File size: 2,602 Bytes
1dd67d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2821d1
 
1dd67d1
 
 
 
 
 
 
2bef8de
1dd67d1
b685baf
e2821d1
1dd67d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3526fb1
1dd67d1
3526fb1
1dd67d1
7801deb
3526fb1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.Wikipedia

# Lint as: python3
"""Dream!n character datasets"""

import datasets
import json
import urllib

_CITATION = """
"""

_DESCRIPTION = "Dream!n character datasets"


_DATASET_URL = "https://huggingface.co/datasets/JAWCF/characters/resolve/main/images.tar.gz"

json_url = urllib.request.urlopen("https://huggingface.co/datasets/JAWCF/characters/resolve/main/characters.json")
DICT_DESC = json.loads(json_url.read())

class Characters(datasets.GeneratorBasedBuilder):

    def _info(self):
        features = datasets.Features({
            'image': datasets.Image(),
            'text': datasets.Value('string')
        })
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="",
            # License for the dataset if available
            license="",
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        path = dl_manager.download(_DATASET_URL)
        image_iters = dl_manager.iter_archive(path)
        splits = [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": image_iters
                }
            ),
        ]
        return splits

    def _generate_examples(self, images):
        """Yields examples."""
        idx = 0
        for filepath, image in images:
            yield idx, {
                "image": {"path": filepath, "bytes": image.read()},
                "text" : DICT_DESC[filepath.split("/")[-1]],
            }
            idx+=1