564061164856, -1.4060133695602417, 0.10648133605718613, -0.9988930821418762, 0.8377465605735779, -0.6402981281280518, -1.0647635459899902, -1.4174737930297852, 0.28549933433532715, -0.2448299080133438, 0.8367695808410645, -1.5969219207763672, -0.11360454559326172, 1.259303092956543, 0.8699379563331604, -0.5543040037155151, 1.0037100315093994, 0.21133485436439514, 1.0246493816375732, 0.8327659368515015, -0.35835832357406616, 0.46211615204811096, 0.10749895125627518, -1.4208348989486694, 0.4504540264606476, 1.1334748268127441, 0.14437253773212433, 1.457319736480713, -0.5178935527801514, 0.05489464849233627, 0.44527631998062134, -0.5847182273864746, -0.5631457567214966, -0.5290590524673462, 0.7535032629966736, 0.0018169013783335686, -1.0077024698257446, 0.06421752274036407, -0.07959578186273575, -0.2724614441394806, 0.1778726875782013, -1.5667126178741455, -0.19150283932685852, -0.27626264095306396, -0.630182683467865, -1.2758444547653198, 0.09310555458068848, 1.249901294708252, -0.9307419061660767, -0.22020788490772247, 0.45273980498313904, 0.32240450382232666, 0.5856329202651978, 0.6035119295120239, -0.6529511213302612, -0.38072916865348816, -0.2536531090736389, -0.2607790529727936, 0.24716278910636902, 1.1781680583953857, -0.1540314108133316, -0.994895875453949, 0.671874463558197, -0.45033833384513855, 0.0650581419467926, 2.0358564853668213, 0.050680141896009445, -0.7795588970184326, 0.26478302478790283, -0.5905252695083618, 1.8384308815002441, 1.6204681396484375, 1.3419841527938843, -0.06016584113240242, -0.7755633592605591, 0.6715444326400757, -0.19066987931728363, -0.2984743118286133, 0.8915817737579346, 0.4112606644630432, -0.1284177005290985, -1.447221279144287, 0.4661332666873932, 1.3303951025009155, -1.0146139860153198, -0.6745924949645996, 0.07151280343532562, -0.9558459520339966, 1.1656690835952759, 0.7327118515968323, 0.41952529549598694, 0.25657525658607483, 1.6192476749420166, 0.6978496313095093, -0.4795225262641907, 0.4263962209224701, 0.6020137071609497, -0.1377122700214386, -2.0300307273864746, -0.8769912719726562, 0.23673123121261597, -0.3614344298839569, -1.483433485031128, 1.2505733966827393, -1.1770944595336914, -0.8684699535369873, 0.48184600472450256, 0.22242949903011322, 1.392047643661499, 0.26087966561317444, 1.6981796026229858, 2.082406997680664, 0.8555123805999756, 0.2254127711057663, 1.262941598892212, -0.016736432909965515, -0.34577545523643494, 1.7637948989868164, -0.4188697040081024, 0.5946846008300781, 1.0354470014572144, -0.4224640727043152, -1.1409809589385986, -0.7101536393165588, -1.133925199508667, -0.5002471208572388, 1.1945130825042725, 0.1831372231245041, -1.0592544078826904, 0.16410797834396362, 1.5038681030273438, 0.05547954887151718, -0.30244842171669006, 0.5981526374816895, 0.48504573106765747, -0.6025033593177795, -0.04330344498157501, -0.8639548420906067, 0.5060687065124512, -0.11458639055490494, -0.34751826524734497, 0.30005618929862976, 0.48548710346221924, 1.2056710720062256, -0.05457830801606178, 0.17807145416736603, 1.2834748029708862, -1.349456787109375, 1.5418694019317627, -0.6609273552894592, 0.22327777743339539, -2.4419913291931152, 1.4254940748214722, -0.8469274044036865, 1.8984003067016602, -2.6101067066192627, 0.39399248361587524, -0.6038105487823486, -0.5196309685707092, 0.3124098479747772, -0.39241698384284973, 0.09592189639806747, -0.16102783381938934, -0.999725341796875, -0.15237848460674286, -0.8403723835945129, 0.47277820110321045, 1.2175593376159668, 1.2593941688537598, -1.1261042356491089, -0.2942532002925873, -1.7814533710479736, -0.18682485818862915, -0.7890670299530029, 0.385150671005249, -2.0117156505584717, -0.0904124453663826, -1.9156485795974731, -2.380378484725952, -1.432661533355713, -0.897858738899231, 1.0479403734207153, 0.2087419629096985, -0.9428282380104065, 1.1181559562683105, -0.3695293366909027, -1.739004135131836, 1.0097769498825073, -2.2332923412323 ]
https://github.com/huggingface/datasets/issues/5877
Request for text deduplication feature
I have been using polars to remove duplicates but it would be nice to do it directly in pyarrow. For example, 1. Read dataset with pyarrow 2. Use scan_pyarrow_dataset() with Polars to create a LazyFrame 3. Use sort and unique to remove duplicates based on a subset of columns 4. Convert to table and save data with ds.write_dataset() There are times where that workflow makes perfect sense because I do additional transformations with Polars. Most of the time I am simply just reading dataset A and writing dataset B without duplicates though, and I wish I could use a pyarrow scanner or table directly.
### Feature request It would be great if there would be support for high performance, highly scalable text deduplication algorithms as part of the datasets library. ### Motivation Motivated by this blog post https://huggingface.co/blog/dedup and this library https://github.com/google-research/deduplicate-text-datasets, but slightly frustrated by how its not very easy to work with these tools I am proposing this feature. ### Your contribution I would be happy to contribute to the development effort of this feature. would love to collaborate with others in the development effort.
130
104
Request for text deduplication feature ### Feature request It would be great if there would be support for high performance, highly scalable text deduplication algorithms as part of the datasets library. ### Motivation Motivated by this blog post https://huggingface.co/blog/dedup and this library https://github.com/google-research/deduplicate-text-datasets, but slightly frustrated by how its not very easy to work with these tools I am proposing this feature. ### Your contribution I would be happy to contribute to the development effort of this feature. would love to collaborate with others in the development effort. I have been using polars to remove duplicates but it would be nice to do it directly in pyarrow. For example, 1. Read dataset with pyarrow 2. Use scan_pyarrow_dataset() with Polars to create a LazyFrame 3. Use sort and unique to remove duplicates based on a subset of columns 4. Convert to table and save data with ds.write_dataset() There are times where that workflow makes perfect sense because I do additional transformations with Polars. Most of the time I am simply just reading dataset A and writing dataset B without duplicates though, and I wish I could use a pyarrow scanner or table directly.
[ -1.2370171546936035, -0.9691077470779419, -0.8257652521133423, 1.4187049865722656, -0.19961251318454742, -1.2766376733779907, 0.10543016344308853, -1.102431297302246, 1.66205894947052, -0.8634591102600098, 0.31656914949417114, -1.5635490417480469, 0.0969298854470253, -0.5174001455307007, -0.773434042930603, -0.9975088834762573, -0.41564762592315674, -0.7972679734230042, 1.0360137224197388, 2.5725276470184326, 1.2141839265823364, -1.4454560279846191, 2.6488380432128906, 0.6379252076148987, -0.1414308249950409, -1.0596364736557007, 0.5658509731292725, 0.12330809980630875, -1.2605055570602417, -0.42489519715309143, -0.9133140444755554, -0.003233649767935276, -0.5491313934326172, -0.5236073136329651, -0.016097571700811386, 0.3421929180622101, -0.21460756659507751, -0.35987555980682373, -0.49714919924736023, -0.7181854248046875, 0.4833683371543884, -0.4149133265018463, 0.9699174761772156, -0.4374726712703705, 1.8989603519439697, -0.49844810366630554, 0.383614718914032, 0.7008147239685059, 1.4025553464889526, 0.16063900291919708, -0.08281664550304413, 0.20980925858020782, 0.4150136113166809, -0.041840653866529465, 0.4748731851577759, 1.0873873233795166, 0.6908014416694641, 0.48271000385284424, 0.5762770175933838, -2.119378089904785, 1.2964756488800049, -0.9526870846748352, 0.3492008447647095, 1.340049386024475, -1.0305513143539429, 0.3935301601886749, -1.7432811260223389, -0.20390821993350983, 0.5985831618309021, -2.2548673152923584, 0.1649632751941681, -1.2255761623382568, -0.5337814092636108, 0.9788447022438049, 0.20613226294517517, -1.3026561737060547, 0.20352503657341003, -0.5024751424789429, 1.0380939245224, 0.6317811012268066, 1.1887412071228027, -1.640611171722412, 0.07495945692062378, -0.22797051072120667, 0.10883277654647827, -1.391778826713562, -1.4556714296340942, 0.43143540620803833, 0.6844245195388794, 0.6037483215332031, 0.056749314069747925, 0.8515128493309021, -1.0363438129425049, 0.8996935486793518, -0.8790635466575623, -1.6303998231887817, -1.3995953798294067, -2.3908684253692627, -2.3116164207458496, 0.7994155883789062, -0.39814168214797974, -0.5217746496200562, 2.046844482421875, -1.102424144744873, -1.7847998142242432, 1.1756222248077393, 0.22553114593029022, -0.0030709444545209408, 2.4217405319213867, 0.18163834512233734, -0.7444470524787903, 0.4540488123893738, -0.6763388514518738, 0.8341195583343506, -0.5543177723884583, 1.3077497482299805, 0.5480581521987915, -1.031107783317566, 1.5413665771484375, -0.44549494981765747, 0.5126603841781616, -0.6202742457389832, -0.44330552220344543, -0.8550079464912415, 0.3534826636314392, 1.8122984170913696, -0.3626692295074463, 1.6218209266662598, -0.3335290849208832, -1.5740759372711182, -1.624976634979248, 0.8873326778411865, 0.4435312747955322, -0.7288317084312439, 0.10915742814540863, -0.3499712646007538, 0.07659712433815002, 0.0015713665634393692, 1.0257737636566162, 1.221359372138977, 0.6668840050697327, -0.3208564221858978, -0.8857438564300537, 0.23913122713565826, -0.11020678281784058, -0.5723699927330017, -1.840986728668213, -0.32220426201820374, 0.11173394322395325, 0.6129626631736755, -1.1669440269470215, 1.6999468803405762, 0.8766475319862366, 1.9304617643356323, 0.9995508193969727, -0.299885630607605, 1.4971401691436768, 0.013150549493730068, 1.7774075269699097, -0.40659499168395996, 0.7469229698181152, -0.24811705946922302, -1.1253105401992798, 0.7593589425086975, -0.3899221420288086, -1.9991377592086792, -0.7919655442237854, -0.8082065582275391, -0.12996819615364075, -0.7875855565071106, 1.0083540678024292, -0.16737021505832672, -1.3984326124191284, 0.3027428686618805, -0.7323482036590576, 0.12007417529821396, -1.1741125583648682, 0.3783710300922394, 0.7918739914894104, -0.6602256894111633, 0.008126442320644855, -0.2587226927280426, -1.2808868885040283, -0.42124903202056885, 0.2837568521499634, 1.9180076122283936, -0.8000881671905518, 0.8890969157218933, 0.9468094706535339, -0.6780480742454529, 0.02342352643609047, 0.36949387192726135, -0.43185585737228394, 0.8302731513977051, -1.049169659614563, -0.30733850598335266, 1.2108721733093262, -0.2856674790382385, -0.5920170545578003, 1.4909615516662598, 0.7680110931396484, -0.9353218078613281, -0.1033351793885231, -0.2144164890050888, -0.8331634402275085, -0.04779943823814392, -1.587355136871338, -0.05141206085681915, 0.28840962052345276, -1.4735031127929688, -0.47279903292655945, -0.21052835881710052, 1.2954479455947876, -0.05751979723572731, 1.4489964246749878, -0.37576791644096375, -0.20563670992851257, -0.36938491463661194, -0.42224574089050293, 0.2279416173696518, -0.16939294338226318, -0.6442787051200867, 0.28887367248535156, -0.8058927059173584, 0.3012599050998688, 1.411009430885315, 0.42737898230552673, 0.04558499902486801, 0.5333276391029358, 1.0158716440200806, 0.3205696642398834, -0.11872579902410507, -0.78963303565979, -1.5480417013168335, 2.051826238632202, -1.353961706161499, 2.060175895690918, 0.8505597710609436, -0.07637204229831696, -1.816744089126587, -1.8753796815872192, 1.3648467063903809, 1.1960453987121582, 2.343971014022827, 0.5215677618980408, 0.33690112829208374, -0.8633484840393066, -0.758776068687439, 0.3098587691783905, -1.0886048078536987, -0.8196634650230408, 0.09231635183095932, 2.3026294708251953, 1.7290936708450317, -0.4507349729537964, -0.1864090859889984, -1.0703364610671997, 1.4186301231384277, -0.13372714817523956, 0.16962163150310516, 2.051948070526123, -0.31044715642929077, -1.056756615638733, 1.2716610431671143, -2.3822062015533447, 0.1859687864780426, 2.0319032669067383, 0.24777090549468994, 0.011804585345089436, -1.499861478805542, -0.6544981598854065, -0.3137267231941223, -0.33014115691185, -1.2037380933761597, 0.5856842398643494, -0.3403393030166626, -0.8775151968002319, -1.457593321800232, 0.12082382291555405, -1.163525104522705, -1.7025877237319946, 0.38726431131362915, 1.8529443740844727, 2.063736915588379, -0.7110501527786255, 1.508649468421936, -0.15275698900222778, 0.18780401349067688, 1.2643986940383911, 1.2013483047485352, 3.172384262084961, 1.8681385517120361, -1.2762303352355957, 0.625544548034668, -0.123878113925457, -0.48553794622421265, 1.130470871925354, -1.1877347230911255, 1.259160041809082, -0.18972115218639374, -1.1828992366790771, -1.2060414552688599, 1.0085841417312622, 0.5104930996894836, 0.06192886829376221, -0.5188515186309814, 1.3301188945770264, 0.06860528141260147, 1.3439830541610718, 0.5535510778427124, -0.3153443932533264, 0.599272608757019, -0.4224991798400879, -0.5579452514648438, 1.524457573890686, 0.16373544931411743, -1.4602340459823608, -2.308701992034912, -0.2072007805109024, -0.7957264184951782, -0.14559386670589447, -0.5446850061416626, -1.0396212339401245, 1.596733808517456, 0.4924669861793518, -1.2361657619476318, -0.32275936007499695, -0.36664339900016785, -0.6648558378219604, 2.664818286895752, -1.4367730617523193, -0.2021002322435379, -0.9036497473716736, -0.5397496819496155, 1.5194920301437378, -1.2286418676376343, -0.20771615207195282, -1.0234159231185913, -0.6632348895072937, -1.3922250270843506, -0.6430313587188721, -0.04951754957437515, -0.9189336895942688, 0.7245831489562988, 0.17833399772644043, -1.061793327331543, -0.29262691736221313, -0.8798718452453613, 0.8109686374664307, -0.011243041604757309, 0.3333050608634949, 1.7710397243499756, 0.3519812822341919, -0.44677358865737915, 0.6895133852958679, 1.1711854934692383, 0.6036503911018372, -0.7160645127296448, 0.22243769466876984, -0.7257696986198425, 0.3289669454097748, -1.2702080011367798, 0.3001976013183594, -2.9413673877716064, 0.7053595781326294, -0.14081110060214996, -0.134272962808609, -0.06314617395401001, -1.2497650384902954, 1.1146694421768188, 2.608020544052124, -1.1585665941238403, 0.48953717947006226, 0.29388782382011414, 1.2137640714645386, -1.6350700855255127, 0.40896520018577576, -0.3668222725391388, 2.089064836502075, 0.270473450422287, 1.2206131219863892, -0.5440288186073303, -2.240827798843384, 0.6516528129577637, -1.2817250490188599, -1.1348013877868652, 0.8265966176986694, -0.8392288684844971, 0.04394835606217384, -1.3946869373321533, -0.12492495775222778, -0.8586199879646301, -1.2887006998062134, 0.7074875235557556, 0.13807719945907593, 0.44426578283309937, -0.5730414390563965, 0.2805692255496979, -2.17252254486084, -1.326817274093628, -0.20842185616493225, -0.9646800756454468, 0.39780721068382263, -0.35149624943733215, 0.6967581510543823, -0.18285679817199707, 0.06519696861505508, 0.29318901896476746, 1.3625625371932983, 3.4014904499053955, 0.1764979362487793, 0.4099868834018707, -0.07685671746730804, -0.9407562017440796, 1.5356879234313965, 0.9344637989997864, -0.17226846516132355, -0.5829365253448486, -0.9889308214187622, 1.2495676279067993, 1.8829652070999146, 1.0532602071762085, 0.14834482967853546, -0.7908101081848145, -0.654399573802948, -0.016297558322548866, 0.15382367372512817, 0.5147008895874023, 0.9167221188545227, -0.07340926676988602, 0.13453799486160278, 1.4759373664855957, 1.3121482133865356, -0.4431682229042053, 0.4405331313610077, -0.8737432360649109, -0.45197156071662903, 0.48746955394744873, 0.31246131658554077, -0.06326708197593689, 0.3968521058559418, -0.9478170275688171, -0.1861122101545334, -0.3761427402496338, -0.9811813235282898, -0.6616168022155762, -0.46244338154792786, -0.3494303226470947, 1.730183720588684, 0.1268795132637024, -0.5137037038803101, 0.0007433686405420303, -0.7935144901275635, -0.1354672759771347, -1.002548336982727, 0.20441870391368866, -0.13734091818332672, -0.10552665591239929, -0.09897517412900925, 1.8586362600326538, -0.9899031519889832, -2.217618465423584, 0.2636704444885254, 0.19688265025615692, -0.2770155966281891, 0.16912731528282166, 1.6181659698486328, 0.43279099464416504, 1.478635549545288, 1.3302531242370605, 0.9332348108291626, -0.7560665011405945, -1.3329496383666992, 0.783045768737793, 0.953252911567688, -1.4467929601669312, 0.8411747813224792, -0.0008925623260438442, -0.5627149939537048, 0.6961279511451721, 1.2316397428512573, 0.3566189706325531, -1.9896727800369263, 0.8326258063316345, -0.8945398330688477, 0.7833881974220276, 0.7049992680549622, 0.7499886155128479, 0.2603461742401123, 0.8390129804611206, -1.2671626806259155, -1.136940598487854, -0.7892699837684631, -0.6432432532310486, 1.9911422729492188, -0.22056801617145538, 0.6654042601585388, -0.13101112842559814, -1.3575727939605713, -0.0860334262251854, 0.6627418994903564, 0.30807021260261536, -0.32019364833831787, 0.91228187084198, -0.7471781969070435, -1.0109177827835083, -1.4124572277069092, -0.43819037079811096, -1.068748950958252, -0.9022688865661621, 1.1245237588882446, 0.7247478365898132, 0.21001966297626495, 1.8498330116271973, 0.5543481111526489, 0.23816055059432983, -2.713029384613037, 0.886640191078186, 0.27007701992988586, 0.0008893106132745743, 0.872208833694458, 0.2594093680381775, 1.040823221206665, 0.03497140854597092, 0.4657040238380432, -2.4759819507598877, 2.235226631164551, -0.2730913460254669, 0.7131561636924744, -0.01969153806567192, -0.21998059749603271, 1.2274688482284546, 0.6622188687324524, 0.6144621968269348, -1.132022738456726, 0.714987576007843, -0.5356787443161011, 1.2479829788208008, 0.9945191144943237, -0.8448361158370972, -0.011139187030494213, 1.3131608963012695, 0.43788668513298035, -0.3861825168132782, -0.9150882959365845, -0.8678655624389648, 0.914222002029419, 1.7853331565856934, 0.00505361333489418, -0.015834568068385124, 0.7886801362037659, 0.6030710935592651, -1.2895418405532837, 0.055329546332359314, -0.7850520610809326, -0.7340469360351562, 1.6730865240097046, 2.112959623336792, -0.014896862208843231, -0.18252108991146088, -0.7360694408416748, -1.2575218677520752, 0.792316198348999, 0.00005676504224538803, 0.14406947791576385, 0.6018654108047485, -0.6556214690208435, 1.1161201000213623, 0.8721093535423279, 0.890941858291626, 0.080567866563797, 0.16997691988945007, 0.399713397026062, -0.24774856865406036, -1.13408625125885, -0.27165547013282776, -1.2069565057754517, -2.4766039848327637, 0.413493812084198, -0.35175925493240356, -1.4761093854904175, -0.04638863727450371, -0.9430623054504395, 0.9508188366889954, -0.575434684753418, -1.0262844562530518, -1.5466837882995605, 0.20306873321533203, -0.13160443305969238, 0.8780266642570496, -1.5841865539550781, -0.083281010389328, 1.2622010707855225, 0.8698184490203857, -0.5703938603401184, 1.0856518745422363, 0.18596065044403076, 0.996251106262207, 0.8054728507995605, -0.42160364985466003, 0.5517445802688599, 0.1598316729068756, -1.4011191129684448, 0.3771650791168213, 1.1267225742340088, 0.13984446227550507, 1.4358311891555786, -0.5501774549484253, 0.04563990235328674, 0.3759633004665375, -0.5357680320739746, -0.4687453806400299, -0.495267391204834, 0.8098867535591125, 0.02911181002855301, -0.8981989622116089, 0.0544147789478302, -0.12847399711608887, -0.3197043240070343, 0.21888187527656555, -1.5994843244552612, -0.24565689265727997, -0.35821717977523804, -0.6141326427459717, -1.2848175764083862, 0.10641715675592422, 1.3524730205535889, -0.8267607688903809, -0.23571909964084625, 0.4560413956642151, 0.4610106945037842, 0.5811728835105896, 0.6160339713096619, -0.6687609553337097, -0.38666248321533203, -0.23989543318748474, -0.2267259955406189, 0.2500359117984772, 1.2462830543518066, -0.1765962541103363, -0.994541585445404, 0.7341836094856262, -0.4424605071544647, 0.026137959212064743, 1.9594718217849731, 0.13798163831233978, -0.8112305402755737, 0.34672677516937256, -0.6831408143043518, 1.8815041780471802, 1.6544808149337769, 1.3618351221084595, -0.07036112248897552, -0.8540283441543579, 0.6440781354904175, -0.235481396317482, -0.33480826020240784, 0.90072101354599, 0.5164105892181396, -0.132086381316185, -1.404921531677246, 0.5824046730995178, 1.1563529968261719, -0.9204186797142029, -0.8067218065261841, 0.048419736325740814, -0.9039701819419861, 1.10194993019104, 0.7253037691116333, 0.4936429262161255, 0.2027658224105835, 1.7066560983657837, 0.7380119562149048, -0.5343692302703857, 0.4760446548461914, 0.5590878129005432, -0.14940761029720306, -2.046433448791504, -0.9403049945831299, 0.29232749342918396, -0.4572605788707733, -1.5092488527297974, 1.3877390623092651, -1.1306750774383545, -0.8393271565437317, 0.5575697422027588, 0.04525557532906532, 1.4015380144119263, 0.3350474238395691, 1.632298469543457, 2.0613961219787598, 0.8988637924194336, 0.32032182812690735, 1.3256747722625732, -0.14202211797237396, -0.3099804222583771, 1.808776617050171, -0.4145534932613373, 0.508306622505188, 1.1285696029663086, -0.4030126631259918, -1.0267943143844604, -0.7494086623191833, -1.0596116781234741, -0.5705664753913879, 1.1381995677947998, 0.1616145521402359, -1.0767298936843872, 0.2073168158531189, 1.5369659662246704, 0.05623020976781845, -0.3795418441295624, 0.5226039290428162, 0.4807235896587372, -0.6948354244232178, -0.0965878814458847, -0.8911112546920776, 0.47801440954208374, -0.2675606906414032, -0.42723822593688965, 0.3632563054561615, 0.42014700174331665, 1.2350987195968628, -0.14213111996650696, 0.12565335631370544, 1.2492811679840088, -1.366834044456482, 1.4128565788269043, -0.604270339012146, 0.2305115908384323, -2.3273541927337646, 1.4189947843551636, -0.7276268005371094, 1.9483797550201416, -2.6815590858459473, 0.37844836711883545, -0.6459779143333435, -0.4382893443107605, 0.34462180733680725, -0.38288506865501404, 0.1379322111606598, -0.16153036057949066, -1.0627821683883667, -0.1055188849568367, -0.7898432016372681, 0.5572049617767334, 1.1921435594558716, 1.1875756978988647, -1.133752703666687, -0.3057151138782501, -1.6589436531066895, -0.20745964348316193, -0.7919757962226868, 0.37626251578330994, -2.0396721363067627, -0.1663830727338791, -1.9494202136993408, -2.4045028686523438, -1.3881678581237793, -0.7890889048576355, 1.1050642728805542, 0.17149393260478973, -0.8611810207366943, 1.1597211360931396, -0.34726953506469727, -1.8026821613311768, 1.1148176193237305, -2.143357515335083 ]
https://github.com/huggingface/datasets/issues/5876
Incompatibility with DataLab
Indeed, `clobber=True` (with a warning if the existing protocol will be overwritten) should fix the issue, but maybe a better solution is to register our compression filesystem before the script is executed and unregister them afterward. WDYT @lhoestq @albertvillanova?
### Describe the bug Hello, I am currently working on a project where both [DataLab](https://github.com/ExpressAI/DataLab) and [datasets](https://github.com/huggingface/datasets) are subdependencies. I noticed that I cannot import both libraries, as they both register FileSystems in `fsspec`, expecting the FileSystems not being registered before. When running the code below, I get the following error: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\__init__.py", line 28, in <module> from datalabs.arrow_dataset import concatenate_datasets, Dataset File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\arrow_dataset.py", line 60, in <module> from datalabs.arrow_writer import ArrowWriter, OptimizedTypedSequence File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\arrow_writer.py", line 28, in <module> from datalabs.features import ( File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\features\__init__.py", line 2, in <module> from datalabs.features.audio import Audio File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\features\audio.py", line 21, in <module> from datalabs.utils.streaming_download_manager import xopen File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\utils\streaming_download_manager.py", line 16, in <module> from datalabs.filesystems import COMPRESSION_FILESYSTEMS File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\filesystems\__init__.py", line 37, in <module> fsspec.register_implementation(fs_class.protocol, fs_class) File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\fsspec\registry.py", line 51, in register_implementation raise ValueError( ValueError: Name (bz2) already in the registry and clobber is False ``` I think as simple solution would be to just set `clobber=True` in https://github.com/huggingface/datasets/blob/main/src/datasets/filesystems/__init__.py#L28. This allows the register to discard previous registrations. This should work, as the datalabs FileSystems are copies of the datasets FileSystems. However, I don't know if it is guaranteed to be compatible with other libraries that might use the same protocols. I am linking the symmetric issue on [DataLab](https://github.com/ExpressAI/DataLab/issues/425) as ideally the issue is solved in both libraries the same way. Otherwise, it could lead to different behaviors depending on which library gets imported first. ### Steps to reproduce the bug 1. Run `pip install datalabs==0.4.15 datasets==2.12.0` 2. Run the following python code: ``` import datalabs import datasets ``` ### Expected behavior It should be possible to import both libraries without getting a Value Error ### Environment info datalabs==0.4.15 datasets==2.12.0
131
39
Incompatibility with DataLab ### Describe the bug Hello, I am currently working on a project where both [DataLab](https://github.com/ExpressAI/DataLab) and [datasets](https://github.com/huggingface/datasets) are subdependencies. I noticed that I cannot import both libraries, as they both register FileSystems in `fsspec`, expecting the FileSystems not being registered before. When running the code below, I get the following error: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\__init__.py", line 28, in <module> from datalabs.arrow_dataset import concatenate_datasets, Dataset File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\arrow_dataset.py", line 60, in <module> from datalabs.arrow_writer import ArrowWriter, OptimizedTypedSequence File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\arrow_writer.py", line 28, in <module> from datalabs.features import ( File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\features\__init__.py", line 2, in <module> from datalabs.features.audio import Audio File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\features\audio.py", line 21, in <module> from datalabs.utils.streaming_download_manager import xopen File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\utils\streaming_download_manager.py", line 16, in <module> from datalabs.filesystems import COMPRESSION_FILESYSTEMS File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\filesystems\__init__.py", line 37, in <module> fsspec.register_implementation(fs_class.protocol, fs_class) File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\fsspec\registry.py", line 51, in register_implementation raise ValueError( ValueError: Name (bz2) already in the registry and clobber is False ``` I think as simple solution would be to just set `clobber=True` in https://github.com/huggingface/datasets/blob/main/src/datasets/filesystems/__init__.py#L28. This allows the register to discard previous registrations. This should work, as the datalabs FileSystems are copies of the datasets FileSystems. However, I don't know if it is guaranteed to be compatible with other libraries that might use the same protocols. I am linking the symmetric issue on [DataLab](https://github.com/ExpressAI/DataLab/issues/425) as ideally the issue is solved in both libraries the same way. Otherwise, it could lead to different behaviors depending on which library gets imported first. ### Steps to reproduce the bug 1. Run `pip install datalabs==0.4.15 datasets==2.12.0` 2. Run the following python code: ``` import datalabs import datasets ``` ### Expected behavior It should be possible to import both libraries without getting a Value Error ### Environment info datalabs==0.4.15 datasets==2.12.0 Indeed, `clobber=True` (with a warning if the existing protocol will be overwritten) should fix the issue, but maybe a better solution is to register our compression filesystem before the script is executed and unregister them afterward. WDYT @lhoestq @albertvillanova?
[ -1.3235520124435425, -0.8967524170875549, -0.5762975215911865, 1.3693373203277588, -0.06261253356933594, -1.24762761592865, 0.08170504868030548, -1.0611730813980103, 1.7106448411941528, -0.8065423369407654, 0.24225544929504395, -1.7274513244628906, 0.054623737931251526, -0.5989668369293213, -0.7380005717277527, -0.8503847122192383, -0.3980376124382019, -0.8001048564910889, 1.1106594800949097, 2.59578800201416, 1.4331732988357544, -1.4235320091247559, 2.8316962718963623, 0.824795663356781, -0.31112775206565857, -0.8981603980064392, 0.6040819883346558, 0.019061535596847534, -1.307276725769043, -0.4155905544757843, -0.9248279333114624, 0.0005178302526473999, -0.6024835109710693, -0.514290452003479, -0.09670719504356384, 0.42211124300956726, -0.28167256712913513, -0.456401526927948, -0.6044763922691345, -0.7159639596939087, 0.4193313419818878, -0.402817964553833, 1.0171706676483154, -0.2649673521518707, 1.7486846446990967, -0.6337395310401917, 0.4080411493778229, 0.7575792670249939, 1.1650354862213135, 0.11953926831483841, 0.05776140093803406, 0.20818734169006348, 0.35892951488494873, 0.003193608485162258, 0.5660457015037537, 1.1572226285934448, 0.7234179973602295, 0.475273996591568, 0.9011934399604797, -2.06565523147583, 1.3829569816589355, -0.8960472345352173, 0.09000131487846375, 1.3418103456497192, -0.948604941368103, 0.44062539935112, -1.7541481256484985, -0.08027667552232742, 0.6014501452445984, -2.1539323329925537, 0.09026402235031128, -1.2609672546386719, -0.5557621717453003, 1.0223044157028198, 0.23409247398376465, -1.1242238283157349, 0.15577256679534912, -0.44150808453559875, 0.9416033029556274, 0.431609570980072, 1.205440878868103, -1.6454050540924072, 0.14416223764419556, -0.28246572613716125, 0.1850411593914032, -1.4598565101623535, -1.5408273935317993, 0.6354028582572937, 0.5305742025375366, 0.6583198308944702, 0.013084925711154938, 1.0605872869491577, -1.0576995611190796, 0.7250813245773315, -1.0012799501419067, -1.7261073589324951, -1.37372624874115, -2.320335626602173, -2.3820228576660156, 0.7070648074150085, -0.6045140624046326, -0.486611545085907, 2.059720754623413, -1.0857881307601929, -1.7269785404205322, 1.0608792304992676, 0.22324088215827942, -0.016758684068918228, 2.432704448699951, 0.3228161036968231, -0.8467704653739929, 0.533341109752655, -0.7683480381965637, 0.7993661165237427, -0.1535607874393463, 1.2890853881835938, 0.38150328397750854, -0.9529463052749634, 1.5503166913986206, -0.42874395847320557, 0.648287296295166, -0.5430338382720947, -0.41328164935112, -0.6470490097999573, 0.26235759258270264, 1.76763916015625, -0.3038758337497711, 1.6237053871154785, -0.34224146604537964, -1.5120896100997925, -1.4910175800323486, 0.6930370330810547, 0.37212634086608887, -0.8093436360359192, 0.1577484905719757, -0.4086747467517853, 0.05263657122850418, 0.001317090354859829, 1.218227505683899, 1.3404902219772339, 0.6606043577194214, -0.3089947998523712, -0.8539341688156128, 0.258495032787323, -0.06650736182928085, -0.740390419960022, -1.7069414854049683, -0.22459271550178528, 0.09282610565423965, 0.7871544361114502, -1.2305476665496826, 1.8270715475082397, 0.9859480857849121, 1.934309720993042, 0.9881741404533386, -0.42087361216545105, 1.3329623937606812, 0.09534873068332672, 1.8637373447418213, -0.5079878568649292, 0.7666856050491333, -0.4127027690410614, -1.0763847827911377, 0.9424291253089905, -0.4414132237434387, -1.955668568611145, -0.6447843909263611, -0.7273414134979248, -0.12711188197135925, -0.8023448586463928, 0.9663870930671692, -0.32050830125808716, -1.3898414373397827, 0.2735317349433899, -0.7564007043838501, 0.06434570252895355, -1.377772331237793, 0.12884217500686646, 0.7533909678459167, -0.5891793966293335, 0.15750989317893982, -0.3209123909473419, -1.3313406705856323, -0.5518498420715332, 0.22609147429466248, 1.8576937913894653, -0.6698166728019714, 0.9444801807403564, 1.0596257448196411, -0.6656648516654968, 0.10929974913597107, 0.28660574555397034, -0.3219796121120453, 0.8003420829772949, -1.0823577642440796, -0.4347640573978424, 1.0217689275741577, -0.24870631098747253, -0.5785831212997437, 1.4862945079803467, 0.6948622465133667, -1.1264482736587524, -0.2946384847164154, -0.11807818710803986, -0.8607513904571533, -0.013299867510795593, -1.4863051176071167, -0.17651721835136414, 0.4642690420150757, -1.6423749923706055, -0.4663715064525604, -0.18370729684829712, 1.3559658527374268, -0.1589580476284027, 1.4814971685409546, -0.3803539276123047, -0.14758658409118652, -0.31475600600242615, -0.5097442865371704, 0.1519503891468048, -0.22548004984855652, -0.5548666715621948, 0.22310495376586914, -0.957176148891449, 0.39441993832588196, 1.4860917329788208, 0.2510547935962677, -0.06638975441455841, 0.36910879611968994, 1.1804884672164917, 0.3755323588848114, -0.1543925702571869, -0.7206240892410278, -1.491586446762085, 2.086700916290283, -1.5969858169555664, 1.94369375705719, 0.8027880191802979, -0.07436634600162506, -1.7273117303848267, -1.8171706199645996, 1.3963197469711304, 1.2093943357467651, 2.2318224906921387, 0.6326956748962402, 0.31970542669296265, -0.7187434434890747, -0.5795003771781921, 0.33187711238861084, -1.0004783868789673, -0.6542856097221375, 0.19819077849388123, 2.3381714820861816, 1.7599984407424927, -0.5241683721542358, -0.1742802858352661, -0.7959334254264832, 1.2251830101013184, -0.16273584961891174, 0.23268994688987732, 2.032180070877075, -0.432422935962677, -1.1019405126571655, 1.386710286140442, -2.348390817642212, 0.18832850456237793, 1.9796544313430786, 0.2802332937717438, 0.07904382050037384, -1.3061388731002808, -0.6247573494911194, -0.513955295085907, -0.3884161412715912, -1.188703179359436, 0.548683226108551, -0.22415661811828613, -0.8838691115379333, -1.4781765937805176, 0.12724930047988892, -1.1104657649993896, -1.8502099514007568, 0.37603676319122314, 1.7831343412399292, 2.195570707321167, -0.9052252173423767, 1.4572982788085938, -0.3444814682006836, 0.05152135342359543, 1.024389386177063, 1.1822510957717896, 3.101111888885498, 1.902381420135498, -1.0899157524108887, 0.6269928216934204, -0.13425016403198242, -0.4948023855686188, 1.1977574825286865, -1.2181950807571411, 1.2237820625305176, -0.1072511225938797, -1.1413803100585938, -1.2428785562515259, 0.833407461643219, 0.37235844135284424, -0.03364159166812897, -0.5362428426742554, 1.3715275526046753, 0.11902830749750137, 1.4237918853759766, 0.42752644419670105, -0.20301422476768494, 0.5471082329750061, -0.46478018164634705, -0.43991583585739136, 1.5430192947387695, 0.04592550918459892, -1.5075860023498535, -2.1764185428619385, -0.2549651861190796, -0.7611365914344788, 0.13405078649520874, -0.749517023563385, -0.9418867826461792, 1.7523895502090454, 0.42716264724731445, -1.0627667903900146, -0.2460305094718933, -0.49905410408973694, -0.5208368897438049, 2.7890236377716064, -1.3477635383605957, -0.14660927653312683, -1.0136938095092773, -0.5730628371238708, 1.5687403678894043, -1.1378769874572754, -0.14243555068969727, -1.0945384502410889, -0.6232908368110657, -1.3486254215240479, -0.5241535902023315, -0.04135357216000557, -0.9534032344818115, 0.8337533473968506, 0.22221338748931885, -1.1132627725601196, -0.2466910183429718, -0.9052140116691589, 0.8895586729049683, -0.2768654525279999, 0.3548599183559418, 1.9349459409713745, 0.42983749508857727, -0.4381957948207855, 0.763126790523529, 1.2076706886291504, 0.6861193776130676, -0.7743111252784729, -0.04787600785493851, -0.6994043588638306, 0.4919467270374298, -1.2579652070999146, 0.17157745361328125, -2.758586883544922, 0.617472767829895, -0.062003932893276215, -0.05614590272307396, -0.09005019813776016, -1.2220948934555054, 1.0989030599594116, 2.6916518211364746, -1.1709637641906738, 0.4511154294013977, 0.4413421154022217, 1.2695949077606201, -1.4545255899429321, 0.29593920707702637, -0.40694886445999146, 2.08020281791687, 0.2509416937828064, 1.192687749862671, -0.5444047451019287, -2.399202823638916, 0.6826071739196777, -1.191908597946167, -1.2196792364120483, 0.8659487962722778, -0.8877204656600952, 0.09807445853948593, -1.4936516284942627, -0.1047830805182457, -1.0618138313293457, -1.1949337720870972, 0.6016221642494202, 0.15775969624519348, 0.4823627471923828, -0.6977511048316956, 0.3307090103626251, -2.1635336875915527, -1.3995516300201416, -0.33195847272872925, -0.9542362689971924, 0.5288329720497131, -0.42326006293296814, 0.6083800196647644, -0.17403042316436768, -0.03871272876858711, 0.32854562997817993, 1.4381225109100342, 3.3399899005889893, 0.1525237262248993, 0.29655298590660095, -0.21669483184814453, -1.0099730491638184, 1.5494471788406372, 0.9220510125160217, -0.21547472476959229, -0.5065658092498779, -1.078284740447998, 1.188031554222107, 1.9631561040878296, 1.1103407144546509, -0.0740119218826294, -0.9142159819602966, -0.789485514163971, 0.016260560601949692, 0.21202027797698975, 0.44208791851997375, 0.881794273853302, -0.007348314393311739, 0.07801970839500427, 1.5474109649658203, 1.0809412002563477, -0.3759416341781616, 0.2879507541656494, -0.8901854753494263, -0.39685019850730896, 0.5226404070854187, 0.2726712226867676, 0.10295410454273224, 0.3759089708328247, -0.7785605192184448, -0.31147822737693787, -0.3295871615409851, -0.8349862694740295, -0.6573418974876404, -0.30802130699157715, -0.30070334672927856, 1.686298131942749, -0.016826368868350983, -0.5708310604095459, -0.0921463668346405, -0.6706973910331726, -0.20210623741149902, -1.0859237909317017, 0.349764883518219, -0.21388384699821472, -0.014941190369427204, -0.13382253050804138, 1.6436872482299805, -0.9032275080680847, -2.0360281467437744, 0.20076295733451843, 0.30560407042503357, -0.3382989168167114, 0.22391822934150696, 1.5925098657608032, 0.6102907657623291, 1.380617618560791, 1.3549662828445435, 0.9629641771316528, -0.774933397769928, -1.284071683883667, 0.6012110114097595, 1.0796520709991455, -1.363783359527588, 0.979881227016449, -0.13502377271652222, -0.6316538453102112, 0.542203962802887, 1.383424997329712, 0.41829198598861694, -1.99803626537323, 0.8509403467178345, -1.0026648044586182, 0.989323079586029, 0.6695935726165771, 0.7747719883918762, 0.07220607995986938, 0.7106451988220215, -1.1519526243209839, -1.1235755681991577, -0.7239730358123779, -0.6822943091392517, 1.8654841184616089, -0.29227566719055176, 0.5968255400657654, -0.2158331274986267, -1.156262755393982, -0.05085257813334465, 0.6792901754379272, 0.38332340121269226, -0.3538767397403717, 0.8148006200790405, -0.6079096794128418, -1.0112907886505127, -1.225936770439148, -0.39542916417121887, -0.9756884574890137, -0.9586597681045532, 1.0256068706512451, 0.5764098763465881, 0.4334530234336853, 1.850573182106018, 0.6293554902076721, 0.2960136830806732, -2.4450082778930664, 0.9798558950424194, 0.24844810366630554, -0.13743266463279724, 0.8875278830528259, 0.43142929673194885, 0.9494189620018005, -0.13759663701057434, 0.5460508465766907, -2.4352049827575684, 2.250318765640259, -0.25083765387535095, 0.6561304926872253, 0.11122075468301773, -0.16652724146842957, 1.0079950094223022, 0.6423432230949402, 0.4512369632720947, -1.019482970237732, 0.710163414478302, -0.5033434629440308, 1.164340615272522, 1.0448498725891113, -0.8736464381217957, 0.12541848421096802, 1.1998019218444824, 0.4940607249736786, -0.5410415530204773, -0.9773511290550232, -0.981803297996521, 0.991184651851654, 1.8116703033447266, -0.20498189330101013, -0.10655337572097778, 0.8020361065864563, 0.6644300818443298, -1.0955322980880737, -0.016882598400115967, -0.7430629730224609, -0.7668609619140625, 1.7313369512557983, 2.0539534091949463, -0.00557264219969511, -0.14738982915878296, -0.720765233039856, -1.2305775880813599, 0.8545438647270203, -0.06536757946014404, 0.12244423478841782, 0.7109863758087158, -0.7185109853744507, 1.167152762413025, 0.7512609362602234, 0.868687093257904, 0.18867141008377075, 0.2315148115158081, 0.439721941947937, -0.14287081360816956, -1.1363035440444946, -0.3138818144798279, -1.052647590637207, -2.418073892593384, 0.3001975119113922, -0.3578396141529083, -1.549014925956726, -0.07000027596950531, -0.9755016565322876, 0.931662917137146, -0.5653640031814575, -1.0541486740112305, -1.5717706680297852, 0.17512071132659912, -0.07176865637302399, 0.980640709400177, -1.5023205280303955, -0.2221033275127411, 1.2799890041351318, 0.8998737335205078, -0.5636311769485474, 1.083322286605835, 0.17657649517059326, 0.9855278134346008, 0.7781843543052673, -0.2795153260231018, 0.6343123316764832, 0.16558226943016052, -1.3644115924835205, 0.37715068459510803, 1.254361629486084, 0.23432281613349915, 1.3821508884429932, -0.4364427626132965, 0.016432825475931168, 0.34042447805404663, -0.43912920355796814, -0.4663439095020294, -0.4759064316749573, 0.6685121655464172, -0.019706543534994125, -0.9048491716384888, -0.12683294713497162, -0.22956514358520508, -0.26285073161125183, 0.15329399704933167, -1.5672305822372437, -0.2521142065525055, -0.5220677256584167, -0.5186536312103271, -1.3007786273956299, -0.015288264490664005, 1.503509521484375, -0.837157130241394, -0.1520594358444214, 0.4280145764350891, 0.35334208607673645, 0.41266757249832153, 0.5604833364486694, -0.727506697177887, -0.3402549922466278, -0.3834768533706665, -0.34057092666625977, 0.29002878069877625, 1.2516605854034424, 0.011591203510761261, -1.0950424671173096, 0.5836856365203857, -0.4185441732406616, 0.13795047998428345, 2.0603599548339844, 0.11994586139917374, -0.7067552208900452, 0.3148052990436554, -0.7347456216812134, 1.8211451768875122, 1.6491349935531616, 1.3696032762527466, -0.24365845322608948, -0.931948184967041, 0.6425374746322632, -0.3818950653076172, -0.3506103456020355, 0.8920981884002686, 0.33235621452331543, -0.26145902276039124, -1.4331140518188477, 0.7266126275062561, 1.2501908540725708, -0.8409408926963806, -0.7480177283287048, 0.06808117032051086, -0.820816159248352, 1.1109204292297363, 0.6931609511375427, 0.2869592010974884, 0.3939625918865204, 1.7528083324432373, 0.7261763215065002, -0.5285165309906006, 0.5016129612922668, 0.5407084822654724, -0.1731398105621338, -2.0133872032165527, -1.0672764778137207, 0.22091931104660034, -0.37253648042678833, -1.4712328910827637, 1.4794551134109497, -1.3050647974014282, -0.9735940098762512, 0.5468626618385315, 0.05032685399055481, 1.3329546451568604, 0.3238523304462433, 1.6314104795455933, 2.163426399230957, 0.7049937844276428, 0.36207205057144165, 1.1085342168807983, -0.2692929804325104, -0.5284211039543152, 1.757883071899414, -0.5018957257270813, 0.522355854511261, 1.1699719429016113, -0.32169339060783386, -1.0444947481155396, -0.8237031102180481, -1.2872694730758667, -0.7869154810905457, 1.1591863632202148, 0.022533275187015533, -1.2230154275894165, 0.38783973455429077, 1.5757203102111816, 0.22175657749176025, -0.37146925926208496, 0.5412874817848206, 0.4701751172542572, -0.8741508722305298, -0.24314764142036438, -0.9541051387786865, 0.5681699514389038, -0.15837642550468445, -0.32541462779045105, 0.2112138271331787, 0.5197556018829346, 1.390092134475708, 0.006769318133592606, 0.1426357626914978, 1.1574097871780396, -1.2880020141601562, 1.5608325004577637, -0.6397359371185303, 0.2319563627243042, -2.322411060333252, 1.5052204132080078, -0.8022920489311218, 1.908637285232544, -2.7376701831817627, 0.47622114419937134, -0.42647382616996765, -0.440019428730011, 0.2571965456008911, -0.3453179895877838, 0.1626894772052765, -0.11388690024614334, -1.0160843133926392, -0.1255163997411728, -0.5722391605377197, 0.749189019203186, 1.1015138626098633, 1.4188311100006104, -1.10161554813385, -0.29566890001296997, -1.636157751083374, -0.2712786793708801, -0.7898891568183899, 0.22311484813690186, -1.9013622999191284, -0.33758872747421265, -2.0352907180786133, -2.517352342605591, -1.3382261991500854, -0.823701798915863, 1.1845264434814453, 0.09777212142944336, -0.9712537527084351, 1.2969666719436646, -0.3783347010612488, -1.9031503200531006, 1.2453886270523071, -2.139885902404785 ]
https://github.com/huggingface/datasets/issues/5876
Incompatibility with DataLab
I think we should use clobber and show a warning if it overwrote a registered filesystem indeed ! This way the user can re-register the filesystems if needed. Though they should probably be compatible (and maybe do the exact same thing) so I wouldn't de-register the `datasets` filesystems
### Describe the bug Hello, I am currently working on a project where both [DataLab](https://github.com/ExpressAI/DataLab) and [datasets](https://github.com/huggingface/datasets) are subdependencies. I noticed that I cannot import both libraries, as they both register FileSystems in `fsspec`, expecting the FileSystems not being registered before. When running the code below, I get the following error: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\__init__.py", line 28, in <module> from datalabs.arrow_dataset import concatenate_datasets, Dataset File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\arrow_dataset.py", line 60, in <module> from datalabs.arrow_writer import ArrowWriter, OptimizedTypedSequence File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\arrow_writer.py", line 28, in <module> from datalabs.features import ( File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\features\__init__.py", line 2, in <module> from datalabs.features.audio import Audio File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\features\audio.py", line 21, in <module> from datalabs.utils.streaming_download_manager import xopen File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\utils\streaming_download_manager.py", line 16, in <module> from datalabs.filesystems import COMPRESSION_FILESYSTEMS File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\filesystems\__init__.py", line 37, in <module> fsspec.register_implementation(fs_class.protocol, fs_class) File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\fsspec\registry.py", line 51, in register_implementation raise ValueError( ValueError: Name (bz2) already in the registry and clobber is False ``` I think as simple solution would be to just set `clobber=True` in https://github.com/huggingface/datasets/blob/main/src/datasets/filesystems/__init__.py#L28. This allows the register to discard previous registrations. This should work, as the datalabs FileSystems are copies of the datasets FileSystems. However, I don't know if it is guaranteed to be compatible with other libraries that might use the same protocols. I am linking the symmetric issue on [DataLab](https://github.com/ExpressAI/DataLab/issues/425) as ideally the issue is solved in both libraries the same way. Otherwise, it could lead to different behaviors depending on which library gets imported first. ### Steps to reproduce the bug 1. Run `pip install datalabs==0.4.15 datasets==2.12.0` 2. Run the following python code: ``` import datalabs import datasets ``` ### Expected behavior It should be possible to import both libraries without getting a Value Error ### Environment info datalabs==0.4.15 datasets==2.12.0
131
48
Incompatibility with DataLab ### Describe the bug Hello, I am currently working on a project where both [DataLab](https://github.com/ExpressAI/DataLab) and [datasets](https://github.com/huggingface/datasets) are subdependencies. I noticed that I cannot import both libraries, as they both register FileSystems in `fsspec`, expecting the FileSystems not being registered before. When running the code below, I get the following error: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\__init__.py", line 28, in <module> from datalabs.arrow_dataset import concatenate_datasets, Dataset File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\arrow_dataset.py", line 60, in <module> from datalabs.arrow_writer import ArrowWriter, OptimizedTypedSequence File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\arrow_writer.py", line 28, in <module> from datalabs.features import ( File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\features\__init__.py", line 2, in <module> from datalabs.features.audio import Audio File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\features\audio.py", line 21, in <module> from datalabs.utils.streaming_download_manager import xopen File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\utils\streaming_download_manager.py", line 16, in <module> from datalabs.filesystems import COMPRESSION_FILESYSTEMS File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\datalabs\filesystems\__init__.py", line 37, in <module> fsspec.register_implementation(fs_class.protocol, fs_class) File "C:\Users\Bened\anaconda3\envs\ner-eval-dashboard2\lib\site-packages\fsspec\registry.py", line 51, in register_implementation raise ValueError( ValueError: Name (bz2) already in the registry and clobber is False ``` I think as simple solution would be to just set `clobber=True` in https://github.com/huggingface/datasets/blob/main/src/datasets/filesystems/__init__.py#L28. This allows the register to discard previous registrations. This should work, as the datalabs FileSystems are copies of the datasets FileSystems. However, I don't know if it is guaranteed to be compatible with other libraries that might use the same protocols. I am linking the symmetric issue on [DataLab](https://github.com/ExpressAI/DataLab/issues/425) as ideally the issue is solved in both libraries the same way. Otherwise, it could lead to different behaviors depending on which library gets imported first. ### Steps to reproduce the bug 1. Run `pip install datalabs==0.4.15 datasets==2.12.0` 2. Run the following python code: ``` import datalabs import datasets ``` ### Expected behavior It should be possible to import both libraries without getting a Value Error ### Environment info datalabs==0.4.15 datasets==2.12.0 I think we should use clobber and show a warning if it overwrote a registered filesystem indeed ! This way the user can re-register the filesystems if needed. Though they should probably be compatible (and maybe do the exact same thing) so I wouldn't de-register the `datasets` filesystems
[ -1.3235520124435425, -0.8967524170875549, -0.5762975215911865, 1.3693373203277588, -0.06261253356933594, -1.24762761592865, 0.08170504868030548, -1.0611730813980103, 1.7106448411941528, -0.8065423369407654, 0.24225544929504395, -1.7274513244628906, 0.054623737931251526, -0.5989668369293213, -0.7380005717277527, -0.8503847122192383, -0.3980376124382019, -0.8001048564910889, 1.1106594800949097, 2.59578800201416, 1.4331732988357544, -1.4235320091247559, 2.8316962718963623, 0.824795663356781, -0.31112775206565857, -0.8981603980064392, 0.6040819883346558, 0.019061535596847534, -1.307276725769043, -0.4155905544757843, -0.9248279333114624, 0.0005178302526473999, -0.6024835109710693, -0.514290452003479, -0.09670719504356384, 0.42211124300956726, -0.28167256712913513, -0.456401526927948, -0.6044763922691345, -0.7159639596939087, 0.4193313419818878, -0.402817964553833, 1.0171706676483154, -0.2649673521518707, 1.7486846446990967, -0.6337395310401917, 0.4080411493778229, 0.7575792670249939, 1.1650354862213135, 0.11953926831483841, 0.05776140093803406, 0.20818734169006348, 0.35892951488494873, 0.003193608485162258, 0.5660457015037537, 1.1572226285934448, 0.7234179973602295, 0.475273996591568, 0.9011934399604797, -2.06565523147583, 1.3829569816589355, -0.8960472345352173, 0.09000131487846375, 1.3418103456497192, -0.948604941368103, 0.44062539935112, -1.7541481256484985, -0.08027667552232742, 0.6014501452445984, -2.1539323329925537, 0.09026402235031128, -1.2609672546386719, -0.5557621717453003, 1.0223044157028198, 0.23409247398376465, -1.1242238283157349, 0.15577256679534912, -0.44150808453559875, 0.9416033029556274, 0.431609570980072, 1.205440878868103, -1.6454050540924072, 0.14416223764419556, -0.28246572613716125, 0.1850411593914032, -1.4598565101623535, -1.5408273935317993, 0.6354028582572937, 0.5305742025375366, 0.6583198308944702, 0.013084925711154938, 1.0605872869491577, -1.0576995611190796, 0.7250813245773315, -1.0012799501419067, -1.7261073589324951, -1.37372624874115, -2.320335626602173, -2.3820228576660156, 0.7070648074150085, -0.6045140624046326, -0.486611545085907, 2.059720754623413, -1.0857881307601929, -1.7269785404205322, 1.0608792304992676, 0.22324088215827942, -0.016758684068918228, 2.432704448699951, 0.3228161036968231, -0.8467704653739929, 0.533341109752655, -0.7683480381965637, 0.7993661165237427, -0.1535607874393463, 1.2890853881835938, 0.38150328397750854, -0.9529463052749634, 1.5503166913986206, -0.42874395847320557, 0.648287296295166, -0.5430338382720947, -0.41328164935112, -0.6470490097999573, 0.26235759258270264, 1.76763916015625, -0.3038758337497711, 1.6237053871154785, -0.34224146604537964, -1.5120896100997925, -1.4910175800323486, 0.6930370330810547, 0.37212634086608887, -0.8093436360359192, 0.1577484905719757, -0.4086747467517853, 0.05263657122850418, 0.001317090354859829, 1.218227505683899, 1.3404902219772339, 0.6606043577194214, -0.3089947998523712, -0.8539341688156128, 0.258495032787323, -0.06650736182928085, -0.740390419960022, -1.7069414854049683, -0.22459271550178528, 0.09282610565423965, 0.7871544361114502, -1.2305476665496826, 1.8270715475082397, 0.9859480857849121, 1.934309720993042, 0.9881741404533386, -0.42087361216545105, 1.3329623937606812, 0.09534873068332672, 1.8637373447418213, -0.5079878568649292, 0.7666856050491333, -0.4127027690410614, -1.0763847827911377, 0.9424291253089905, -0.4414132237434387, -1.955668568611145, -0.6447843909263611, -0.7273414134979248, -0.12711188197135925, -0.8023448586463928, 0.9663870930671692, -0.32050830125808716, -1.3898414373397827, 0.2735317349433899, -0.7564007043838501, 0.06434570252895355, -1.377772331237793, 0.12884217500686646, 0.7533909678459167, -0.5891793966293335, 0.15750989317893982, -0.3209123909473419, -1.3313406705856323, -0.5518498420715332, 0.22609147429466248, 1.8576937913894653, -0.6698166728019714, 0.9444801807403564, 1.0596257448196411, -0.6656648516654968, 0.10929974913597107, 0.28660574555397034, -0.3219796121120453, 0.8003420829772949, -1.0823577642440796, -0.4347640573978424, 1.0217689275741577, -0.24870631098747253, -0.5785831212997437, 1.4862945079803467, 0.6948622465133667, -1.1264482736587524, -0.2946384847164154, -0.11807818710803986, -0.8607513904571533, -0.013299867510795593, -1.4863051176071167, -0.17651721835136414, 0.4642690420150757, -1.6423749923706055, -0.4663715064525604, -0.18370729684829712, 1.3559658527374268, -0.1589580476284027, 1.4814971685409546, -0.3803539276123047, -0.14758658409118652, -0.31475600600242615, -0.5097442865371704, 0.1519503891468048, -0.22548004984855652, -0.5548666715621948, 0.22310495376586914, -0.957176148891449, 0.39441993832588196, 1.4860917329788208, 0.2510547935962677, -0.06638975441455841, 0.36910879611968994, 1.1804884672164917, 0.3755323588848114, -0.1543925702571869, -0.7206240892410278, -1.491586446762085, 2.086700916290283, -1.5969858169555664, 1.94369375705719, 0.8027880191802979, -0.07436634600162506, -1.7273117303848267, -1.8171706199645996, 1.3963197469711304, 1.2093943357467651, 2.2318224906921387, 0.6326956748962402, 0.31970542669296265, -0.7187434434890747, -0.5795003771781921, 0.33187711238861084, -1.0004783868789673, -0.6542856097221375, 0.19819077849388123, 2.3381714820861816, 1.7599984407424927, -0.5241683721542358, -0.1742802858352661, -0.7959334254264832, 1.2251830101013184, -0.16273584961891174, 0.23268994688987732, 2.032180070877075, -0.432422935962677, -1.1019405126571655, 1.386710286140442, -2.348390817642212, 0.18832850456237793, 1.9796544313430786, 0.2802332937717438, 0.07904382050037384, -1.3061388731002808, -0.6247573494911194, -0.513955295085907, -0.3884161412715912, -1.188703179359436, 0.548683226108551, -0.22415661811828613, -0.8838691115379333, -1.4781765937805176, 0.12724930047988892, -1.1104657649993896, -1.8502099514007568, 0.37603676319122314, 1.7831343412399292, 2.195570707321167, -0.9052252173423767, 1.4572982788085938, -0.3444814682006836, 0.05152135342359543, 1.024389386177063, 1.1822510957717896, 3.101111888885498, 1.902381420135498, -1.0899157524108887, 0.6269928216934204, -0.13425016403198242, -0.4948023855686188, 1.1977574825286865, -1.2181950807571411, 1.2237820625305176, -0.1072511225938797, -1.1413803100585938, -1.2428785562515259, 0.833407461643219, 0.37235844135284424, -0.03364159166812897, -0.5362428426742554, 1.3715275526046753, 0.11902830749750137, 1.4237918853759766, 0.42752644419670105, -0.20301422476768494, 0.5471082329750061, -0.46478018164634705, -0.43991583585739136, 1.5430192947387695, 0.04592550918459892, -1.5075860023498535, -2.1764185428619385, -0.2549651861190796, -0.7611365914344788, 0.13405078649520874, -0.749517023563385, -0.9418867826461792, 1.7523895502090454, 0.42716264724731445, -1.0627667903900146, -0.2460305094718933, -0.49905410408973694, -0.5208368897438049, 2.7890236377716064, -1.3477635383605957, -0.14660927653312683, -1.0136938095092773, -0.5730628371238708, 1.5687403678894043, -1.1378769874572754, -0.14243555068969727, -1.0945384502410889, -0.6232908368110657, -1.3486254215240479, -0.5241535902023315, -0.04135357216000557, -0.9534032344818115, 0.8337533473968506, 0.22221338748931885, -1.1132627725601196, -0.2466910183429718, -0.9052140116691589, 0.8895586729049683, -0.2768654525279999, 0.3548599183559418, 1.9349459409713745, 0.42983749508857727, -0.4381957948207855, 0.763126790523529, 1.2076706886291504, 0.6861193776130676, -0.7743111252784729, -0.04787600785493851, -0.6994043588638306, 0.4919467270374298, -1.2579652070999146, 0.17157745361328125, -2.758586883544922, 0.617472767829895, -0.062003932893276215, -0.05614590272307396, -0.09005019813776016, -1.2220948934555054, 1.0989030599594116, 2.6916518211364746, -1.1709637641906738, 0.4511154294013977, 0.4413421154022217, 1.2695949077606201, -1.4545255899429321, 0.29593920707702637, -0.40694886445999146, 2.08020281791687, 0.2509416937828064, 1.192687749862671, -0.5444047451019287, -2.399202823638916, 0.6826071739196777, -1.191908597946167, -1.2196792364120483, 0.8659487962722778, -0.8877204656600952, 0.09807445853948593, -1.4936516284942627, -0.1047830805182457, -1.0618138313293457, -1.1949337720870972, 0.6016221642494202, 0.15775969624519348, 0.4823627471923828, -0.6977511048316956, 0.3307090103626251, -2.1635336875915527, -1.3995516300201416, -0.33195847272872925, -0.9542362689971924, 0.5288329720497131, -0.42326006293296814, 0.6083800196647644, -0.17403042316436768, -0.03871272876858711, 0.32854562997817993, 1.4381225109100342, 3.3399899005889893, 0.1525237262248993, 0.29655298590660095, -0.21669483184814453, -1.0099730491638184, 1.5494471788406372, 0.9220510125160217, -0.21547472476959229, -0.5065658092498779, -1.078284740447998, 1.188031554222107, 1.9631561040878296, 1.1103407144546509, -0.0740119218826294, -0.9142159819602966, -0.789485514163971, 0.016260560601949692, 0.21202027797698975, 0.44208791851997375, 0.881794273853302, -0.007348314393311739, 0.07801970839500427, 1.5474109649658203, 1.0809412002563477, -0.3759416341781616, 0.2879507541656494, -0.8901854753494263, -0.39685019850730896, 0.5226404070854187, 0.2726712226867676, 0.10295410454273224, 0.3759089708328247, -0.7785605192184448, -0.31147822737693787, -0.3295871615409851, -0.8349862694740295, -0.6573418974876404, -0.30802130699157715, -0.30070334672927856, 1.686298131942749, -0.016826368868350983, -0.5708310604095459, -0.0921463668346405, -0.6706973910331726, -0.20210623741149902, -1.0859237909317017, 0.349764883518219, -0.21388384699821472, -0.014941190369427204, -0.13382253050804138, 1.6436872482299805, -0.9032275080680847, -2.0360281467437744, 0.20076295733451843, 0.30560407042503357, -0.3382989168167114, 0.22391822934150696, 1.5925098657608032, 0.6102907657623291, 1.380617618560791, 1.3549662828445435, 0.9629641771316528, -0.774933397769928, -1.284071683883667, 0.6012110114097595, 1.0796520709991455, -1.363783359527588, 0.979881227016449, -0.13502377271652222, -0.6316538453102112, 0.542203962802887, 1.383424997329712, 0.41829198598861694, -1.99803626537323, 0.8509403467178345, -1.0026648044586182, 0.989323079586029, 0.6695935726165771, 0.7747719883918762, 0.07220607995986938, 0.7106451988220215, -1.1519526243209839, -1.1235755681991577, -0.7239730358123779, -0.6822943091392517, 1.8654841184616089, -0.29227566719055176, 0.5968255400657654, -0.2158331274986267, -1.156262755393982, -0.05085257813334465, 0.6792901754379272, 0.38332340121269226, -0.3538767397403717, 0.8148006200790405, -0.6079096794128418, -1.0112907886505127, -1.225936770439148, -0.39542916417121887, -0.9756884574890137, -0.9586597681045532, 1.0256068706512451, 0.5764098763465881, 0.4334530234336853, 1.850573182106018, 0.6293554902076721, 0.2960136830806732, -2.4450082778930664, 0.9798558950424194, 0.24844810366630554, -0.13743266463279724, 0.8875278830528259, 0.43142929673194885, 0.9494189620018005, -0.13759663701057434, 0.5460508465766907, -2.4352049827575684, 2.250318765640259, -0.25083765387535095, 0.6561304926872253, 0.11122075468301773, -0.16652724146842957, 1.0079950094223022, 0.6423432230949402, 0.4512369632720947, -1.019482970237732, 0.710163414478302, -0.5033434629440308, 1.164340615272522, 1.0448498725891113, -0.8736464381217957, 0.12541848421096802, 1.1998019218444824, 0.4940607249736786, -0.5410415530204773, -0.9773511290550232, -0.981803297996521, 0.991184651851654, 1.8116703033447266, -0.20498189330101013, -0.10655337572097778, 0.8020361065864563, 0.6644300818443298, -1.0955322980880737, -0.016882598400115967, -0.7430629730224609, -0.7668609619140625, 1.7313369512557983, 2.0539534091949463, -0.00557264219969511, -0.14738982915878296, -0.720765233039856, -1.2305775880813599, 0.8545438647270203, -0.06536757946014404, 0.12244423478841782, 0.7109863758087158, -0.7185109853744507, 1.167152762413025, 0.7512609362602234, 0.868687093257904, 0.18867141008377075, 0.2315148115158081, 0.439721941947937, -0.14287081360816956, -1.1363035440444946, -0.3138818144798279, -1.052647590637207, -2.418073892593384, 0.3001975119113922, -0.3578396141529083, -1.549014925956726, -0.07000027596950531, -0.9755016565322876, 0.931662917137146, -0.5653640031814575, -1.0541486740112305, -1.5717706680297852, 0.17512071132659912, -0.07176865637302399, 0.980640709400177, -1.5023205280303955, -0.2221033275127411, 1.2799890041351318, 0.8998737335205078, -0.5636311769485474, 1.083322286605835, 0.17657649517059326, 0.9855278134346008, 0.7781843543052673, -0.2795153260231018, 0.6343123316764832, 0.16558226943016052, -1.3644115924835205, 0.37715068459510803, 1.254361629486084, 0.23432281613349915, 1.3821508884429932, -0.4364427626132965, 0.016432825475931168, 0.34042447805404663, -0.43912920355796814, -0.4663439095020294, -0.4759064316749573, 0.6685121655464172, -0.019706543534994125, -0.9048491716384888, -0.12683294713497162, -0.22956514358520508, -0.26285073161125183, 0.15329399704933167, -1.5672305822372437, -0.2521142065525055, -0.5220677256584167, -0.5186536312103271, -1.3007786273956299, -0.015288264490664005, 1.503509521484375, -0.837157130241394, -0.1520594358444214, 0.4280145764350891, 0.35334208607673645, 0.41266757249832153, 0.5604833364486694, -0.727506697177887, -0.3402549922466278, -0.3834768533706665, -0.34057092666625977, 0.29002878069877625, 1.2516605854034424, 0.011591203510761261, -1.0950424671173096, 0.5836856365203857, -0.4185441732406616, 0.13795047998428345, 2.0603599548339844, 0.11994586139917374, -0.7067552208900452, 0.3148052990436554, -0.7347456216812134, 1.8211451768875122, 1.6491349935531616, 1.3696032762527466, -0.24365845322608948, -0.931948184967041, 0.6425374746322632, -0.3818950653076172, -0.3506103456020355, 0.8920981884002686, 0.33235621452331543, -0.26145902276039124, -1.4331140518188477, 0.7266126275062561, 1.2501908540725708, -0.8409408926963806, -0.7480177283287048, 0.06808117032051086, -0.820816159248352, 1.1109204292297363, 0.6931609511375427, 0.2869592010974884, 0.3939625918865204, 1.7528083324432373, 0.7261763215065002, -0.5285165309906006, 0.5016129612922668, 0.5407084822654724, -0.1731398105621338, -2.0133872032165527, -1.0672764778137207, 0.22091931104660034, -0.37253648042678833, -1.4712328910827637, 1.4794551134109497, -1.3050647974014282, -0.9735940098762512, 0.5468626618385315, 0.05032685399055481, 1.3329546451568604, 0.3238523304462433, 1.6314104795455933, 2.163426399230957, 0.7049937844276428, 0.36207205057144165, 1.1085342168807983, -0.2692929804325104, -0.5284211039543152, 1.757883071899414, -0.5018957257270813, 0.522355854511261, 1.1699719429016113, -0.32169339060783386, -1.0444947481155396, -0.8237031102180481, -1.2872694730758667, -0.7869154810905457, 1.1591863632202148, 0.022533275187015533, -1.2230154275894165, 0.38783973455429077, 1.5757203102111816, 0.22175657749176025, -0.37146925926208496, 0.5412874817848206, 0.4701751172542572, -0.8741508722305298, -0.24314764142036438, -0.9541051387786865, 0.5681699514389038, -0.15837642550468445, -0.32541462779045105, 0.2112138271331787, 0.5197556018829346, 1.390092134475708, 0.006769318133592606, 0.1426357626914978, 1.1574097871780396, -1.2880020141601562, 1.5608325004577637, -0.6397359371185303, 0.2319563627243042, -2.322411060333252, 1.5052204132080078, -0.8022920489311218, 1.908637285232544, -2.7376701831817627, 0.47622114419937134, -0.42647382616996765, -0.440019428730011, 0.2571965456008911, -0.3453179895877838, 0.1626894772052765, -0.11388690024614334, -1.0160843133926392, -0.1255163997411728, -0.5722391605377197, 0.749189019203186, 1.1015138626098633, 1.4188311100006104, -1.10161554813385, -0.29566890001296997, -1.636157751083374, -0.2712786793708801, -0.7898891568183899, 0.22311484813690186, -1.9013622999191284, -0.33758872747421265, -2.0352907180786133, -2.517352342605591, -1.3382261991500854, -0.823701798915863, 1.1845264434814453, 0.09777212142944336, -0.9712537527084351, 1.2969666719436646, -0.3783347010612488, -1.9031503200531006, 1.2453886270523071, -2.139885902404785 ]
https://github.com/huggingface/datasets/issues/5874
Using as_dataset on a "parquet" builder
Hi! You can refer to [this doc](https://huggingface.co/docs/datasets/filesystems#load-and-save-your-datasets-using-your-cloud-storage-filesystem) to see the intended usage (basically, it skips the Arrow -> Parquet conversion step in `ds = load_dataset(...); ds.to_parquet("path/to/parquet")`) and allows writing Parquet to remote storage unlike `to_parquet`). > I guess I'd expect as_dataset to generate the dataset in arrow format if it has to, or to suggest an alternative way to load the dataset (I've also tried other methods with load_dataset to no avail, probably due to misunderstandings on my part). `as_dataset` does not work with `file_format="parquet"` files as Parquet files cannot be memory-mapped, so I think we should just raise an error in that case.
### Describe the bug I used a custom builder to ``download_and_prepare`` a dataset. The first (very minor) issue is that the doc seems to suggest ``download_and_prepare`` will return the dataset, while it does not ([builder.py](https://github.com/huggingface/datasets/blob/main/src/datasets/builder.py#L718-L738)). ``` >>> from datasets import load_dataset_builder >>> builder = load_dataset_builder("rotten_tomatoes") >>> ds = builder.download_and_prepare("./output_dir", file_format="parquet") ``` The main issue I am facing is loading the dataset from those parquet files. I used the `as_dataset` method suggested by the doc, however it returns: ` FileNotFoundError: [Errno 2] Failed to open local file 'output_dir/__main__-train-00000-of-00245.arrow'. Detail: [errno 2] No such file or directory. ` ### Steps to reproduce the bug 1. Create a custom builder of some sort: `builder = CustomBuilder()`. 2. Run `download_and_prepare` with the parquet format: `builder.download_and_prepare("./output_dir", file_format="parquet")`. 3. Run `dataset = builder.as_dataset()`. ### Expected behavior I guess I'd expect `as_dataset` to generate the dataset in arrow format if it has to, or to suggest an alternative way to load the dataset (I've also tried other methods with `load_dataset` to no avail, probably due to misunderstandings on my part). ### Environment info ``` - `datasets` version: 2.12.0 - Platform: Linux-5.15.0-1027-gcp-x86_64-with-glibc2.31 - Python version: 3.10.0 - Huggingface_hub version: 0.14.1 - PyArrow version: 8.0.0 - Pandas version: 1.5.3 ```
133
104
Using as_dataset on a "parquet" builder ### Describe the bug I used a custom builder to ``download_and_prepare`` a dataset. The first (very minor) issue is that the doc seems to suggest ``download_and_prepare`` will return the dataset, while it does not ([builder.py](https://github.com/huggingface/datasets/blob/main/src/datasets/builder.py#L718-L738)). ``` >>> from datasets import load_dataset_builder >>> builder = load_dataset_builder("rotten_tomatoes") >>> ds = builder.download_and_prepare("./output_dir", file_format="parquet") ``` The main issue I am facing is loading the dataset from those parquet files. I used the `as_dataset` method suggested by the doc, however it returns: ` FileNotFoundError: [Errno 2] Failed to open local file 'output_dir/__main__-train-00000-of-00245.arrow'. Detail: [errno 2] No such file or directory. ` ### Steps to reproduce the bug 1. Create a custom builder of some sort: `builder = CustomBuilder()`. 2. Run `download_and_prepare` with the parquet format: `builder.download_and_prepare("./output_dir", file_format="parquet")`. 3. Run `dataset = builder.as_dataset()`. ### Expected behavior I guess I'd expect `as_dataset` to generate the dataset in arrow format if it has to, or to suggest an alternative way to load the dataset (I've also tried other methods with `load_dataset` to no avail, probably due to misunderstandings on my part). ### Environment info ``` - `datasets` version: 2.12.0 - Platform: Linux-5.15.0-1027-gcp-x86_64-with-glibc2.31 - Python version: 3.10.0 - Huggingface_hub version: 0.14.1 - PyArrow version: 8.0.0 - Pandas version: 1.5.3 ``` Hi! You can refer to [this doc](https://huggingface.co/docs/datasets/filesystems#load-and-save-your-datasets-using-your-cloud-storage-filesystem) to see the intended usage (basically, it skips the Arrow -> Parquet conversion step in `ds = load_dataset(...); ds.to_parquet("path/to/parquet")`) and allows writing Parquet to remote storage unlike `to_parquet`). > I guess I'd expect as_dataset to generate the dataset in arrow format if it has to, or to suggest an alternative way to load the dataset (I've also tried other methods with load_dataset to no avail, probably due to misunderstandings on my part). `as_dataset` does not work with `file_format="parquet"` files as Parquet files cannot be memory-mapped, so I think we should just raise an error in that case.
[ -1.1747794151306152, -0.8651508688926697, -0.6452351808547974, 1.5011615753173828, -0.11358693987131119, -1.3477064371109009, 0.15903188288211823, -1.0846970081329346, 1.7358369827270508, -0.7666627764701843, 0.34405216574668884, -1.6224406957626343, 0.007860351353883743, -0.6004584431648254, -0.7798833250999451, -0.8764734268188477, -0.401903361082077, -0.6911669373512268, 1.056688904762268, 2.381199598312378, 1.2113674879074097, -1.3634716272354126, 2.653240442276001, 0.7098130583763123, -0.221554696559906, -0.9645254611968994, 0.48563703894615173, 0.029139460995793343, -1.3388543128967285, -0.40162554383277893, -0.895812451839447, -0.09311867505311966, -0.5827602744102478, -0.5540345907211304, 0.007393598556518555, 0.4536452293395996, -0.35600730776786804, -0.47037172317504883, -0.5616795420646667, -0.8060204386711121, 0.44528910517692566, -0.3660619854927063, 0.9548370838165283, -0.33998745679855347, 1.7642103433609009, -0.6086260676383972, 0.5658955574035645, 0.6981087327003479, 1.2711559534072876, 0.20918186008930206, -0.0038449829444289207, 0.3794688284397125, 0.4195255637168884, 0.028390763327479362, 0.522106945514679, 1.1463567018508911, 0.5788841843605042, 0.5311385989189148, 0.7542346715927124, -2.2308509349823, 1.2763768434524536, -0.918695867061615, 0.28069058060646057, 1.3002792596817017, -0.9208697080612183, 0.3105054199695587, -1.7678897380828857, -0.04129228740930557, 0.5705117583274841, -2.2150673866271973, 0.29737207293510437, -1.4320694208145142, -0.5589529275894165, 0.9718145132064819, 0.42734038829803467, -1.148618459701538, 0.10085608065128326, -0.4595917761325836, 0.9928399920463562, 0.4623284935951233, 1.0872015953063965, -1.6923843622207642, -0.06253393739461899, -0.23725053668022156, 0.19143307209014893, -1.2075875997543335, -1.5153586864471436, 0.5535126328468323, 0.7391919493675232, 0.6292539238929749, -0.18475767970085144, 1.0284771919250488, -1.0081887245178223, 0.716373860836029, -1.0086581707000732, -1.7991647720336914, -1.4207866191864014, -2.2264034748077393, -2.285473108291626, 0.7235733866691589, -0.5126938819885254, -0.46462127566337585, 2.1272568702697754, -1.022740364074707, -1.7516669034957886, 1.1150668859481812, 0.22210413217544556, -0.03943537548184395, 2.3135569095611572, 0.21475014090538025, -0.6873320937156677, 0.5311722159385681, -0.7142204642295837, 0.7161427140235901, -0.3387826085090637, 1.245193362236023, 0.400450736284256, -1.1166284084320068, 1.5631848573684692, -0.3796735405921936, 0.6659181714057922, -0.6737063527107239, -0.4808187782764435, -0.6901784539222717, 0.2956234812736511, 1.9516183137893677, -0.27765464782714844, 1.6113327741622925, -0.3114383816719055, -1.5950616598129272, -1.6538512706756592, 0.9030933380126953, 0.4384247362613678, -0.7107256054878235, 0.08732092380523682, -0.4151690602302551, 0.18144278228282928, -0.02383095771074295, 1.190333366394043, 1.3477531671524048, 0.8045802116394043, -0.30886974930763245, -0.7497276067733765, 0.1572427600622177, 0.020077550783753395, -0.7812886834144592, -1.744020938873291, -0.3157111704349518, 0.14946603775024414, 0.556773841381073, -1.1519604921340942, 1.7967877388000488, 0.8412492275238037, 1.9569759368896484, 1.0081570148468018, -0.3332871198654175, 1.473779320716858, 0.10260599851608276, 1.899504542350769, -0.4265802204608917, 0.6292359232902527, -0.3887709081172943, -1.1340194940567017, 0.8440914154052734, -0.29425346851348877, -2.0390167236328125, -0.6988876461982727, -0.7743192315101624, -0.11305634677410126, -0.7567793130874634, 0.8868641257286072, -0.3116733431816101, -1.4592909812927246, 0.16635580360889435, -0.7637171745300293, 0.142852783203125, -1.209707260131836, 0.2747672498226166, 0.7502953410148621, -0.656288206577301, 0.09218649566173553, -0.2656785547733307, -1.2659759521484375, -0.45460933446884155, 0.4350317418575287, 1.869113564491272, -0.6635208129882812, 0.938031017780304, 1.0530465841293335, -0.7132917642593384, -0.008797140792012215, 0.28790175914764404, -0.26821571588516235, 0.7653419971466064, -1.1132254600524902, -0.410963773727417, 1.250569462776184, -0.23539218306541443, -0.6648950576782227, 1.4459706544876099, 0.7174679040908813, -0.9874427914619446, -0.1300709992647171, -0.15550076961517334, -0.7955313920974731, 0.006811942905187607, -1.5920641422271729, -0.06351210176944733, 0.43643543124198914, -1.5716239213943481, -0.48441988229751587, -0.16717247664928436, 1.244674563407898, -0.11318095028400421, 1.3815622329711914, -0.34970760345458984, -0.19575361907482147, -0.3601340651512146, -0.438879132270813, 0.09464950859546661, -0.20598794519901276, -0.6230225563049316, 0.18032489717006683, -0.6998189687728882, 0.26010024547576904, 1.4196223020553589, 0.25110435485839844, 0.04571665823459625, 0.5214096903800964, 1.138555645942688, 0.3615841567516327, -0.1030460074543953, -0.8758710026741028, -1.5367252826690674, 2.0173022747039795, -1.4254456758499146, 2.010056972503662, 0.6607316136360168, -0.017598960548639297, -1.7975184917449951, -1.9432501792907715, 1.3281913995742798, 1.102049708366394, 2.374568462371826, 0.5109032392501831, 0.42105111479759216, -0.8239147663116455, -0.6561578512191772, 0.3884908854961395, -0.9594630599021912, -0.7157819271087646, 0.1616763174533844, 2.36930775642395, 1.7671047449111938, -0.4406485855579376, -0.22700956463813782, -0.9858648777008057, 1.4896107912063599, -0.22745674848556519, 0.22206301987171173, 1.9644699096679688, -0.2500758767127991, -1.030935525894165, 1.323767900466919, -2.2714717388153076, 0.2054739147424698, 2.045339584350586, 0.14989560842514038, 0.07602401077747345, -1.372245192527771, -0.6378177404403687, -0.2560645043849945, -0.4068068563938141, -1.2137035131454468, 0.4942244291305542, -0.2766900062561035, -0.726802408695221, -1.408966302871704, 0.15051551163196564, -1.0874730348587036, -1.740746259689331, 0.17038756608963013, 1.9303679466247559, 1.9275827407836914, -0.7418079972267151, 1.593157172203064, -0.3544518053531647, 0.14583340287208557, 1.2759425640106201, 1.2558937072753906, 3.181637763977051, 1.9274095296859741, -1.3365626335144043, 0.7009257674217224, -0.13508814573287964, -0.48675569891929626, 1.1856106519699097, -1.1843911409378052, 1.294983148574829, -0.24895764887332916, -1.2638766765594482, -1.253394365310669, 0.9636549949645996, 0.4872938096523285, 0.027491191402077675, -0.5064659714698792, 1.1887876987457275, 0.05943416804075241, 1.3656595945358276, 0.6037333607673645, -0.4256959855556488, 0.697891116142273, -0.32774296402931213, -0.4999563694000244, 1.5425515174865723, 0.23290885984897614, -1.3834705352783203, -2.3062186241149902, -0.24009373784065247, -0.9270959496498108, 0.04793710261583328, -0.6245316863059998, -1.0019879341125488, 1.6358388662338257, 0.3633456528186798, -1.237470269203186, -0.2787051200866699, -0.31649836897850037, -0.5881295204162598, 2.73160982131958, -1.3317912817001343, -0.18463295698165894, -1.0043988227844238, -0.70205157995224, 1.6609324216842651, -1.2201030254364014, -0.29375600814819336, -1.0702215433120728, -0.4970632493495941, -1.2249033451080322, -0.4904342591762543, 0.015381155535578728, -0.9632118344306946, 0.8569100499153137, 0.13986895978450775, -1.2173997163772583, -0.3506203293800354, -0.9019807577133179, 0.9535725116729736, -0.15530627965927124, 0.15385004878044128, 1.9110665321350098, 0.37766098976135254, -0.4069482088088989, 0.7477959394454956, 1.122950553894043, 0.6058105826377869, -0.6631889939308167, 0.28019535541534424, -0.6451205015182495, 0.3223600387573242, -1.3655338287353516, 0.25286710262298584, -2.8558292388916016, 0.6596620082855225, -0.10835268348455429, -0.039817437529563904, -0.05907130241394043, -1.3267573118209839, 1.0075103044509888, 2.610430955886841, -1.2076629400253296, 0.49452149868011475, 0.30131998658180237, 1.1380196809768677, -1.6038259267807007, 0.28470921516418457, -0.4583343267440796, 2.084469795227051, 0.16604416072368622, 1.2163935899734497, -0.4398990869522095, -2.297124147415161, 0.6088452935218811, -1.2164937257766724, -1.1730008125305176, 0.8109065890312195, -0.869854748249054, 0.12908639013767242, -1.285812497138977, -0.19350679218769073, -0.8399092555046082, -1.1562176942825317, 0.6408723592758179, 0.12945160269737244, 0.4674132168292999, -0.6158301830291748, 0.34207606315612793, -2.249870777130127, -1.360979437828064, -0.238655224442482, -0.9885167479515076, 0.46956610679626465, -0.3469906747341156, 0.6899224519729614, -0.19393771886825562, 0.024254655465483665, 0.2977490723133087, 1.4982414245605469, 3.4229254722595215, 0.1544555276632309, 0.173443004488945, -0.21808914840221405, -0.944134533405304, 1.4674761295318604, 0.8864557147026062, -0.19084902107715607, -0.5693433284759521, -1.0396987199783325, 1.2162448167800903, 1.9991333484649658, 1.060541033744812, -0.016205307096242905, -0.786634624004364, -0.7180430293083191, 0.0027077822014689445, 0.1180596649646759, 0.5438851714134216, 0.874941349029541, 0.17442427575588226, 0.08592890202999115, 1.3770792484283447, 1.1518332958221436, -0.3257201611995697, 0.3993009626865387, -0.822131335735321, -0.47708290815353394, 0.46658024191856384, 0.3611752390861511, 0.014489060267806053, 0.29388347268104553, -1.0472615957260132, -0.17085711658000946, -0.4633917808532715, -0.8752119541168213, -0.7330512404441833, -0.42993399500846863, -0.39436665177345276, 1.6239993572235107, 0.06583751738071442, -0.5331634283065796, -0.04034048318862915, -0.7391899824142456, -0.12129800766706467, -1.0635391473770142, 0.31223616003990173, -0.16284415125846863, -0.02845458872616291, -0.05960226058959961, 1.6259278059005737, -0.9657800793647766, -2.0637784004211426, 0.20884476602077484, 0.1253829300403595, -0.30748024582862854, 0.2029852271080017, 1.6939311027526855, 0.543871283531189, 1.3980624675750732, 1.3924341201782227, 0.9328268766403198, -0.7105583548545837, -1.2708466053009033, 0.624821126461029, 0.9348502159118652, -1.3914395570755005, 0.8012025356292725, -0.02119125798344612, -0.5106021761894226, 0.5993422865867615, 1.2628815174102783, 0.46656545996665955, -2.0425751209259033, 0.8452664017677307, -0.9551906585693359, 0.8080601096153259, 0.7855294942855835, 0.7749736309051514, 0.18417061865329742, 0.8546370267868042, -1.157792091369629, -1.1278527975082397, -0.7051666975021362, -0.7403963804244995, 1.865870714187622, -0.29062652587890625, 0.5564723610877991, -0.17888449132442474, -1.3116779327392578, -0.0507185161113739, 0.723940908908844, 0.4040580689907074, -0.5232382416725159, 0.7400467395782471, -0.5993448495864868, -1.0306315422058105, -1.2941941022872925, -0.4941498339176178, -1.0770015716552734, -0.9849427938461304, 0.973703145980835, 0.8202418088912964, 0.3709896206855774, 1.8504858016967773, 0.7306848168373108, 0.3001125454902649, -2.6284730434417725, 0.8769508004188538, 0.31769508123397827, -0.08770867437124252, 0.8182361721992493, 0.3704177439212799, 1.0422581434249878, -0.041764579713344574, 0.6418115496635437, -2.3639042377471924, 2.3087761402130127, -0.27606135606765747, 0.6472151875495911, -0.039414770901203156, -0.14352066814899445, 1.0983659029006958, 0.5700721144676208, 0.5141271352767944, -1.1067605018615723, 0.698672354221344, -0.5755395889282227, 1.173702597618103, 0.8633238077163696, -0.8164833784103394, 0.02740066684782505, 1.4907554388046265, 0.4286439120769501, -0.6298465728759766, -0.9612564444541931, -0.9917247295379639, 0.9548779129981995, 1.704601764678955, -0.05763642489910126, -0.03647039830684662, 0.9029582142829895, 0.6592400074005127, -1.3224453926086426, 0.054494887590408325, -0.6963192224502563, -0.6244585514068604, 1.6513108015060425, 2.0116634368896484, -0.11050495505332947, -0.18764682114124298, -0.8325841426849365, -1.2739717960357666, 0.8389407992362976, 0.010151667520403862, 0.061438508331775665, 0.6550464034080505, -0.6136428713798523, 1.1034388542175293, 0.8089659214019775, 1.0027443170547485, 0.1732945293188095, 0.27187037467956543, 0.43839752674102783, -0.35040032863616943, -1.2116841077804565, -0.2948438227176666, -1.0426359176635742, -2.439795970916748, 0.4455832540988922, -0.24474309384822845, -1.4329737424850464, -0.030743323266506195, -1.0238676071166992, 0.8667963743209839, -0.6131306290626526, -1.0483359098434448, -1.4629380702972412, 0.1818099468946457, -0.09655385464429855, 0.9183834195137024, -1.5514745712280273, -0.11868543177843094, 1.1979241371154785, 0.9203804135322571, -0.754365861415863, 0.9401841759681702, 0.1945095956325531, 0.9944631457328796, 0.927543044090271, -0.40093860030174255, 0.5269087553024292, -0.009637802839279175, -1.3003802299499512, 0.411523699760437, 1.1814326047897339, 0.11658328771591187, 1.460390567779541, -0.5809425115585327, 0.01385410688817501, 0.3785279393196106, -0.5099419951438904, -0.47271662950515747, -0.5948517322540283, 0.6273301243782043, -0.03239934518933296, -0.901163637638092, 0.011991197243332863, -0.02264939248561859, -0.2112130969762802, 0.22766639292240143, -1.491983413696289, -0.0868898257613182, -0.3197949230670929, -0.613482654094696, -1.2057403326034546, -0.0738985538482666, 1.3425031900405884, -0.7618462443351746, -0.18331670761108398, 0.4856817126274109, 0.2997094392776489, 0.5385170578956604, 0.5769537091255188, -0.7417396306991577, -0.21322493255138397, -0.31913912296295166, -0.3317163288593292, 0.34419265389442444, 1.375912070274353, -0.10253667086362839, -0.9503278136253357, 0.6897813677787781, -0.36920294165611267, 0.10548907518386841, 1.9777014255523682, 0.09752777963876724, -0.7275840044021606, 0.2521360516548157, -0.759530782699585, 1.8787901401519775, 1.78314208984375, 1.3526216745376587, -0.08217045664787292, -1.0259758234024048, 0.5868943929672241, -0.36460453271865845, -0.3569345772266388, 0.8581276535987854, 0.37187010049819946, -0.23889191448688507, -1.4058594703674316, 0.7968252897262573, 1.2317177057266235, -0.8340246677398682, -0.8261637687683105, 0.10242915898561478, -0.7955379486083984, 1.0860329866409302, 0.6226112842559814, 0.3362703323364258, 0.2603531777858734, 1.6562528610229492, 0.7833050489425659, -0.4183832108974457, 0.5456515550613403, 0.5141788125038147, -0.18726152181625366, -2.1183555126190186, -1.205261468887329, 0.3714628517627716, -0.5222147107124329, -1.6806234121322632, 1.4263664484024048, -1.2001584768295288, -1.0109869241714478, 0.5640318393707275, 0.05931440740823746, 1.4307279586791992, 0.3478317856788635, 1.6512826681137085, 2.139503240585327, 0.9435344338417053, 0.4914456605911255, 1.2889713048934937, -0.22732561826705933, -0.4760628640651703, 1.764436960220337, -0.5185054540634155, 0.5144450068473816, 1.0807175636291504, -0.37196555733680725, -1.0845078229904175, -0.829258918762207, -1.2665014266967773, -0.7332288026809692, 1.1438995599746704, 0.06641621142625809, -1.0884727239608765, 0.3001164495944977, 1.5893296003341675, 0.11207237839698792, -0.2915235757827759, 0.7857578992843628, 0.35619479417800903, -0.8542471528053284, -0.12367425113916397, -0.917917013168335, 0.583912193775177, -0.2140015959739685, -0.35512033104896545, 0.34278762340545654, 0.4178121089935303, 1.320554494857788, -0.01857934147119522, 0.09050455689430237, 1.193738341331482, -1.3358612060546875, 1.47179114818573, -0.7175567150115967, 0.30511143803596497, -2.3449816703796387, 1.4253205060958862, -0.8024665117263794, 1.9199903011322021, -2.66039776802063, 0.4670710861682892, -0.571373462677002, -0.48116016387939453, 0.2772100567817688, -0.28678062558174133, 0.0965455174446106, -0.1450607031583786, -1.1638962030410767, -0.07851642370223999, -0.7199984788894653, 0.5801858901977539, 1.1396464109420776, 1.4364502429962158, -1.1362234354019165, -0.28296738862991333, -1.7463611364364624, -0.1693456470966339, -0.7109917998313904, 0.3769119679927826, -1.9110020399093628, -0.1110580638051033, -1.9304835796356201, -2.489293098449707, -1.298716425895691, -0.8147571682929993, 1.072751522064209, 0.14534850418567657, -0.8273535370826721, 1.2479065656661987, -0.38071346282958984, -1.864760398864746, 1.1526625156402588, -2.1822879314422607 ]
https://github.com/huggingface/datasets/issues/5871
data configuration hash suffix depends on uncanonicalized data_dir
Indeed, it makes sense to normalize `data_dir`. Feel free to submit a PR (this can be "fixed" [here](https://github.com/huggingface/datasets/blob/89f775226321ba94e5bf4670a323c0fb44f5f65c/src/datasets/builder.py#L173))
### Describe the bug I am working with the `recipe_nlg` dataset, which requires manual download. Once it's downloaded, I've noticed that the hash in the custom data configuration is different if I add a trailing `/` to my `data_dir`. It took me a while to notice that the hashes were different, and to understand that that was the cause of my dataset being processed anew instead of the cached version being used. ### Steps to reproduce the bug 1. Follow the steps to manually download the `recipe_nlg` dataset to `/data/recipenlg`. 2. Load it using `load_dataset`, once without a trailing slash and once with one: ```python >>> ds = load_dataset("recipe_nlg", data_dir="/data/recipenlg") Using custom data configuration default-082278caeea85765 Downloading and preparing dataset recipe_nlg/default to /home/kyle/.cache/huggingface/datasets/recipe_nlg/default-082278caeea85765/1.0.0/aa4f120223637bedf7360cecb70a9bd108acfd64e38207ca90c9f385d21e5e74... Dataset recipe_nlg downloaded and prepared to /home/kyle/.cache/huggingface/datasets/recipe_nlg/default-082278caeea85765/1.0.0/aa4f120223637bedf7360cecb70a9bd108acfd64e38207ca90c9f385d21e5e74. Subsequent calls will reuse this data. 100%|███████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.10s/it] DatasetDict({ train: Dataset({ features: ['id', 'title', 'ingredients', 'directions', 'link', 'source', 'ner'], num_rows: 2231142 }) }) >>> ds = load_dataset("recipe_nlg", data_dir="/data/recipenlg/") Using custom data configuration default-83e87680785d0493 Downloading and preparing dataset recipe_nlg/default to /home/user/.cache/huggingface/datasets/recipe_nlg/default-83e87680785d0493/1.0.0/aa4f120223637bedf7360cecb70a9bd108acfd64e38207ca90c9f385d21e5e74... Generating train split: 1%| | 12701/2231142 [00:04<13:15, 2790.25 examples/s ^C ``` 3. Observe that the hash suffix in the custom data configuration changes due to the altered string. ### Expected behavior I think I would expect the hash to remain constant if it actually points to the same location on disk. I would expect the use of `os.path.normpath` to canonicalize the paths. ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.31 - Python version: 3.10.8 - PyArrow version: 10.0.1 - Pandas version: 1.5.2
134
18
data configuration hash suffix depends on uncanonicalized data_dir ### Describe the bug I am working with the `recipe_nlg` dataset, which requires manual download. Once it's downloaded, I've noticed that the hash in the custom data configuration is different if I add a trailing `/` to my `data_dir`. It took me a while to notice that the hashes were different, and to understand that that was the cause of my dataset being processed anew instead of the cached version being used. ### Steps to reproduce the bug 1. Follow the steps to manually download the `recipe_nlg` dataset to `/data/recipenlg`. 2. Load it using `load_dataset`, once without a trailing slash and once with one: ```python >>> ds = load_dataset("recipe_nlg", data_dir="/data/recipenlg") Using custom data configuration default-082278caeea85765 Downloading and preparing dataset recipe_nlg/default to /home/kyle/.cache/huggingface/datasets/recipe_nlg/default-082278caeea85765/1.0.0/aa4f120223637bedf7360cecb70a9bd108acfd64e38207ca90c9f385d21e5e74... Dataset recipe_nlg downloaded and prepared to /home/kyle/.cache/huggingface/datasets/recipe_nlg/default-082278caeea85765/1.0.0/aa4f120223637bedf7360cecb70a9bd108acfd64e38207ca90c9f385d21e5e74. Subsequent calls will reuse this data. 100%|███████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.10s/it] DatasetDict({ train: Dataset({ features: ['id', 'title', 'ingredients', 'directions', 'link', 'source', 'ner'], num_rows: 2231142 }) }) >>> ds = load_dataset("recipe_nlg", data_dir="/data/recipenlg/") Using custom data configuration default-83e87680785d0493 Downloading and preparing dataset recipe_nlg/default to /home/user/.cache/huggingface/datasets/recipe_nlg/default-83e87680785d0493/1.0.0/aa4f120223637bedf7360cecb70a9bd108acfd64e38207ca90c9f385d21e5e74... Generating train split: 1%| | 12701/2231142 [00:04<13:15, 2790.25 examples/s ^C ``` 3. Observe that the hash suffix in the custom data configuration changes due to the altered string. ### Expected behavior I think I would expect the hash to remain constant if it actually points to the same location on disk. I would expect the use of `os.path.normpath` to canonicalize the paths. ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.4.0-147-generic-x86_64-with-glibc2.31 - Python version: 3.10.8 - PyArrow version: 10.0.1 - Pandas version: 1.5.2 Indeed, it makes sense to normalize `data_dir`. Feel free to submit a PR (this can be "fixed" [here](https://github.com/huggingface/datasets/blob/89f775226321ba94e5bf4670a323c0fb44f5f65c/src/datasets/builder.py#L173))
[ -1.159549355506897, -0.9545087218284607, -0.8072333931922913, 1.4055579900741577, -0.07978649437427521, -1.1871358156204224, 0.15875309705734253, -1.0666435956954956, 1.6769993305206299, -0.6768544912338257, 0.23950590193271637, -1.7272834777832031, -0.03943215310573578, -0.6326644420623779, -0.7477008700370789, -0.9285191893577576, -0.3180760443210602, -0.8073830604553223, 0.9496020078659058, 2.474001884460449, 1.1081628799438477, -1.3159968852996826, 2.7457070350646973, 0.6845739483833313, -0.2150571495294571, -1.0150904655456543, 0.49453309178352356, -0.011850357986986637, -1.189527988433838, -0.4002453684806824, -0.956989586353302, 0.0491521842777729, -0.6370521187782288, -0.5309080481529236, 0.0779518187046051, 0.4846188724040985, -0.32349133491516113, -0.4444861114025116, -0.5493863224983215, -0.7719568014144897, 0.4722825586795807, -0.4453166425228119, 0.9220118522644043, -0.3496493399143219, 1.7986035346984863, -0.49417006969451904, 0.34874284267425537, 0.729465663433075, 1.3477834463119507, 0.22978369891643524, 0.04376179352402687, 0.3269725441932678, 0.37214764952659607, -0.005529453046619892, 0.38601070642471313, 1.209526777267456, 0.5619297623634338, 0.49017003178596497, 0.7301306128501892, -2.3030176162719727, 1.3309201002120972, -0.9716224074363708, 0.29002007842063904, 1.3316620588302612, -0.8724203109741211, 0.39594030380249023, -1.828408122062683, -0.04817572236061096, 0.5945582389831543, -2.2494301795959473, 0.2881374657154083, -1.3291531801223755, -0.4973730742931366, 0.8598090410232544, 0.3115309476852417, -1.1956744194030762, 0.27725672721862793, -0.457038938999176, 1.0832265615463257, 0.4667240083217621, 1.1315433979034424, -1.7025141716003418, -0.09925864636898041, -0.2764316499233246, 0.09889020025730133, -1.344411015510559, -1.6327152252197266, 0.5836001038551331, 0.6211605072021484, 0.6366954445838928, -0.14637281000614166, 0.9694096446037292, -1.001629114151001, 0.7617993950843811, -0.9837598204612732, -1.6912134885787964, -1.344726800918579, -2.2671587467193604, -2.2699954509735107, 0.7083601355552673, -0.4178694486618042, -0.5233529806137085, 1.9921668767929077, -1.00437331199646, -1.7526459693908691, 1.0820317268371582, 0.37812942266464233, -0.07190908491611481, 2.434600353240967, 0.22630438208580017, -0.7601110339164734, 0.4637909531593323, -0.7509342432022095, 0.8715867400169373, -0.38328874111175537, 1.4110703468322754, 0.5040246248245239, -0.9174677729606628, 1.600377082824707, -0.4023677706718445, 0.5588381290435791, -0.6858964562416077, -0.5280333161354065, -0.8458355665206909, 0.33455923199653625, 1.8822461366653442, -0.3392317295074463, 1.5998320579528809, -0.35167890787124634, -1.5415081977844238, -1.5663944482803345, 0.8811262249946594, 0.45262181758880615, -0.8794565200805664, 0.0703498125076294, -0.4609888195991516, 0.19605308771133423, -0.08851835131645203, 1.1590697765350342, 1.290015697479248, 0.673736035823822, -0.3063197135925293, -0.9703207015991211, 0.08656339347362518, -0.06967415660619736, -0.6658324003219604, -1.7906228303909302, -0.3137728273868561, 0.1949494183063507, 0.6227270364761353, -1.2466102838516235, 1.667108178138733, 0.8643156886100769, 2.0310158729553223, 1.0629363059997559, -0.396628737449646, 1.5184353590011597, 0.14010828733444214, 1.909401774406433, -0.6215494871139526, 0.615200936794281, -0.3339724540710449, -1.1044830083847046, 0.8455791473388672, -0.35034194588661194, -1.9880245923995972, -0.7323299646377563, -0.8466590642929077, -0.25642818212509155, -0.8006325364112854, 0.8616977334022522, -0.3632335364818573, -1.453607439994812, 0.23359373211860657, -0.61235511302948, 0.0918845534324646, -1.1967589855194092, 0.26113206148147583, 0.7574730515480042, -0.5637539625167847, 0.05730697140097618, -0.18261045217514038, -1.3300421237945557, -0.4293688237667084, 0.3404417634010315, 1.8826918601989746, -0.6147026419639587, 0.9063907265663147, 1.0261555910110474, -0.7237902283668518, 0.08748258650302887, 0.2917211949825287, -0.25670257210731506, 0.7752639055252075, -1.0830100774765015, -0.4018414318561554, 1.1638877391815186, -0.21423864364624023, -0.6055169105529785, 1.3942140340805054, 0.7728222608566284, -1.0475540161132812, -0.21877512335777283, -0.0949288159608841, -0.8328038454055786, 0.05361313000321388, -1.6000862121582031, -0.14060918986797333, 0.4191804826259613, -1.4448437690734863, -0.496480792760849, -0.28993257880210876, 1.2383984327316284, -0.2215011566877365, 1.308276891708374, -0.2558165490627289, -0.16597697138786316, -0.35030218958854675, -0.5113078951835632, 0.10476279258728027, -0.25491654872894287, -0.5804480910301208, 0.19911038875579834, -0.7545561790466309, 0.317349374294281, 1.4607596397399902, 0.3590609133243561, 0.04357295483350754, 0.5097390413284302, 1.1467647552490234, 0.3356476128101349, -0.026409517973661423, -0.8502839803695679, -1.5877795219421387, 1.9490373134613037, -1.4605236053466797, 1.9132397174835205, 0.7080544233322144, 0.009433459490537643, -1.7542654275894165, -1.8175128698349, 1.3906222581863403, 1.0573647022247314, 2.421257734298706, 0.6055570244789124, 0.3882814943790436, -0.7417293787002563, -0.751926064491272, 0.35775521397590637, -1.00775945186615, -0.7131131887435913, 0.21714374423027039, 2.388249635696411, 1.7263281345367432, -0.5240963101387024, -0.2517060339450836, -0.953108549118042, 1.331761121749878, -0.07535004615783691, 0.23094624280929565, 2.0215022563934326, -0.32730916142463684, -1.11038076877594, 1.2000256776809692, -2.3721563816070557, 0.11944104731082916, 2.0063064098358154, 0.3058159351348877, 0.11157552897930145, -1.3907970190048218, -0.6810221076011658, -0.2897651195526123, -0.4737386703491211, -1.2528008222579956, 0.4998573958873749, -0.30198338627815247, -0.8136914372444153, -1.5213513374328613, 0.11779336631298065, -1.1780081987380981, -1.6240746974945068, 0.25900357961654663, 1.9402989149093628, 2.061607837677002, -0.7064903974533081, 1.5416626930236816, -0.2791084349155426, 0.1452411562204361, 1.1721864938735962, 1.3340665102005005, 3.137120485305786, 1.8713701963424683, -1.264984369277954, 0.7343985438346863, -0.20002837479114532, -0.47087109088897705, 1.190083384513855, -1.115275502204895, 1.2088030576705933, -0.1971745640039444, -1.1795129776000977, -1.2394038438796997, 1.0205066204071045, 0.4591977298259735, 0.017414340749382973, -0.4998472332954407, 1.2059221267700195, 0.10114899277687073, 1.295570731163025, 0.6250962018966675, -0.3266516327857971, 0.6056433916091919, -0.34862178564071655, -0.6079014539718628, 1.566171646118164, 0.21392454206943512, -1.3880141973495483, -2.4186277389526367, -0.29369398951530457, -0.7829854488372803, 0.028860293328762054, -0.6524396538734436, -1.0218641757965088, 1.7075552940368652, 0.27231839299201965, -1.2254518270492554, -0.25417742133140564, -0.35556745529174805, -0.564308226108551, 2.6356101036071777, -1.3216562271118164, -0.22071152925491333, -0.946349024772644, -0.5437771081924438, 1.5479713678359985, -1.1240876913070679, -0.14479520916938782, -1.0273457765579224, -0.576348602771759, -1.3421396017074585, -0.5229862928390503, 0.0025761472061276436, -0.8448097705841064, 0.8176056146621704, 0.26735255122184753, -1.1126999855041504, -0.22377462685108185, -0.9182294011116028, 0.8717012405395508, -0.13024450838565826, 0.24209631979465485, 1.8601993322372437, 0.4514731764793396, -0.37567001581192017, 0.7609906792640686, 1.1113693714141846, 0.6317269802093506, -0.6690270900726318, 0.1447683572769165, -0.6463568210601807, 0.21706514060497284, -1.2994883060455322, 0.3016904592514038, -2.8797924518585205, 0.6334612965583801, -0.14779700338840485, -0.05979173630475998, 0.023167654871940613, -1.358203649520874, 1.0947825908660889, 2.603318452835083, -1.192330002784729, 0.5229743719100952, 0.37112295627593994, 1.309342384338379, -1.6510668992996216, 0.31457242369651794, -0.47760623693466187, 2.1161956787109375, 0.19560354948043823, 1.1453584432601929, -0.5723865032196045, -2.2435433864593506, 0.5153460502624512, -1.2645986080169678, -1.158886432647705, 0.722306489944458, -0.9387590289115906, 0.15365538001060486, -1.4616113901138306, -0.2656796872615814, -0.960078775882721, -1.2518457174301147, 0.8109554648399353, 0.08176103234291077, 0.49650469422340393, -0.6138082146644592, 0.35577496886253357, -2.237065553665161, -1.4171864986419678, -0.21798014640808105, -0.9476013779640198, 0.5681314468383789, -0.37389877438545227, 0.6747187376022339, -0.1341448277235031, 0.08199310302734375, 0.2931745946407318, 1.4670512676239014, 3.343794584274292, 0.20691139996051788, 0.30824780464172363, -0.20021602511405945, -0.9214450120925903, 1.452641487121582, 0.9926372170448303, -0.10809706151485443, -0.5923947691917419, -1.034964919090271, 1.2993172407150269, 2.1033191680908203, 1.0350010395050049, 0.021945487707853317, -0.7737244963645935, -0.7012242674827576, 0.03238622844219208, 0.1829175502061844, 0.4371642470359802, 0.7925466299057007, -0.00415061553940177, 0.14896322786808014, 1.421484112739563, 1.1909103393554688, -0.39744967222213745, 0.4444587230682373, -0.8786033987998962, -0.43187448382377625, 0.45059534907341003, 0.23136761784553528, -0.0013339072465896606, 0.38860833644866943, -1.0621057748794556, -0.3040722906589508, -0.3729669749736786, -0.9134987592697144, -0.7438148260116577, -0.39673158526420593, -0.3570422828197479, 1.631238579750061, 0.15698173642158508, -0.5093129873275757, -0.03317800909280777, -0.7072832584381104, -0.1502017080783844, -1.146802306175232, 0.1881657838821411, -0.141144260764122, -0.08273211121559143, -0.05294542387127876, 1.674493432044983, -0.9386262893676758, -2.129272937774658, 0.15747898817062378, 0.314660906791687, -0.41839873790740967, 0.21960099041461945, 1.693739652633667, 0.5204405188560486, 1.4145935773849487, 1.3995866775512695, 0.9909728169441223, -0.6774930357933044, -1.2757086753845215, 0.686272382736206, 0.8898540139198303, -1.3124425411224365, 0.8276184797286987, -0.030836446210741997, -0.561285138130188, 0.7190608382225037, 1.232380986213684, 0.3737172484397888, -2.037802219390869, 0.7862287163734436, -0.9071793556213379, 0.7387165427207947, 0.6432315111160278, 0.7756392359733582, 0.24189148843288422, 0.8841819763183594, -1.246644377708435, -1.1548523902893066, -0.8042523264884949, -0.5367411375045776, 1.961798906326294, -0.21310116350650787, 0.5110984444618225, -0.13201195001602173, -1.232399582862854, -0.06824089586734772, 0.752264142036438, 0.4050828218460083, -0.476504921913147, 0.8086513876914978, -0.6601096987724304, -1.146355152130127, -1.3391156196594238, -0.44437742233276367, -1.0137091875076294, -0.9492276310920715, 0.9900766015052795, 0.809300422668457, 0.3267068564891815, 1.9101598262786865, 0.6295653581619263, 0.26362109184265137, -2.592970132827759, 0.8792286515235901, 0.3089819550514221, -0.10196717083454132, 0.8920884728431702, 0.3658181130886078, 1.1314467191696167, 0.006351696327328682, 0.6103665828704834, -2.330430507659912, 2.2168772220611572, -0.26602691411972046, 0.7730032205581665, -0.07253161072731018, -0.17727500200271606, 1.0845133066177368, 0.542506217956543, 0.5493837594985962, -1.1097133159637451, 0.7036753296852112, -0.5900875329971313, 1.1285560131072998, 0.99720698595047, -0.8654457330703735, 0.09774547815322876, 1.407273292541504, 0.46757766604423523, -0.44003555178642273, -0.9511135816574097, -0.8351315259933472, 0.8904194831848145, 1.6865289211273193, -0.08215440809726715, 0.05414332076907158, 0.9043609499931335, 0.6705278754234314, -1.3523399829864502, 0.12580326199531555, -0.6616594791412354, -0.7009294629096985, 1.7513504028320312, 2.0226216316223145, -0.16294443607330322, -0.14276045560836792, -0.7906704545021057, -1.2972394227981567, 0.7524551749229431, 0.023829713463783264, 0.11953146755695343, 0.5872708559036255, -0.6900404691696167, 1.0892612934112549, 0.7516481876373291, 0.9511216878890991, 0.103416308760643, 0.36082157492637634, 0.4572303593158722, -0.37356820702552795, -1.0446468591690063, -0.32713183760643005, -1.0793250799179077, -2.4908177852630615, 0.5153000950813293, -0.18210934102535248, -1.478840947151184, 0.04500136524438858, -1.001968264579773, 0.9438447952270508, -0.5791348218917847, -1.1260483264923096, -1.4712790250778198, 0.3059002161026001, -0.06954820454120636, 0.9268656373023987, -1.6350128650665283, -0.09462061524391174, 1.1730808019638062, 0.9277766346931458, -0.6364123821258545, 1.009121060371399, 0.3102346956729889, 0.9996058344841003, 0.8344434499740601, -0.4461757242679596, 0.5323362350463867, 0.06997168064117432, -1.3414127826690674, 0.48418086767196655, 1.2158329486846924, 0.19537702202796936, 1.4471861124038696, -0.4788624942302704, -0.04106302186846733, 0.39177554845809937, -0.5271660685539246, -0.38500431180000305, -0.5076444745063782, 0.6772370934486389, 0.05795608088374138, -0.8937836289405823, -0.021597012877464294, -0.014953570440411568, -0.18587520718574524, 0.23251086473464966, -1.4723979234695435, -0.2737264037132263, -0.4953882396221161, -0.5124553442001343, -1.3243999481201172, 0.042380183935165405, 1.3303581476211548, -0.7586326003074646, -0.2693719267845154, 0.5125401020050049, 0.4413491487503052, 0.5012412667274475, 0.5753369927406311, -0.6404860019683838, -0.30385759472846985, -0.31620246171951294, -0.3879612982273102, 0.2576354742050171, 1.3051749467849731, -0.1615026742219925, -1.0547136068344116, 0.6840680241584778, -0.4145624041557312, 0.004530943930149078, 1.8461034297943115, 0.00627044215798378, -0.7720125317573547, 0.259390652179718, -0.6777653694152832, 1.8903168439865112, 1.755160927772522, 1.4054863452911377, -0.16361109912395477, -0.9080117344856262, 0.600803792476654, -0.25717559456825256, -0.38630998134613037, 0.9510056972503662, 0.4792232811450958, -0.1226423978805542, -1.4603832960128784, 0.6816375851631165, 1.251120686531067, -0.9254752397537231, -0.7936058044433594, 0.12419797480106354, -0.7979676723480225, 1.193534255027771, 0.6468230485916138, 0.3653983175754547, 0.22019685804843903, 1.6612461805343628, 0.7123478055000305, -0.5426990389823914, 0.5577654838562012, 0.48037049174308777, -0.1753101497888565, -2.2220282554626465, -1.1063759326934814, 0.32033300399780273, -0.3127807080745697, -1.6206413507461548, 1.3622276782989502, -1.1121618747711182, -0.975580096244812, 0.49230530858039856, 0.1170400083065033, 1.429058313369751, 0.3613695204257965, 1.677872896194458, 2.109344959259033, 0.8247357606887817, 0.4063732326030731, 1.2840889692306519, -0.10226653516292572, -0.45778366923332214, 1.8067734241485596, -0.4334350526332855, 0.5657703876495361, 1.0629438161849976, -0.3753809332847595, -1.150168538093567, -0.7591575980186462, -1.246526837348938, -0.6040098071098328, 1.16111159324646, 0.11056029796600342, -1.2051392793655396, 0.2693915069103241, 1.6735154390335083, 0.022951912134885788, -0.34161868691444397, 0.6895037293434143, 0.4676055312156677, -0.69698166847229, -0.027066819369792938, -0.9333404302597046, 0.5467135906219482, -0.18068848550319672, -0.3104393184185028, 0.2966420650482178, 0.4945961534976959, 1.2669651508331299, -0.0021050022915005684, 0.10962720215320587, 1.1785225868225098, -1.4004119634628296, 1.4677456617355347, -0.6716130375862122, 0.25843021273612976, -2.378761053085327, 1.3321805000305176, -0.7400611042976379, 1.9185643196105957, -2.56333327293396, 0.39290738105773926, -0.6232903003692627, -0.5417093634605408, 0.37208613753318787, -0.3363611400127411, 0.11459876596927643, -0.15866237878799438, -1.0360740423202515, 0.013022882863879204, -0.7410122156143188, 0.5498852729797363, 1.1690168380737305, 1.3395335674285889, -1.0544612407684326, -0.22847098112106323, -1.7081522941589355, -0.16343410313129425, -0.7095339298248291, 0.3332363963127136, -2.022033929824829, -0.2195548564195633, -1.9902361631393433, -2.373155355453491, -1.4172580242156982, -0.8670085072517395, 1.0710575580596924, 0.12174154818058014, -1.026212453842163, 1.256627082824707, -0.39388298988342285, -1.8415634632110596, 1.1446528434753418, -2.1237287521362305 ]
https://github.com/huggingface/datasets/issues/5870
Behaviour difference between datasets.map and IterableDatasets.map
PS - some work is definitely needed for 'special cases' docs, not explanations, just usages of 'functions' under mixture of special cases, like a combination of custom databuilder + iterable dataset for large size + dynamic .map() application.
### Describe the bug All the examples in all the docs mentioned throughout huggingface datasets correspond to datasets object, and not IterableDatasets object. At one point of time, they might have been in sync, but the code for datasets version >=2.9.0 is very different as compared to the docs. I basically need to .map() a transform on images in an iterable dataset, which was made using a custom databuilder config. This works very good in map-styles datasets, but the .map() fails in IterableDatasets, show behvaiour as such: "pixel_values" key not found, KeyError in examples object/dict passed into transform function for map, which works fine with map style, even as batch. In iterable style, the object/dict passed into map() paramter callable function is completely different as what is mentioned in all examples. Please look into this. Thank you My databuilder class is inherited as such: def _info(self): print ("Config: ",self.config.__dict__.keys()) return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "labels": datasets.Sequence(datasets.Value("uint16")), # "labels_name": datasets.Value("string"), # "pixel_values": datasets.Array3D(shape=(3, 1280, 960), dtype="float32"), "pixel_values": datasets.Array3D(shape=(1280, 960, 3), dtype="uint8"), "image_s3_path": datasets.Value("string"), } ), supervised_keys=None, homepage="none", citation="", ) def _split_generators(self, dl_manager): records_train = list(db.mini_set.find({'split':'train'},{'image_s3_path':1, 'ocwen_template_name':1}))[:10000] records_val = list(db.mini_set.find({'split':'val'},{'image_s3_path':1, 'ocwen_template_name':1}))[:1000] # print (len(records),self.config.num_shards) # shard_size_train = len(records_train)//self.config.num_shards # sharded_records_train = [records_train[i:i+shard_size_train] for i in range(0,len(records_train),shard_size_train)] # shard_size_val = len(records_val)//self.config.num_shards # sharded_records_val = [records_val[i:i+shard_size_val] for i in range(0,len(records_val),shard_size_val)] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"records":records_train} # passing list of records, for sharding to take over ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"records":records_val} # passing list of records, for sharding to take over ), ] def _generate_examples(self, records): # print ("Generating examples for [{}] shards".format(len(shards))) # initiate_db_connection() # records = list(db.mini_set.find({'split':split},{'image_s3_path':1, 'ocwen_template_name':1}))[:10] id_ = 0 # for records in shards: for i,rec in enumerate(records): img_local_path = fetch_file(rec['image_s3_path'],self.config.buffer_dir) # t = self.config.processor(Image.open(img_local_path), random_padding=True, return_tensors="np").pixel_values.squeeze() # print (t.shape, type(t),type(t[0][0][0])) # sys.exit() pvs = np.array(Image.open(img_local_path).resize((1280,960))) # image object is wxh, so resize as per that, numpy array of it is hxwxc, transposing to cxwxh # pvs = self.config.processor(Image.open(img_local_path), random_padding=True, return_tensors="np").pixel_values.astype(np.float16).squeeze() # print (type(pvs[0][0][0])) lblids = self.config.processor.tokenizer('<s_class>'+rec['ocwen_template_name']+'</s_class>'+'</s>', add_special_tokens=False, padding=False, truncation=False, return_tensors="np")["input_ids"].squeeze(0) # take padding later, as per batch collating # print (len(lblids),type(lblids[0])) # print (type(pvs),pvs.shape,type(pvs[0][0][0]), type(lblids)) yield id_, {"labels":lblids,"pixel_values":pvs,"image_s3_path":rec['image_s3_path']} id_+=1 os.remove(img_local_path) and I load it inside my trainer script as such `ds = load_dataset("/tmp/DonutDS/dataset/", split="train", streaming=True) # iterable dataset, where .map() falls` or also as `ds = load_from_disk('/tmp/DonutDS/dataset/') #map style dataset` Thank you to the team for having such a great library, and for this bug fix in advance! ### Steps to reproduce the bug Above config can allow one to reproduce the said bug ### Expected behavior .map() should show some consistency b/w map-style and iterable-style datasets, or atleast the docs should address iterable-style datasets behaviour and examples. I honestly do not figure the use of such docs. ### Environment info datasets==2.9.0 transformers==4.26.0
135
38
Behaviour difference between datasets.map and IterableDatasets.map ### Describe the bug All the examples in all the docs mentioned throughout huggingface datasets correspond to datasets object, and not IterableDatasets object. At one point of time, they might have been in sync, but the code for datasets version >=2.9.0 is very different as compared to the docs. I basically need to .map() a transform on images in an iterable dataset, which was made using a custom databuilder config. This works very good in map-styles datasets, but the .map() fails in IterableDatasets, show behvaiour as such: "pixel_values" key not found, KeyError in examples object/dict passed into transform function for map, which works fine with map style, even as batch. In iterable style, the object/dict passed into map() paramter callable function is completely different as what is mentioned in all examples. Please look into this. Thank you My databuilder class is inherited as such: def _info(self): print ("Config: ",self.config.__dict__.keys()) return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "labels": datasets.Sequence(datasets.Value("uint16")), # "labels_name": datasets.Value("string"), # "pixel_values": datasets.Array3D(shape=(3, 1280, 960), dtype="float32"), "pixel_values": datasets.Array3D(shape=(1280, 960, 3), dtype="uint8"), "image_s3_path": datasets.Value("string"), } ), supervised_keys=None, homepage="none", citation="", ) def _split_generators(self, dl_manager): records_train = list(db.mini_set.find({'split':'train'},{'image_s3_path':1, 'ocwen_template_name':1}))[:10000] records_val = list(db.mini_set.find({'split':'val'},{'image_s3_path':1, 'ocwen_template_name':1}))[:1000] # print (len(records),self.config.num_shards) # shard_size_train = len(records_train)//self.config.num_shards # sharded_records_train = [records_train[i:i+shard_size_train] for i in range(0,len(records_train),shard_size_train)] # shard_size_val = len(records_val)//self.config.num_shards # sharded_records_val = [records_val[i:i+shard_size_val] for i in range(0,len(records_val),shard_size_val)] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"records":records_train} # passing list of records, for sharding to take over ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"records":records_val} # passing list of records, for sharding to take over ), ] def _generate_examples(self, records): # print ("Generating examples for [{}] shards".format(len(shards))) # initiate_db_connection() # records = list(db.mini_set.find({'split':split},{'image_s3_path':1, 'ocwen_template_name':1}))[:10] id_ = 0 # for records in shards: for i,rec in enumerate(records): img_local_path = fetch_file(rec['image_s3_path'],self.config.buffer_dir) # t = self.config.processor(Image.open(img_local_path), random_padding=True, return_tensors="np").pixel_values.squeeze() # print (t.shape, type(t),type(t[0][0][0])) # sys.exit() pvs = np.array(Image.open(img_local_path).resize((1280,960))) # image object is wxh, so resize as per that, numpy array of it is hxwxc, transposing to cxwxh # pvs = self.config.processor(Image.open(img_local_path), random_padding=True, return_tensors="np").pixel_values.astype(np.float16).squeeze() # print (type(pvs[0][0][0])) lblids = self.config.processor.tokenizer('<s_class>'+rec['ocwen_template_name']+'</s_class>'+'</s>', add_special_tokens=False, padding=False, truncation=False, return_tensors="np")["input_ids"].squeeze(0) # take padding later, as per batch collating # print (len(lblids),type(lblids[0])) # print (type(pvs),pvs.shape,type(pvs[0][0][0]), type(lblids)) yield id_, {"labels":lblids,"pixel_values":pvs,"image_s3_path":rec['image_s3_path']} id_+=1 os.remove(img_local_path) and I load it inside my trainer script as such `ds = load_dataset("/tmp/DonutDS/dataset/", split="train", streaming=True) # iterable dataset, where .map() falls` or also as `ds = load_from_disk('/tmp/DonutDS/dataset/') #map style dataset` Thank you to the team for having such a great library, and for this bug fix in advance! ### Steps to reproduce the bug Above config can allow one to reproduce the said bug ### Expected behavior .map() should show some consistency b/w map-style and iterable-style datasets, or atleast the docs should address iterable-style datasets behaviour and examples. I honestly do not figure the use of such docs. ### Environment info datasets==2.9.0 transformers==4.26.0 PS - some work is definitely needed for 'special cases' docs, not explanations, just usages of 'functions' under mixture of special cases, like a combination of custom databuilder + iterable dataset for large size + dynamic .map() application.
[ -1.271490216255188, -1.061184048652649, -0.6920825242996216, 1.3646483421325684, -0.23317208886146545, -1.1623080968856812, 0.1243559792637825, -1.1511949300765991, 1.5991405248641968, -0.8199964165687561, 0.2599809169769287, -1.6468255519866943, -0.05293817073106766, -0.5666168332099915, -0.6950904130935669, -0.8576228618621826, -0.48070165514945984, -0.8049646615982056, 1.094064474105835, 2.5146634578704834, 1.228875994682312, -1.4153027534484863, 2.7126426696777344, 0.7055072784423828, -0.10008065402507782, -0.9566153287887573, 0.6042864918708801, -0.007526635657995939, -1.301825761795044, -0.4692274034023285, -1.0245121717453003, -0.07746805250644684, -0.4908110201358795, -0.4471473693847656, -0.02665230631828308, 0.41007673740386963, -0.3199869990348816, -0.41593098640441895, -0.5752812027931213, -0.8010852932929993, 0.5112487077713013, -0.38111355900764465, 0.9948241114616394, -0.3357960879802704, 1.8416976928710938, -0.45441731810569763, 0.5123821496963501, 0.7626253366470337, 1.2409943342208862, 0.2574916183948517, 0.033650096505880356, 0.3226378560066223, 0.36841869354248047, -0.021792592480778694, 0.5477730631828308, 1.1295663118362427, 0.6824821829795837, 0.4415360391139984, 0.8309251666069031, -2.178682565689087, 1.2861284017562866, -1.0818732976913452, 0.3135339319705963, 1.4458398818969727, -0.8309908509254456, 0.32971876859664917, -1.814063549041748, -0.07394594699144363, 0.5859257578849792, -2.2033932209014893, 0.29587802290916443, -1.2746038436889648, -0.4521309435367584, 1.0405938625335693, 0.43893977999687195, -1.1629705429077148, 0.19437973201274872, -0.4239010214805603, 0.9363120794296265, 0.41906842589378357, 1.1211450099945068, -1.687395453453064, -0.04810148850083351, -0.31756290793418884, 0.08732302486896515, -1.2785263061523438, -1.5792908668518066, 0.5477415323257446, 0.5300018191337585, 0.5583510398864746, -0.09071551263332367, 1.0699735879898071, -1.0690370798110962, 0.7670117020606995, -1.0488563776016235, -1.641677737236023, -1.4372504949569702, -2.325681686401367, -2.2790184020996094, 0.7440573573112488, -0.4939155876636505, -0.5194184184074402, 2.060640335083008, -0.9724818468093872, -1.616439700126648, 1.1896817684173584, 0.3119840621948242, 0.022068887948989868, 2.412240982055664, 0.2532373070716858, -0.7212197780609131, 0.4896594285964966, -0.7813041806221008, 0.8024765849113464, -0.22349891066551208, 1.3997035026550293, 0.44527438282966614, -0.9544546008110046, 1.6029136180877686, -0.44342079758644104, 0.5459530353546143, -0.5025498270988464, -0.5057937502861023, -0.7856036424636841, 0.3504454493522644, 1.8144828081130981, -0.2468917816877365, 1.4821308851242065, -0.33102384209632874, -1.6808409690856934, -1.6750494241714478, 0.9008780121803284, 0.4799613356590271, -0.7521215677261353, 0.00755786057561636, -0.3909328281879425, 0.07265215367078781, -0.014666439034044743, 1.166391134262085, 1.27695894241333, 0.6956080794334412, -0.4185640215873718, -0.9360257983207703, 0.10386388003826141, -0.14285297691822052, -0.7804575562477112, -1.7251574993133545, -0.3434164822101593, 0.12332891672849655, 0.659721314907074, -1.232067584991455, 1.7216756343841553, 1.0021700859069824, 1.8566268682479858, 0.928019642829895, -0.36125659942626953, 1.4414840936660767, 0.10275460034608841, 1.7585607767105103, -0.5974414944648743, 0.5969278216362, -0.31684690713882446, -1.165078043937683, 0.9272803068161011, -0.316714882850647, -2.079789161682129, -0.8579337000846863, -0.7839640378952026, -0.22784613072872162, -0.7197964787483215, 0.9830887913703918, -0.2876891791820526, -1.438979148864746, 0.2551421523094177, -0.7458515167236328, 0.021384429186582565, -1.190691590309143, 0.30408409237861633, 0.6602968573570251, -0.7014747262001038, 0.04814906790852547, -0.12092548608779907, -1.271958351135254, -0.3724738657474518, 0.20215147733688354, 1.9171940088272095, -0.7367010712623596, 0.9000712633132935, 1.1093666553497314, -0.7067269682884216, 0.06861017644405365, 0.23104311525821686, -0.30558013916015625, 0.8457365036010742, -1.0430046319961548, -0.4768034815788269, 1.2621146440505981, -0.21326030790805817, -0.5831683278083801, 1.4359146356582642, 0.6733647584915161, -1.0894708633422852, -0.25003576278686523, -0.08561087399721146, -0.8429078459739685, 0.040739357471466064, -1.537800908088684, -0.14768578112125397, 0.4671390950679779, -1.5964751243591309, -0.4475243091583252, -0.21109898388385773, 1.332649827003479, -0.11680503189563751, 1.4365473985671997, -0.42639657855033875, -0.16466328501701355, -0.3346925973892212, -0.41302362084388733, 0.21684950590133667, -0.2196510285139084, -0.5698851943016052, 0.1899898499250412, -0.9526898860931396, 0.3342326283454895, 1.4915519952774048, 0.4204044044017792, 0.042756132781505585, 0.4907902777194977, 0.9948129057884216, 0.4471350312232971, -0.004081333987414837, -0.8462674617767334, -1.5381731986999512, 2.068732500076294, -1.4836140871047974, 1.9266892671585083, 0.711774468421936, -0.07107439637184143, -1.8024518489837646, -1.8364003896713257, 1.2959468364715576, 1.1563093662261963, 2.324713706970215, 0.5203642249107361, 0.361130028963089, -0.8323230743408203, -0.6840206384658813, 0.39725202322006226, -0.993500292301178, -0.6096667051315308, 0.18640129268169403, 2.376828670501709, 1.7869830131530762, -0.43100082874298096, -0.16984885931015015, -0.9211391806602478, 1.4151983261108398, -0.16879814863204956, 0.182805135846138, 1.9976264238357544, -0.24727484583854675, -1.056294560432434, 1.393392562866211, -2.3841049671173096, 0.1844959855079651, 1.9642053842544556, 0.3737059533596039, 0.1658513993024826, -1.3643585443496704, -0.7000953555107117, -0.3923908770084381, -0.46164101362228394, -1.2434552907943726, 0.5617279410362244, -0.27910685539245605, -0.8514861464500427, -1.4423673152923584, 0.15228264033794403, -1.1823275089263916, -1.7067691087722778, 0.23850300908088684, 1.7992931604385376, 2.1927082538604736, -0.8017083406448364, 1.5488382577896118, -0.286434143781662, 0.18756327033042908, 1.1810176372528076, 1.308432936668396, 3.031303882598877, 1.808508276939392, -1.2718194723129272, 0.5978171825408936, -0.12096013128757477, -0.4658544063568115, 1.0832902193069458, -1.2311387062072754, 1.3284938335418701, -0.06853329390287399, -1.1872012615203857, -1.1350959539413452, 0.9789497256278992, 0.4410738945007324, 0.07295387238264084, -0.471620112657547, 1.1606487035751343, 0.058967627584934235, 1.3999009132385254, 0.6069076657295227, -0.3111768960952759, 0.6152428388595581, -0.4146140217781067, -0.5504664778709412, 1.4978976249694824, 0.16941408812999725, -1.520904302597046, -2.2479217052459717, -0.284872442483902, -0.8193909525871277, 0.05767224729061127, -0.5838109850883484, -0.9985593557357788, 1.731632113456726, 0.23427650332450867, -1.2375118732452393, -0.28665879368782043, -0.3274991512298584, -0.4408716559410095, 2.7195355892181396, -1.2924941778182983, -0.2120385766029358, -0.9263606071472168, -0.670621395111084, 1.6123603582382202, -1.1719624996185303, -0.1603213995695114, -1.0682392120361328, -0.6530601382255554, -1.3082985877990723, -0.5745434165000916, 0.05521033704280853, -1.0126221179962158, 0.8545415997505188, 0.20895405113697052, -1.149829626083374, -0.3502638638019562, -0.9204734563827515, 0.939140796661377, -0.1283469796180725, 0.17862461507320404, 1.8171182870864868, 0.35346537828445435, -0.3460201323032379, 0.7462495565414429, 1.193771481513977, 0.6680358052253723, -0.6681536436080933, 0.06380081921815872, -0.7000600099563599, 0.3624486029148102, -1.2052958011627197, 0.23956042528152466, -2.9140243530273438, 0.612113356590271, -0.1118854284286499, -0.09924664348363876, 0.027748622000217438, -1.3308733701705933, 1.153853178024292, 2.6197049617767334, -1.2255390882492065, 0.49137386679649353, 0.37851402163505554, 1.0803667306900024, -1.5562666654586792, 0.36763542890548706, -0.4468495547771454, 2.0601634979248047, 0.22387593984603882, 1.2269995212554932, -0.5188727378845215, -2.172480583190918, 0.7075109481811523, -1.352665662765503, -1.177842140197754, 0.7022907137870789, -1.0064117908477783, 0.2537219226360321, -1.4908219575881958, -0.18465599417686462, -0.818372905254364, -1.2512131929397583, 0.6575625538825989, 0.15209081768989563, 0.32551494240760803, -0.43768900632858276, 0.3905613124370575, -2.2334842681884766, -1.3722013235092163, -0.2520027160644531, -0.9446377754211426, 0.6196763515472412, -0.3790416419506073, 0.7759066224098206, -0.1798684298992157, -0.03001849725842476, 0.44250980019569397, 1.3695036172866821, 3.4528467655181885, 0.17169225215911865, 0.2371002733707428, -0.15434561669826508, -0.9949330687522888, 1.553553819656372, 0.9597222805023193, -0.11819055676460266, -0.5257437229156494, -1.0731995105743408, 1.3063254356384277, 2.023332118988037, 1.0383961200714111, -0.08251527696847916, -0.8420933485031128, -0.6692596077919006, 0.01896468549966812, 0.13058587908744812, 0.4207715094089508, 0.8917480111122131, -0.046210456639528275, 0.0217200368642807, 1.6147509813308716, 1.1542887687683105, -0.42843618988990784, 0.25795572996139526, -0.8107693791389465, -0.4955432713031769, 0.5471971035003662, 0.22765496373176575, 0.026980534195899963, 0.4773057997226715, -1.0157315731048584, -0.23734380304813385, -0.390287846326828, -0.8826523423194885, -0.6288862228393555, -0.4449710249900818, -0.406487375497818, 1.5834187269210815, 0.17634537816047668, -0.5005042552947998, 0.012068861164152622, -0.7462568879127502, -0.15084515511989594, -1.0947307348251343, 0.28483301401138306, -0.08087293803691864, -0.1436329334974289, -0.28703269362449646, 1.7784007787704468, -0.864043116569519, -2.044051170349121, 0.17067673802375793, 0.34240439534187317, -0.22817282378673553, 0.22030702233314514, 1.5921181440353394, 0.5597690343856812, 1.465464472770691, 1.262446641921997, 0.880048394203186, -0.6068506240844727, -1.2989866733551025, 0.7291237115859985, 1.011155128479004, -1.3884618282318115, 0.8300371766090393, -0.13461385667324066, -0.5605505704879761, 0.622911810874939, 1.2710989713668823, 0.5412510633468628, -1.8918089866638184, 0.8751740455627441, -0.9314677715301514, 0.8171458840370178, 0.6060374975204468, 0.6862294673919678, 0.09991205483675003, 0.8091373443603516, -1.2555161714553833, -1.1054325103759766, -0.7630484104156494, -0.6328688859939575, 2.026017189025879, -0.25827744603157043, 0.6035458445549011, -0.3075769245624542, -1.2651313543319702, -0.08033136278390884, 0.6345764994621277, 0.2982226014137268, -0.4779749810695648, 0.8237161040306091, -0.6335412859916687, -1.1609140634536743, -1.389594316482544, -0.30073630809783936, -1.1234256029129028, -0.8952393531799316, 1.1029164791107178, 0.6055039763450623, 0.3633018136024475, 1.842830777168274, 0.587243914604187, 0.30096039175987244, -2.573122262954712, 0.9107654094696045, 0.2617805600166321, -0.10124961286783218, 0.8685467839241028, 0.2819393277168274, 1.0260323286056519, -0.0870937928557396, 0.5353924632072449, -2.4453277587890625, 2.2881743907928467, -0.1763526350259781, 0.7591264247894287, 0.05866764485836029, -0.15633362531661987, 1.0675458908081055, 0.6631020903587341, 0.49231746792793274, -1.041627287864685, 0.5954427123069763, -0.4923012852668762, 1.1828830242156982, 0.9242135882377625, -0.7687966823577881, 0.00855076964944601, 1.338810920715332, 0.5470245480537415, -0.4637044668197632, -0.9820202589035034, -0.9036270976066589, 0.9720978736877441, 1.65139639377594, -0.16933384537696838, -0.018903110176324844, 0.7835511565208435, 0.6173543930053711, -1.2370891571044922, -0.07249514758586884, -0.7451229095458984, -0.7107415795326233, 1.6331820487976074, 2.1611955165863037, -0.22008226811885834, -0.17856694757938385, -0.6362200379371643, -1.3088934421539307, 0.7450060248374939, -0.08983120322227478, 0.23725996911525726, 0.610874593257904, -0.5853239297866821, 1.0312658548355103, 0.8216196298599243, 0.8486186861991882, 0.21586816012859344, 0.2177421599626541, 0.3792361319065094, -0.2561933994293213, -1.1095815896987915, -0.28725406527519226, -1.0319486856460571, -2.6324658393859863, 0.37896400690078735, -0.22427687048912048, -1.4520076513290405, 0.041763391345739365, -0.964078962802887, 1.0302519798278809, -0.515389621257782, -1.0207116603851318, -1.506821870803833, 0.26025015115737915, 0.01142521295696497, 1.0078099966049194, -1.6332987546920776, -0.23566730320453644, 1.2933794260025024, 0.9263589382171631, -0.6676488518714905, 1.0284597873687744, 0.2667275071144104, 1.0195329189300537, 0.7332904934883118, -0.37402644753456116, 0.6150549054145813, 0.07815542817115784, -1.3859736919403076, 0.41688135266304016, 1.218526005744934, 0.16467568278312683, 1.4519909620285034, -0.4490744471549988, 0.07530277222394943, 0.39389628171920776, -0.6259387135505676, -0.5083374381065369, -0.3689870238304138, 0.6067942976951599, 0.07091251015663147, -0.9229903817176819, -0.15155524015426636, -0.020191319286823273, -0.2702579200267792, 0.17527183890342712, -1.4330450296401978, -0.25949233770370483, -0.40668800473213196, -0.5533438324928284, -1.2312437295913696, -0.20104657113552094, 1.4419658184051514, -0.8550613522529602, -0.19749419391155243, 0.4381006956100464, 0.4032268524169922, 0.5505303740501404, 0.6826134324073792, -0.7186105251312256, -0.2753652334213257, -0.31894975900650024, -0.3388146758079529, 0.3016594350337982, 1.3825584650039673, -0.08520760387182236, -1.0164607763290405, 0.7495533227920532, -0.23446227610111237, 0.04287731274962425, 1.8856335878372192, 0.015644781291484833, -0.7790631055831909, 0.2718382477760315, -0.698778510093689, 1.8722673654556274, 1.6811273097991943, 1.3359299898147583, -0.19376061856746674, -0.8319515585899353, 0.5999317169189453, -0.3413253724575043, -0.3439381718635559, 0.9085919260978699, 0.4151803255081177, -0.22799670696258545, -1.4770970344543457, 0.7694791555404663, 1.2282849550247192, -0.8701622486114502, -0.7201349139213562, 0.1692182719707489, -0.8091904520988464, 1.0713701248168945, 0.6437357068061829, 0.4121788740158081, 0.3043362498283386, 1.6398816108703613, 0.8035482168197632, -0.45222002267837524, 0.47378382086753845, 0.6106430888175964, -0.21053291857242584, -2.118342876434326, -1.164298176765442, 0.3419179320335388, -0.6359801888465881, -1.5094231367111206, 1.338899850845337, -1.1027179956436157, -1.0687599182128906, 0.5443260073661804, 0.009833264164626598, 1.346420168876648, 0.46859899163246155, 1.5715632438659668, 2.1036970615386963, 0.8890171647071838, 0.4020603895187378, 1.2606147527694702, -0.11853670328855515, -0.3572767376899719, 1.8117250204086304, -0.33455273509025574, 0.47895562648773193, 1.1194132566452026, -0.32200726866722107, -0.9689192771911621, -0.7274302244186401, -1.2668436765670776, -0.7138933539390564, 1.1239207983016968, 0.04212433472275734, -1.1153876781463623, 0.1839647889137268, 1.5886772871017456, 0.11272477358579636, -0.3385956585407257, 0.6412981748580933, 0.4060036540031433, -0.7870052456855774, -0.08620397746562958, -0.9249526858329773, 0.4432481527328491, -0.2475786954164505, -0.40156832337379456, 0.2361137717962265, 0.4944453537464142, 1.4472949504852295, -0.12391109764575958, 0.237302765250206, 1.0268993377685547, -1.3667067289352417, 1.5160605907440186, -0.6859951615333557, 0.23543435335159302, -2.295938491821289, 1.3077298402786255, -0.7613282799720764, 1.9871981143951416, -2.7196085453033447, 0.5016685128211975, -0.5092862248420715, -0.5350459814071655, 0.25649675726890564, -0.408441960811615, 0.15609987080097198, -0.0993335023522377, -1.112129807472229, -0.08426088094711304, -0.5726878046989441, 0.6501988172531128, 1.0694352388381958, 1.3364911079406738, -1.1237068176269531, -0.36990073323249817, -1.702195644378662, -0.21546049416065216, -0.8357139229774475, 0.2725391983985901, -1.9900054931640625, -0.22384409606456757, -1.821691632270813, -2.36995005607605, -1.3084373474121094, -0.8419983983039856, 1.275969386100769, 0.13094694912433624, -0.9873655438423157, 1.2771776914596558, -0.3457874655723572, -1.9038656949996948, 1.1312352418899536, -2.2108829021453857 ]
https://github.com/huggingface/datasets/issues/5869
Image Encoding Issue when submitting a Parquet Dataset
Hi @PhilippeMoussalli thanks for opening a detailed issue. It seems the issue is more related to the `datasets` library so I'll ping @lhoestq @mariosasko on this one :) (edit: also can one of you move the issue to the datasets repo? Thanks in advance 🙏)
### Describe the bug Hello, I'd like to report an issue related to pushing a dataset represented as a Parquet file to a dataset repository using Dask. Here are the details: We attempted to load an example dataset in Parquet format from the Hugging Face (HF) filesystem using Dask with the following code snippet: ``` import dask.dataframe as dd df = dd.read_parquet("hf://datasets/lambdalabs/pokemon-blip-captions",index=False) ``` In this dataset, the "image" column is represented as a dictionary/struct with the format: ``` df = df.compute() df["image"].iloc[0].keys() -> dict_keys(['bytes', 'path']) ``` I think this is the format encoded by the [`Image`](https://huggingface.co/docs/datasets/v2.0.0/en/package_reference/main_classes#datasets.Image) feature extractor from datasets to format suitable for Arrow. The next step was to push the dataset to a repository that I created: ``` dd.to_parquet(dask_df, path = "hf://datasets/philippemo/dummy_dataset/data") ``` However, after pushing the dataset using Dask, the "image" column is now represented as the encoded dictionary `(['bytes', 'path'])`, and the images are not properly visualized. You can find the dataset here: [Link to the problematic dataset](https://huggingface.co/datasets/philippemo/dummy_dataset). It's worth noting that both the original dataset and the one submitted with Dask have the same schema with minor alterations related to metadata: **[ Schema of original dummy example.](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions/blob/main/data/train-00000-of-00001-566cc9b19d7203f8.parquet)** ``` image: struct<bytes: binary, path: null> child 0, bytes: binary child 1, path: null text: string ``` **[ Schema of pushed dataset with dask](https://huggingface.co/datasets/philippemo/dummy_dataset/blob/main/data/part.0.parquet)** ``` image: struct<bytes: binary, path: null> child 0, bytes: binary child 1, path: null text: string ``` This issue seems to be related to an encoding type that occurs when pushing a model to the hub. Normally, models should be represented as an HF dataset before pushing, but we are working with an example where we need to push large datasets using Dask. Could you please provide clarification on how to resolve this issue? Thank you! ### Reproduction To get the schema I downloaded the parquet files and used pyarrow.parquet to read the schema ``` import pyarrow.parquet pyarrow.parquet.read_schema(<path_to_parquet>, memory_map=True) ``` ### Logs _No response_ ### System info ```shell - huggingface_hub version: 0.14.1 - Platform: Linux-5.19.0-41-generic-x86_64-with-glibc2.35 - Python version: 3.10.6 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /home/philippe/.cache/huggingface/token - Has saved token ?: True - Who am I ?: philippemo - Configured git credential helpers: cache - FastAI: N/A - Tensorflow: N/A - Torch: N/A - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.4.0 - hf_transfer: N/A - gradio: N/A - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /home/philippe/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /home/philippe/.cache/huggingface/assets - HF_TOKEN_PATH: /home/philippe/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
136
45
Image Encoding Issue when submitting a Parquet Dataset ### Describe the bug Hello, I'd like to report an issue related to pushing a dataset represented as a Parquet file to a dataset repository using Dask. Here are the details: We attempted to load an example dataset in Parquet format from the Hugging Face (HF) filesystem using Dask with the following code snippet: ``` import dask.dataframe as dd df = dd.read_parquet("hf://datasets/lambdalabs/pokemon-blip-captions",index=False) ``` In this dataset, the "image" column is represented as a dictionary/struct with the format: ``` df = df.compute() df["image"].iloc[0].keys() -> dict_keys(['bytes', 'path']) ``` I think this is the format encoded by the [`Image`](https://huggingface.co/docs/datasets/v2.0.0/en/package_reference/main_classes#datasets.Image) feature extractor from datasets to format suitable for Arrow. The next step was to push the dataset to a repository that I created: ``` dd.to_parquet(dask_df, path = "hf://datasets/philippemo/dummy_dataset/data") ``` However, after pushing the dataset using Dask, the "image" column is now represented as the encoded dictionary `(['bytes', 'path'])`, and the images are not properly visualized. You can find the dataset here: [Link to the problematic dataset](https://huggingface.co/datasets/philippemo/dummy_dataset). It's worth noting that both the original dataset and the one submitted with Dask have the same schema with minor alterations related to metadata: **[ Schema of original dummy example.](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions/blob/main/data/train-00000-of-00001-566cc9b19d7203f8.parquet)** ``` image: struct<bytes: binary, path: null> child 0, bytes: binary child 1, path: null text: string ``` **[ Schema of pushed dataset with dask](https://huggingface.co/datasets/philippemo/dummy_dataset/blob/main/data/part.0.parquet)** ``` image: struct<bytes: binary, path: null> child 0, bytes: binary child 1, path: null text: string ``` This issue seems to be related to an encoding type that occurs when pushing a model to the hub. Normally, models should be represented as an HF dataset before pushing, but we are working with an example where we need to push large datasets using Dask. Could you please provide clarification on how to resolve this issue? Thank you! ### Reproduction To get the schema I downloaded the parquet files and used pyarrow.parquet to read the schema ``` import pyarrow.parquet pyarrow.parquet.read_schema(<path_to_parquet>, memory_map=True) ``` ### Logs _No response_ ### System info ```shell - huggingface_hub version: 0.14.1 - Platform: Linux-5.19.0-41-generic-x86_64-with-glibc2.35 - Python version: 3.10.6 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /home/philippe/.cache/huggingface/token - Has saved token ?: True - Who am I ?: philippemo - Configured git credential helpers: cache - FastAI: N/A - Tensorflow: N/A - Torch: N/A - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.4.0 - hf_transfer: N/A - gradio: N/A - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /home/philippe/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /home/philippe/.cache/huggingface/assets - HF_TOKEN_PATH: /home/philippe/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` Hi @PhilippeMoussalli thanks for opening a detailed issue. It seems the issue is more related to the `datasets` library so I'll ping @lhoestq @mariosasko on this one :) (edit: also can one of you move the issue to the datasets repo? Thanks in advance 🙏)
[ -1.1553672552108765, -0.8704099059104919, -0.8205088376998901, 1.4618592262268066, -0.13831359148025513, -1.3031227588653564, 0.08137144148349762, -1.077457070350647, 1.7212998867034912, -0.7961846590042114, 0.25587376952171326, -1.7589480876922607, -0.05134357139468193, -0.5332499742507935, -0.7661887407302856, -0.8895761370658875, -0.40349653363227844, -0.7590218782424927, 0.9748439192771912, 2.4948740005493164, 1.2335093021392822, -1.3994674682617188, 2.7232069969177246, 0.720005214214325, -0.1931723803281784, -0.9706401824951172, 0.5024557709693909, 0.015861334279179573, -1.2811992168426514, -0.43808823823928833, -0.9771705865859985, -0.02187252789735794, -0.5806236267089844, -0.5748711228370667, 0.07853066921234131, 0.42558667063713074, -0.28516119718551636, -0.404985636472702, -0.5903922915458679, -0.8088806867599487, 0.4461885392665863, -0.3589259684085846, 0.9399291276931763, -0.3402281105518341, 1.7700526714324951, -0.5615783929824829, 0.30773940682411194, 0.7172764539718628, 1.2874053716659546, 0.1238698959350586, 0.021751634776592255, 0.30937352776527405, 0.3261268436908722, -0.026984840631484985, 0.4848901629447937, 1.280882716178894, 0.6348230838775635, 0.5123198628425598, 0.7188975811004639, -2.2745184898376465, 1.2547998428344727, -0.9898595213890076, 0.33654388785362244, 1.3599634170532227, -0.9470560550689697, 0.39580610394477844, -1.7792567014694214, -0.03149633854627609, 0.5731503963470459, -2.2298264503479004, 0.22464711964130402, -1.3220584392547607, -0.5323537588119507, 0.994595468044281, 0.3253949284553528, -1.156193733215332, 0.2483070343732834, -0.44043418765068054, 1.0585134029388428, 0.4947474002838135, 1.1677576303482056, -1.7633955478668213, 0.01728336326777935, -0.26908665895462036, 0.12175552546977997, -1.2697455883026123, -1.5902283191680908, 0.5266081690788269, 0.7055143713951111, 0.6479383707046509, -0.17070122063159943, 1.0363564491271973, -0.9740752577781677, 0.7483487725257874, -0.9263175129890442, -1.6918259859085083, -1.4139972925186157, -2.2288403511047363, -2.2249884605407715, 0.7194870710372925, -0.514632523059845, -0.465446412563324, 2.0701444149017334, -1.0350892543792725, -1.797200083732605, 1.0670629739761353, 0.3718332052230835, -0.0325707346200943, 2.3696439266204834, 0.23271678388118744, -0.711508572101593, 0.42944321036338806, -0.6923468708992004, 0.840378999710083, -0.34564557671546936, 1.2936956882476807, 0.4762380123138428, -1.0482797622680664, 1.6523135900497437, -0.474346399307251, 0.5979148745536804, -0.7210723757743835, -0.41335779428482056, -0.7860249876976013, 0.36472243070602417, 1.8384672403335571, -0.37752240896224976, 1.5502387285232544, -0.3687788248062134, -1.5351568460464478, -1.599529504776001, 0.8124709725379944, 0.517126202583313, -0.7860658764839172, 0.08675190806388855, -0.4136230945587158, 0.18063051998615265, -0.019480198621749878, 1.1591368913650513, 1.1695644855499268, 0.6882947683334351, -0.26035088300704956, -0.8528886437416077, 0.25896501541137695, 0.030639875680208206, -0.7113811373710632, -1.81325364112854, -0.31564876437187195, 0.22760115563869476, 0.6217703819274902, -1.2100309133529663, 1.7358342409133911, 0.7892975211143494, 1.9343739748001099, 1.0015616416931152, -0.40652012825012207, 1.5325736999511719, 0.10389406979084015, 1.8582439422607422, -0.49762600660324097, 0.7203437089920044, -0.3383294641971588, -1.160073161125183, 0.8731552362442017, -0.289167582988739, -2.0126800537109375, -0.7747635245323181, -0.8549032211303711, -0.1970130354166031, -0.7148476839065552, 0.9579612612724304, -0.32605940103530884, -1.4016472101211548, 0.13554275035858154, -0.6246438026428223, 0.1441955417394638, -1.2308270931243896, 0.22105230391025543, 0.786063551902771, -0.6699535250663757, 0.020631583407521248, -0.26508498191833496, -1.3623687028884888, -0.4308868944644928, 0.3603345453739166, 1.8891243934631348, -0.6903399229049683, 0.949031412601471, 1.04793381690979, -0.716353178024292, 0.03863779827952385, 0.26034462451934814, -0.27402976155281067, 0.9223461151123047, -1.0574746131896973, -0.45851802825927734, 1.1368532180786133, -0.17073163390159607, -0.6781970262527466, 1.4653745889663696, 0.7571969628334045, -1.0320912599563599, -0.2099800556898117, -0.21692559123039246, -0.8221367001533508, 0.013764386996626854, -1.5614128112792969, -0.12720604240894318, 0.3482256531715393, -1.5013306140899658, -0.5340380668640137, -0.230038583278656, 1.290474534034729, -0.20032113790512085, 1.3743889331817627, -0.36193418502807617, -0.2338060587644577, -0.38484257459640503, -0.41413581371307373, 0.15251418948173523, -0.22120827436447144, -0.6976773142814636, 0.189190074801445, -0.8063900470733643, 0.2762358486652374, 1.4395354986190796, 0.394920289516449, 0.049528393894433975, 0.5290862917900085, 1.1752028465270996, 0.3648739755153656, -0.07634960114955902, -0.8909298181533813, -1.5998451709747314, 2.0148885250091553, -1.4010629653930664, 1.8797696828842163, 0.7049457430839539, 0.024234674870967865, -1.8180192708969116, -1.8583588600158691, 1.3999449014663696, 1.1480798721313477, 2.389096260070801, 0.5048708319664001, 0.43410250544548035, -0.7624874114990234, -0.6873992681503296, 0.4088335931301117, -0.9369344711303711, -0.7286083102226257, 0.15000174939632416, 2.3183505535125732, 1.875211238861084, -0.5133659839630127, -0.26036199927330017, -0.9750618934631348, 1.330836296081543, -0.24994386732578278, 0.24603106081485748, 1.9771188497543335, -0.3613435924053192, -1.0142202377319336, 1.3317606449127197, -2.3008999824523926, 0.12973693013191223, 1.9481592178344727, 0.22444941103458405, 0.0782996118068695, -1.3962823152542114, -0.6817120909690857, -0.2700355350971222, -0.44666561484336853, -1.3206673860549927, 0.4956282377243042, -0.28807711601257324, -0.7935476303100586, -1.4608170986175537, 0.1141081154346466, -1.105704426765442, -1.6540907621383667, 0.26026713848114014, 1.877305269241333, 1.9673550128936768, -0.8185463547706604, 1.5376616716384888, -0.37519586086273193, 0.16796116530895233, 1.2403134107589722, 1.2484537363052368, 3.0976192951202393, 1.8959107398986816, -1.299307942390442, 0.6774731874465942, -0.16775208711624146, -0.49405115842819214, 1.2259480953216553, -1.118534803390503, 1.1797709465026855, -0.20208755135536194, -1.2564311027526855, -1.2162519693374634, 0.9942842125892639, 0.4425851106643677, 0.09209556877613068, -0.5332761406898499, 1.1897811889648438, 0.043684910982847214, 1.282258152961731, 0.6321911811828613, -0.50434410572052, 0.580236554145813, -0.40175661444664, -0.4973906874656677, 1.510803461074829, 0.10775506496429443, -1.3934828042984009, -2.3208673000335693, -0.22425371408462524, -0.8441372513771057, 0.035498250275850296, -0.6629498600959778, -0.9874634146690369, 1.6715821027755737, 0.41175609827041626, -1.263263463973999, -0.292655348777771, -0.41846993565559387, -0.5398589968681335, 2.610109806060791, -1.3802064657211304, -0.19618703424930573, -0.9659181833267212, -0.5910705924034119, 1.6068787574768066, -1.164448618888855, -0.13965627551078796, -1.0770409107208252, -0.5592201352119446, -1.3531229496002197, -0.5582069158554077, 0.0003495011478662491, -0.9312763810157776, 0.7970339059829712, 0.07268202304840088, -1.2123925685882568, -0.28386980295181274, -0.9329184293746948, 0.945360541343689, -0.22594304382801056, 0.15391859412193298, 1.9830543994903564, 0.43015962839126587, -0.4227565824985504, 0.7358469367027283, 1.1496484279632568, 0.6793063282966614, -0.642529308795929, 0.2405553013086319, -0.741334855556488, 0.300158828496933, -1.407096266746521, 0.21039940416812897, -2.87030029296875, 0.70769864320755, -0.042638830840587616, -0.0019029807299375534, 0.02346910908818245, -1.2323074340820312, 0.9666284918785095, 2.622945547103882, -1.2429327964782715, 0.41529107093811035, 0.32917922735214233, 1.2465219497680664, -1.5762475728988647, 0.2293194681406021, -0.46550682187080383, 2.0847725868225098, 0.13488316535949707, 1.2101155519485474, -0.46871641278266907, -2.158900499343872, 0.5463656187057495, -1.273699402809143, -1.136682152748108, 0.8447378873825073, -0.824004054069519, 0.13112051784992218, -1.465210199356079, -0.19667665660381317, -0.9534599781036377, -1.2033504247665405, 0.7700913548469543, 0.1282130777835846, 0.4775453805923462, -0.6529792547225952, 0.3496345579624176, -2.1247613430023193, -1.3036621809005737, -0.2447621077299118, -0.9240385890007019, 0.531055212020874, -0.2788574695587158, 0.6680108904838562, -0.14969266951084137, 0.0777532309293747, 0.34553030133247375, 1.43781578540802, 3.401876449584961, 0.2317075878381729, 0.3276258409023285, -0.11717577278614044, -0.970547080039978, 1.4596836566925049, 0.9992128014564514, -0.09398350119590759, -0.5111888647079468, -1.0261839628219604, 1.2798534631729126, 1.9344226121902466, 1.0686897039413452, 0.06621640920639038, -0.8921179175376892, -0.7893984317779541, -0.00735813844949007, 0.14765700697898865, 0.5021668076515198, 0.9003455638885498, 0.016230689361691475, 0.1433960497379303, 1.4636039733886719, 1.2254308462142944, -0.34172382950782776, 0.4284873902797699, -0.8879249095916748, -0.49696385860443115, 0.46727368235588074, 0.33861371874809265, 0.016335243359208107, 0.3601653277873993, -1.0518990755081177, -0.26490649580955505, -0.394771546125412, -0.9222401976585388, -0.6711873412132263, -0.4474644958972931, -0.38704541325569153, 1.5463621616363525, 0.0982806533575058, -0.5084322690963745, -0.03123655915260315, -0.7645226716995239, -0.1660589724779129, -1.0061256885528564, 0.27166348695755005, -0.19798432290554047, -0.10049569606781006, -0.1929624080657959, 1.6455217599868774, -0.9511361122131348, -2.0515105724334717, 0.2353888601064682, 0.2647840082645416, -0.390914648771286, 0.17293713986873627, 1.7213879823684692, 0.6329817175865173, 1.4041146039962769, 1.3486664295196533, 0.9432634711265564, -0.5861649513244629, -1.2790032625198364, 0.6355937719345093, 0.9574325680732727, -1.3137010335922241, 0.904288649559021, -0.01139806117862463, -0.5385582447052002, 0.7271340489387512, 1.3187311887741089, 0.4056628346443176, -1.9897469282150269, 0.805820107460022, -0.8933932781219482, 0.7358644604682922, 0.6848434805870056, 0.7894749641418457, 0.21249549090862274, 0.8289161324501038, -1.224318027496338, -1.1868700981140137, -0.7450968623161316, -0.6231540441513062, 1.8710885047912598, -0.22380825877189636, 0.615712583065033, -0.2800261676311493, -1.3186181783676147, -0.06717050820589066, 0.7744731307029724, 0.3458859920501709, -0.49086394906044006, 0.8347059488296509, -0.545669674873352, -1.054785132408142, -1.3246657848358154, -0.4402223229408264, -1.0232008695602417, -0.9132649302482605, 0.9704715609550476, 0.8287720680236816, 0.3517611026763916, 1.8696269989013672, 0.641105592250824, 0.18708470463752747, -2.626878023147583, 0.893702507019043, 0.3142433166503906, -0.041283413767814636, 0.8660780787467957, 0.33990973234176636, 1.0826772451400757, -0.07387466728687286, 0.5404387712478638, -2.3393871784210205, 2.222985029220581, -0.23305758833885193, 0.726146936416626, -0.05849398300051689, -0.20167066156864166, 1.1311227083206177, 0.5109896063804626, 0.5556221604347229, -1.1001884937286377, 0.7179825901985168, -0.6245651245117188, 1.1386607885360718, 0.923189103603363, -0.840846836566925, -0.006721263751387596, 1.4474563598632812, 0.4926036596298218, -0.4984639883041382, -0.9404401779174805, -0.9170458316802979, 1.0490989685058594, 1.7775964736938477, -0.01926809921860695, 0.01668887585401535, 0.9425138235092163, 0.7180070281028748, -1.2516530752182007, 0.09268352389335632, -0.7061555981636047, -0.6729397773742676, 1.6971396207809448, 2.0283350944519043, -0.12835116684436798, -0.18341149389743805, -0.7580493092536926, -1.168355107307434, 0.7427699565887451, 0.01961579918861389, 0.0621715746819973, 0.7799887657165527, -0.6920430660247803, 1.194638729095459, 0.7676643133163452, 0.93513423204422, 0.09910884499549866, 0.35028138756752014, 0.4127700924873352, -0.4050372242927551, -1.2310422658920288, -0.2695690095424652, -1.0782148838043213, -2.4365785121917725, 0.4019315540790558, -0.20671650767326355, -1.4302070140838623, 0.008311552926898003, -1.0579475164413452, 1.0066312551498413, -0.6092625260353088, -1.106446623802185, -1.5250645875930786, 0.26647883653640747, -0.04042678326368332, 0.8714120388031006, -1.5680185556411743, -0.08467872440814972, 1.2306188344955444, 0.913616418838501, -0.5958186984062195, 0.9273239374160767, 0.19035644829273224, 1.0150072574615479, 0.908029317855835, -0.39309605956077576, 0.45911964774131775, 0.039918649941682816, -1.345163345336914, 0.3615230619907379, 1.1417573690414429, 0.2224426418542862, 1.4469184875488281, -0.5035308599472046, 0.04980907589197159, 0.4258062243461609, -0.45254379510879517, -0.45305272936820984, -0.5333733558654785, 0.667023777961731, 0.08531728386878967, -0.9292959570884705, -0.004602570552378893, 0.03905390575528145, -0.2874338626861572, 0.24144347012043, -1.4584509134292603, -0.16816990077495575, -0.3235827386379242, -0.50035160779953, -1.197053074836731, -0.002854888327419758, 1.398271083831787, -0.7858663201332092, -0.2237861454486847, 0.5957810878753662, 0.26446911692619324, 0.5012705326080322, 0.5450098514556885, -0.6692295670509338, -0.23037457466125488, -0.3071746528148651, -0.3820153772830963, 0.246647909283638, 1.2791227102279663, -0.16476239264011383, -0.9402415752410889, 0.7364643812179565, -0.35062354803085327, 0.07716944813728333, 1.9185311794281006, 0.05132254958152771, -0.7907838225364685, 0.3140494227409363, -0.6711900234222412, 1.8331717252731323, 1.8072082996368408, 1.3589637279510498, -0.15517441928386688, -0.9308328628540039, 0.541488766670227, -0.3592885434627533, -0.3957655727863312, 0.9242848753929138, 0.37084293365478516, -0.14436770975589752, -1.388901710510254, 0.6505382657051086, 1.3164222240447998, -0.8809285163879395, -0.769757091999054, 0.09806302189826965, -0.8633040189743042, 1.0739365816116333, 0.7218895554542542, 0.3251321017742157, 0.25926241278648376, 1.5737069845199585, 0.7232977151870728, -0.4450031816959381, 0.5319772958755493, 0.5604887008666992, -0.20615266263484955, -2.1275155544281006, -1.1430931091308594, 0.29535433650016785, -0.45177534222602844, -1.6538379192352295, 1.357537865638733, -1.1981122493743896, -1.021337866783142, 0.5653756856918335, 0.11910335719585419, 1.4068078994750977, 0.2946885824203491, 1.6287691593170166, 2.138895273208618, 0.8760160803794861, 0.3625173568725586, 1.3080596923828125, -0.09186407923698425, -0.39348822832107544, 1.8192996978759766, -0.5087107419967651, 0.5479353666305542, 1.0201551914215088, -0.4055890440940857, -1.0207524299621582, -0.8060244917869568, -1.243462085723877, -0.7082552909851074, 1.1894432306289673, 0.11870087683200836, -1.147169589996338, 0.21518287062644958, 1.5261822938919067, 0.16715563833713531, -0.3528158366680145, 0.7651680111885071, 0.4474744498729706, -0.7172902226448059, -0.03690910339355469, -0.8706695437431335, 0.5926101803779602, -0.15581879019737244, -0.2154272198677063, 0.35517245531082153, 0.47437044978141785, 1.363742709159851, -0.02448216825723648, 0.11996284127235413, 1.1785064935684204, -1.345969796180725, 1.509405255317688, -0.7033184170722961, 0.2772027850151062, -2.4949891567230225, 1.4625061750411987, -0.7718054056167603, 1.91434645652771, -2.5825040340423584, 0.44146785140037537, -0.512051522731781, -0.46748486161231995, 0.3186971843242645, -0.3780576288700104, 0.08705489337444305, -0.03573194518685341, -1.0911214351654053, -0.02432652935385704, -0.7378052473068237, 0.5574901103973389, 1.1851367950439453, 1.4141273498535156, -1.1531407833099365, -0.34894177317619324, -1.7907127141952515, -0.13969643414020538, -0.7031655311584473, 0.3974609971046448, -2.008910655975342, -0.19531972706317902, -1.9490959644317627, -2.4941246509552, -1.4240453243255615, -0.8459072709083557, 1.0435490608215332, 0.1049337387084961, -0.8767353892326355, 1.1562576293945312, -0.4199557900428772, -1.87305748462677, 1.0816073417663574, -2.251638650894165 ]
https://github.com/huggingface/datasets/issues/5869
Image Encoding Issue when submitting a Parquet Dataset
Hi ! The `Image()` info is stored in the **schema metadata**. More precisely there should be a "huggingface" field in the schema metadata that contains the `datasets` feature type of each column. To fix your issue, you can use the same schema as the original Parquet files to write the new ones. You can also get the schema with metadata from a `Features` object, e.g. ```python from datasets import Features, Image, Value features = Features({"image": Image(), "text": Value("string")}) schema = features.arrow_schema print(schema.metadata) # {b'huggingface': b'{"info": {"features": {"image": {"_type": "Image"}, "text": {"dtype": "string", "_type": "Value"}}}}'} ```
### Describe the bug Hello, I'd like to report an issue related to pushing a dataset represented as a Parquet file to a dataset repository using Dask. Here are the details: We attempted to load an example dataset in Parquet format from the Hugging Face (HF) filesystem using Dask with the following code snippet: ``` import dask.dataframe as dd df = dd.read_parquet("hf://datasets/lambdalabs/pokemon-blip-captions",index=False) ``` In this dataset, the "image" column is represented as a dictionary/struct with the format: ``` df = df.compute() df["image"].iloc[0].keys() -> dict_keys(['bytes', 'path']) ``` I think this is the format encoded by the [`Image`](https://huggingface.co/docs/datasets/v2.0.0/en/package_reference/main_classes#datasets.Image) feature extractor from datasets to format suitable for Arrow. The next step was to push the dataset to a repository that I created: ``` dd.to_parquet(dask_df, path = "hf://datasets/philippemo/dummy_dataset/data") ``` However, after pushing the dataset using Dask, the "image" column is now represented as the encoded dictionary `(['bytes', 'path'])`, and the images are not properly visualized. You can find the dataset here: [Link to the problematic dataset](https://huggingface.co/datasets/philippemo/dummy_dataset). It's worth noting that both the original dataset and the one submitted with Dask have the same schema with minor alterations related to metadata: **[ Schema of original dummy example.](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions/blob/main/data/train-00000-of-00001-566cc9b19d7203f8.parquet)** ``` image: struct<bytes: binary, path: null> child 0, bytes: binary child 1, path: null text: string ``` **[ Schema of pushed dataset with dask](https://huggingface.co/datasets/philippemo/dummy_dataset/blob/main/data/part.0.parquet)** ``` image: struct<bytes: binary, path: null> child 0, bytes: binary child 1, path: null text: string ``` This issue seems to be related to an encoding type that occurs when pushing a model to the hub. Normally, models should be represented as an HF dataset before pushing, but we are working with an example where we need to push large datasets using Dask. Could you please provide clarification on how to resolve this issue? Thank you! ### Reproduction To get the schema I downloaded the parquet files and used pyarrow.parquet to read the schema ``` import pyarrow.parquet pyarrow.parquet.read_schema(<path_to_parquet>, memory_map=True) ``` ### Logs _No response_ ### System info ```shell - huggingface_hub version: 0.14.1 - Platform: Linux-5.19.0-41-generic-x86_64-with-glibc2.35 - Python version: 3.10.6 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /home/philippe/.cache/huggingface/token - Has saved token ?: True - Who am I ?: philippemo - Configured git credential helpers: cache - FastAI: N/A - Tensorflow: N/A - Torch: N/A - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.4.0 - hf_transfer: N/A - gradio: N/A - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /home/philippe/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /home/philippe/.cache/huggingface/assets - HF_TOKEN_PATH: /home/philippe/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ```
136
95
Image Encoding Issue when submitting a Parquet Dataset ### Describe the bug Hello, I'd like to report an issue related to pushing a dataset represented as a Parquet file to a dataset repository using Dask. Here are the details: We attempted to load an example dataset in Parquet format from the Hugging Face (HF) filesystem using Dask with the following code snippet: ``` import dask.dataframe as dd df = dd.read_parquet("hf://datasets/lambdalabs/pokemon-blip-captions",index=False) ``` In this dataset, the "image" column is represented as a dictionary/struct with the format: ``` df = df.compute() df["image"].iloc[0].keys() -> dict_keys(['bytes', 'path']) ``` I think this is the format encoded by the [`Image`](https://huggingface.co/docs/datasets/v2.0.0/en/package_reference/main_classes#datasets.Image) feature extractor from datasets to format suitable for Arrow. The next step was to push the dataset to a repository that I created: ``` dd.to_parquet(dask_df, path = "hf://datasets/philippemo/dummy_dataset/data") ``` However, after pushing the dataset using Dask, the "image" column is now represented as the encoded dictionary `(['bytes', 'path'])`, and the images are not properly visualized. You can find the dataset here: [Link to the problematic dataset](https://huggingface.co/datasets/philippemo/dummy_dataset). It's worth noting that both the original dataset and the one submitted with Dask have the same schema with minor alterations related to metadata: **[ Schema of original dummy example.](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions/blob/main/data/train-00000-of-00001-566cc9b19d7203f8.parquet)** ``` image: struct<bytes: binary, path: null> child 0, bytes: binary child 1, path: null text: string ``` **[ Schema of pushed dataset with dask](https://huggingface.co/datasets/philippemo/dummy_dataset/blob/main/data/part.0.parquet)** ``` image: struct<bytes: binary, path: null> child 0, bytes: binary child 1, path: null text: string ``` This issue seems to be related to an encoding type that occurs when pushing a model to the hub. Normally, models should be represented as an HF dataset before pushing, but we are working with an example where we need to push large datasets using Dask. Could you please provide clarification on how to resolve this issue? Thank you! ### Reproduction To get the schema I downloaded the parquet files and used pyarrow.parquet to read the schema ``` import pyarrow.parquet pyarrow.parquet.read_schema(<path_to_parquet>, memory_map=True) ``` ### Logs _No response_ ### System info ```shell - huggingface_hub version: 0.14.1 - Platform: Linux-5.19.0-41-generic-x86_64-with-glibc2.35 - Python version: 3.10.6 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /home/philippe/.cache/huggingface/token - Has saved token ?: True - Who am I ?: philippemo - Configured git credential helpers: cache - FastAI: N/A - Tensorflow: N/A - Torch: N/A - Jinja2: 3.1.2 - Graphviz: N/A - Pydot: N/A - Pillow: 9.4.0 - hf_transfer: N/A - gradio: N/A - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /home/philippe/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /home/philippe/.cache/huggingface/assets - HF_TOKEN_PATH: /home/philippe/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False ``` Hi ! The `Image()` info is stored in the **schema metadata**. More precisely there should be a "huggingface" field in the schema metadata that contains the `datasets` feature type of each column. To fix your issue, you can use the same schema as the original Parquet files to write the new ones. You can also get the schema with metadata from a `Features` object, e.g. ```python from datasets import Features, Image, Value features = Features({"image": Image(), "text": Value("string")}) schema = features.arrow_schema print(schema.metadata) # {b'huggingface': b'{"info": {"features": {"image": {"_type": "Image"}, "text": {"dtype": "string", "_type": "Value"}}}}'} ```
[ -1.1553672552108765, -0.8704099059104919, -0.8205088376998901, 1.4618592262268066, -0.13831359148025513, -1.3031227588653564, 0.08137144148349762, -1.077457070350647, 1.7212998867034912, -0.7961846590042114, 0.25587376952171326, -1.7589480876922607, -0.05134357139468193, -0.5332499742507935, -0.7661887407302856, -0.8895761370658875, -0.40349653363227844, -0.7590218782424927, 0.9748439192771912, 2.4948740005493164, 1.2335093021392822, -1.3994674682617188, 2.7232069969177246, 0.720005214214325, -0.1931723803281784, -0.9706401824951172, 0.5024557709693909, 0.015861334279179573, -1.2811992168426514, -0.43808823823928833, -0.9771705865859985, -0.02187252789735794, -0.5806236267089844, -0.5748711228370667, 0.07853066921234131, 0.42558667063713074, -0.28516119718551636, -0.404985636472702, -0.5903922915458679, -0.8088806867599487, 0.4461885392665863, -0.3589259684085846, 0.9399291276931763, -0.3402281105518341, 1.7700526714324951, -0.5615783929824829, 0.30773940682411194, 0.7172764539718628, 1.2874053716659546, 0.1238698959350586, 0.021751634776592255, 0.30937352776527405, 0.3261268436908722, -0.026984840631484985, 0.4848901629447937, 1.280882716178894, 0.6348230838775635, 0.5123198628425598, 0.7188975811004639, -2.2745184898376465, 1.2547998428344727, -0.9898595213890076, 0.33654388785362244, 1.3599634170532227, -0.9470560550689697, 0.39580610394477844, -1.7792567014694214, -0.03149633854627609, 0.5731503963470459, -2.2298264503479004, 0.22464711964130402, -1.3220584392547607, -0.5323537588119507, 0.994595468044281, 0.3253949284553528, -1.156193733215332, 0.2483070343732834, -0.44043418765068054, 1.0585134029388428, 0.4947474002838135, 1.1677576303482056, -1.7633955478668213, 0.01728336326777935, -0.26908665895462036, 0.12175552546977997, -1.2697455883026123, -1.5902283191680908, 0.5266081690788269, 0.7055143713951111, 0.6479383707046509, -0.17070122063159943, 1.0363564491271973, -0.9740752577781677, 0.7483487725257874, -0.9263175129890442, -1.6918259859085083, -1.4139972925186157, -2.2288403511047363, -2.2249884605407715, 0.7194870710372925, -0.514632523059845, -0.465446412563324, 2.0701444149017334, -1.0350892543792725, -1.797200083732605, 1.0670629739761353, 0.3718332052230835, -0.0325707346200943, 2.3696439266204834, 0.23271678388118744, -0.711508572101593, 0.42944321036338806, -0.6923468708992004, 0.840378999710083, -0.34564557671546936, 1.2936956882476807, 0.4762380123138428, -1.0482797622680664, 1.6523135900497437, -0.474346399307251, 0.5979148745536804, -0.7210723757743835, -0.41335779428482056, -0.7860249876976013, 0.36472243070602417, 1.8384672403335571, -0.37752240896224976, 1.5502387285232544, -0.3687788248062134, -1.5351568460464478, -1.599529504776001, 0.8124709725379944, 0.517126202583313, -0.7860658764839172, 0.08675190806388855, -0.4136230945587158, 0.18063051998615265, -0.019480198621749878, 1.1591368913650513, 1.1695644855499268, 0.6882947683334351, -0.26035088300704956, -0.8528886437416077, 0.25896501541137695, 0.030639875680208206, -0.7113811373710632, -1.81325364112854, -0.31564876437187195, 0.22760115563869476, 0.6217703819274902, -1.2100309133529663, 1.7358342409133911, 0.7892975211143494, 1.9343739748001099, 1.0015616416931152, -0.40652012825012207, 1.5325736999511719, 0.10389406979084015, 1.8582439422607422, -0.49762600660324097, 0.7203437089920044, -0.3383294641971588, -1.160073161125183, 0.8731552362442017, -0.289167582988739, -2.0126800537109375, -0.7747635245323181, -0.8549032211303711, -0.1970130354166031, -0.7148476839065552, 0.9579612612724304, -0.32605940103530884, -1.4016472101211548, 0.13554275035858154, -0.6246438026428223, 0.1441955417394638, -1.2308270931243896, 0.22105230391025543, 0.786063551902771, -0.6699535250663757, 0.020631583407521248, -0.26508498191833496, -1.3623687028884888, -0.4308868944644928, 0.3603345453739166, 1.8891243934631348, -0.6903399229049683, 0.949031412601471, 1.04793381690979, -0.716353178024292, 0.03863779827952385, 0.26034462451934814, -0.27402976155281067, 0.9223461151123047, -1.0574746131896973, -0.45851802825927734, 1.1368532180786133, -0.17073163390159607, -0.6781970262527466, 1.4653745889663696, 0.7571969628334045, -1.0320912599563599, -0.2099800556898117, -0.21692559123039246, -0.8221367001533508, 0.013764386996626854, -1.5614128112792969, -0.12720604240894318, 0.3482256531715393, -1.5013306140899658, -0.5340380668640137, -0.230038583278656, 1.290474534034729, -0.20032113790512085, 1.3743889331817627, -0.36193418502807617, -0.2338060587644577, -0.38484257459640503, -0.41413581371307373, 0.15251418948173523, -0.22120827436447144, -0.6976773142814636, 0.189190074801445, -0.8063900470733643, 0.2762358486652374, 1.4395354986190796, 0.394920289516449, 0.049528393894433975, 0.5290862917900085, 1.1752028465270996, 0.3648739755153656, -0.07634960114955902, -0.8909298181533813, -1.5998451709747314, 2.0148885250091553, -1.4010629653930664, 1.8797696828842163, 0.7049457430839539, 0.024234674870967865, -1.8180192708969116, -1.8583588600158691, 1.3999449014663696, 1.1480798721313477, 2.389096260070801, 0.5048708319664001, 0.43410250544548035, -0.7624874114990234, -0.6873992681503296, 0.4088335931301117, -0.9369344711303711, -0.7286083102226257, 0.15000174939632416, 2.3183505535125732, 1.875211238861084, -0.5133659839630127, -0.26036199927330017, -0.9750618934631348, 1.330836296081543, -0.24994386732578278, 0.24603106081485748, 1.9771188497543335, -0.3613435924053192, -1.0142202377319336, 1.3317606449127197, -2.3008999824523926, 0.12973693013191223, 1.9481592178344727, 0.22444941103458405, 0.0782996118068695, -1.3962823152542114, -0.6817120909690857, -0.2700355350971222, -0.44666561484336853, -1.3206673860549927, 0.4956282377243042, -0.28807711601257324, -0.7935476303100586, -1.4608170986175537, 0.1141081154346466, -1.105704426765442, -1.6540907621383667, 0.26026713848114014, 1.877305269241333, 1.9673550128936768, -0.8185463547706604, 1.5376616716384888, -0.37519586086273193, 0.16796116530895233, 1.2403134107589722, 1.2484537363052368, 3.0976192951202393, 1.8959107398986816, -1.299307942390442, 0.6774731874465942, -0.16775208711624146, -0.49405115842819214, 1.2259480953216553, -1.118534803390503, 1.1797709465026855, -0.20208755135536194, -1.2564311027526855, -1.2162519693374634, 0.9942842125892639, 0.4425851106643677, 0.09209556877613068, -0.5332761406898499, 1.1897811889648438, 0.043684910982847214, 1.282258152961731, 0.6321911811828613, -0.50434410572052, 0.580236554145813, -0.40175661444664, -0.4973906874656677, 1.510803461074829, 0.10775506496429443, -1.3934828042984009, -2.3208673000335693, -0.22425371408462524, -0.8441372513771057, 0.035498250275850296, -0.6629498600959778, -0.9874634146690369, 1.6715821027755737, 0.41175609827041626, -1.263263463973999, -0.292655348777771, -0.41846993565559387, -0.5398589968681335, 2.610109806060791, -1.3802064657211304, -0.19618703424930573, -0.9659181833267212, -0.5910705924034119, 1.6068787574768066, -1.164448618888855, -0.13965627551078796, -1.0770409107208252, -0.5592201352119446, -1.3531229496002197, -0.5582069158554077, 0.0003495011478662491, -0.9312763810157776, 0.7970339059829712, 0.07268202304840088, -1.2123925685882568, -0.28386980295181274, -0.9329184293746948, 0.945360541343689, -0.22594304382801056, 0.15391859412193298, 1.9830543994903564, 0.43015962839126587, -0.4227565824985504, 0.7358469367027283, 1.1496484279632568, 0.6793063282966614, -0.642529308795929, 0.2405553013086319, -0.741334855556488, 0.300158828496933, -1.407096266746521, 0.21039940416812897, -2.87030029296875, 0.70769864320755, -0.042638830840587616, -0.0019029807299375534, 0.02346910908818245, -1.2323074340820312, 0.9666284918785095, 2.622945547103882, -1.2429327964782715, 0.41529107093811035, 0.32917922735214233, 1.2465219497680664, -1.5762475728988647, 0.2293194681406021, -0.46550682187080383, 2.0847725868225098, 0.13488316535949707, 1.2101155519485474, -0.46871641278266907, -2.158900499343872, 0.5463656187057495, -1.273699402809143, -1.136682152748108, 0.8447378873825073, -0.824004054069519, 0.13112051784992218, -1.465210199356079, -0.19667665660381317, -0.9534599781036377, -1.2033504247665405, 0.7700913548469543, 0.1282130777835846, 0.4775453805923462, -0.6529792547225952, 0.3496345579624176, -2.1247613430023193, -1.3036621809005737, -0.2447621077299118, -0.9240385890007019, 0.531055212020874, -0.2788574695587158, 0.6680108904838562, -0.14969266951084137, 0.0777532309293747, 0.34553030133247375, 1.43781578540802, 3.401876449584961, 0.2317075878381729, 0.3276258409023285, -0.11717577278614044, -0.970547080039978, 1.4596836566925049, 0.9992128014564514, -0.09398350119590759, -0.5111888647079468, -1.0261839628219604, 1.2798534631729126, 1.9344226121902466, 1.0686897039413452, 0.06621640920639038, -0.8921179175376892, -0.7893984317779541, -0.00735813844949007, 0.14765700697898865, 0.5021668076515198, 0.9003455638885498, 0.016230689361691475, 0.1433960497379303, 1.4636039733886719, 1.2254308462142944, -0.34172382950782776, 0.4284873902797699, -0.8879249095916748, -0.49696385860443115, 0.46727368235588074, 0.33861371874809265, 0.016335243359208107, 0.3601653277873993, -1.0518990755081177, -0.26490649580955505, -0.394771546125412, -0.9222401976585388, -0.6711873412132263, -0.4474644958972931, -0.38704541325569153, 1.5463621616363525, 0.0982806533575058, -0.5084322690963745, -0.03123655915260315, -0.7645226716995239, -0.1660589724779129, -1.0061256885528564, 0.27166348695755005, -0.19798432290554047, -0.10049569606781006, -0.1929624080657959, 1.6455217599868774, -0.9511361122131348, -2.0515105724334717, 0.2353888601064682, 0.2647840082645416, -0.390914648771286, 0.17293713986873627, 1.7213879823684692, 0.6329817175865173, 1.4041146039962769, 1.3486664295196533, 0.9432634711265564, -0.5861649513244629, -1.2790032625198364, 0.6355937719345093, 0.9574325680732727, -1.3137010335922241, 0.904288649559021, -0.01139806117862463, -0.5385582447052002, 0.7271340489387512, 1.3187311887741089, 0.4056628346443176, -1.9897469282150269, 0.805820107460022, -0.8933932781219482, 0.7358644604682922, 0.6848434805870056, 0.7894749641418457, 0.21249549090862274, 0.8289161324501038, -1.224318027496338, -1.1868700981140137, -0.7450968623161316, -0.6231540441513062, 1.8710885047912598, -0.22380825877189636, 0.615712583065033, -0.2800261676311493, -1.3186181783676147, -0.06717050820589066, 0.7744731307029724, 0.3458859920501709, -0.49086394906044006, 0.8347059488296509, -0.545669674873352, -1.054785132408142, -1.3246657848358154, -0.4402223229408264, -1.0232008695602417, -0.9132649302482605, 0.9704715609550476, 0.8287720680236816, 0.3517611026763916, 1.8696269989013672, 0.641105592250824, 0.18708470463752747, -2.626878023147583, 0.893702507019043, 0.3142433166503906, -0.041283413767814636, 0.8660780787467957, 0.33990973234176636, 1.0826772451400757, -0.07387466728687286, 0.5404387712478638, -2.3393871784210205, 2.222985029220581, -0.23305758833885193, 0.726146936416626, -0.05849398300051689, -0.20167066156864166, 1.1311227083206177, 0.5109896063804626, 0.5556221604347229, -1.1001884937286377, 0.7179825901985168, -0.6245651245117188, 1.1386607885360718, 0.923189103603363, -0.840846836566925, -0.006721263751387596, 1.4474563598632812, 0.4926036596298218, -0.4984639883041382, -0.9404401779174805, -0.9170458316802979, 1.0490989685058594, 1.7775964736938477, -0.01926809921860695, 0.01668887585401535, 0.9425138235092163, 0.7180070281028748, -1.2516530752182007, 0.09268352389335632, -0.7061555981636047, -0.6729397773742676, 1.6971396207809448, 2.0283350944519043, -0.12835116684436798, -0.18341149389743805, -0.7580493092536926, -1.168355107307434, 0.7427699565887451, 0.01961579918861389, 0.0621715746819973, 0.7799887657165527, -0.6920430660247803, 1.194638729095459, 0.7676643133163452, 0.93513423204422, 0.09910884499549866, 0.35028138756752014, 0.4127700924873352, -0.4050372242927551, -1.2310422658920288, -0.2695690095424652, -1.0782148838043213, -2.4365785121917725, 0.4019315540790558, -0.20671650767326355, -1.4302070140838623, 0.008311552926898003, -1.0579475164413452, 1.0066312551498413, -0.6092625260353088, -1.106446623802185, -1.5250645875930786, 0.26647883653640747, -0.04042678326368332, 0.8714120388031006, -1.5680185556411743, -0.08467872440814972, 1.2306188344955444, 0.913616418838501, -0.5958186984062195, 0.9273239374160767, 0.19035644829273224, 1.0150072574615479, 0.908029317855835, -0.39309605956077576, 0.45911964774131775, 0.039918649941682816, -1.345163345336914, 0.3615230619907379, 1.1417573690414429, 0.2224426418542862, 1.4469184875488281, -0.5035308599472046, 0.04980907589197159, 0.4258062243461609, -0.45254379510879517, -0.45305272936820984, -0.5333733558654785, 0.667023777961731, 0.08531728386878967, -0.9292959570884705, -0.004602570552378893, 0.03905390575528145, -0.2874338626861572, 0.24144347012043, -1.4584509134292603, -0.16816990077495575, -0.3235827386379242, -0.50035160779953, -1.197053074836731, -0.002854888327419758, 1.398271083831787, -0.7858663201332092, -0.2237861454486847, 0.5957810878753662, 0.26446911692619324, 0.5012705326080322, 0.5450098514556885, -0.6692295670509338, -0.23037457466125488, -0.3071746528148651, -0.3820153772830963, 0.246647909283638, 1.2791227102279663, -0.16476239264011383, -0.9402415752410889, 0.7364643812179565, -0.35062354803085327, 0.07716944813728333, 1.9185311794281006, 0.05132254958152771, -0.7907838225364685, 0.3140494227409363, -0.6711900234222412, 1.8331717252731323, 1.8072082996368408, 1.3589637279510498, -0.15517441928386688, -0.9308328628540039, 0.541488766670227, -0.3592885434627533, -0.3957655727863312, 0.9242848753929138, 0.37084293365478516, -0.14436770975589752, -1.388901710510254, 0.6505382657051086, 1.3164222240447998, -0.8809285163879395, -0.769757091999054, 0.09806302189826965, -0.8633040189743042, 1.0739365816116333, 0.7218895554542542, 0.3251321017742157, 0.25926241278648376, 1.5737069845199585, 0.7232977151870728, -0.4450031816959381, 0.5319772958755493, 0.5604887008666992, -0.20615266263484955, -2.1275155544281006, -1.1430931091308594, 0.29535433650016785, -0.45177534222602844, -1.6538379192352295, 1.357537865638733, -1.1981122493743896, -1.021337866783142, 0.5653756856918335, 0.11910335719585419, 1.4068078994750977, 0.2946885824203491, 1.6287691593170166, 2.138895273208618, 0.8760160803794861, 0.3625173568725586, 1.3080596923828125, -0.09186407923698425, -0.39348822832107544, 1.8192996978759766, -0.5087107419967651, 0.5479353666305542, 1.0201551914215088, -0.4055890440940857, -1.0207524299621582, -0.8060244917869568, -1.243462085723877, -0.7082552909851074, 1.1894432306289673, 0.11870087683200836, -1.147169589996338, 0.21518287062644958, 1.5261822938919067, 0.16715563833713531, -0.3528158366680145, 0.7651680111885071, 0.4474744498729706, -0.7172902226448059, -0.03690910339355469, -0.8706695437431335, 0.5926101803779602, -0.15581879019737244, -0.2154272198677063, 0.35517245531082153, 0.47437044978141785, 1.363742709159851, -0.02448216825723648, 0.11996284127235413, 1.1785064935684204, -1.345969796180725, 1.509405255317688, -0.7033184170722961, 0.2772027850151062, -2.4949891567230225, 1.4625061750411987, -0.7718054056167603, 1.91434645652771, -2.5825040340423584, 0.44146785140037537, -0.512051522731781, -0.46748486161231995, 0.3186971843242645, -0.3780576288700104, 0.08705489337444305, -0.03573194518685341, -1.0911214351654053, -0.02432652935385704, -0.7378052473068237, 0.5574901103973389, 1.1851367950439453, 1.4141273498535156, -1.1531407833099365, -0.34894177317619324, -1.7907127141952515, -0.13969643414020538, -0.7031655311584473, 0.3974609971046448, -2.008910655975342, -0.19531972706317902, -1.9490959644317627, -2.4941246509552, -1.4240453243255615, -0.8459072709083557, 1.0435490608215332, 0.1049337387084961, -0.8767353892326355, 1.1562576293945312, -0.4199557900428772, -1.87305748462677, 1.0816073417663574, -2.251638650894165 ]